Atlanta BeltLine Master Plan

SUBAREA 7

 NORTHSIDE/PEACHTREE/PIEDMONT TRANSPORTATION ANALYSIS REPORTPrepared for
Atlanta BeltLine, Inc. by Glatting Jackson

Adopted by the Atlanta City Council on
November 16, 2009
Legislation \#09-0-0130/CDP-09-17

TRANSPORTATION ANALYSIS REPORT

1.0 Introduction 1
1.1 Purpose of Report 1
1.2 Overview of Subarea Plan 1
1.3 Guiding Principles 3
1.4 Focus Areas 4
1.5 Mobility Themes \& Recommendations 7
1.6 Summary of Report Contents 9
2.0 Existing Roadway Facilities 8
2.1 Historic \& Projected Traffic Counts 9
2.2 Interstate Access \& Functional Classification 11
3.0 Study Methodology 13
4.0 Existing Traffic Operations: Peachtree Road Focus Area 14
4.1 Existing Traffic Data 14
4.2 Traffic Operations 16
5.0 Baseline Traffic Operations: Peachtree Road Focus Area 17
5.1 Related Transportation Studies 17
5.2 Programmed Projects 19
5.3 Current Development Trends 21
5.4 Background Traffic Growth 22
5.5 Trip Generation: Peachtree Road Focus Area 23
5.6 Trip Distribution 25
5.72020 \& 2030 Baseline Scenarios 27
6.0 BeltLine Traffic Operations: Peachtree Road Focus Area 30
6.12020 \& 2030 BeltLine Build Scenarios 30
7.0 Buford Highway Re-configuration Analysis 33
7.1 Context 33
7.2 Transportation Approach 33
7.3 Re-configuration Analysis 33
7.4 Existing Traffic 33
7.5 Re-configuration 35
8.0 Conclusion \& Recommendations 37
Appendix A-Trip Distribution Worksheets
Appendix B- Traffic Counts
Appendix D- Connectivity Analysis

1.0 Introduction

1.1 Purpose of this Report

The overall mobility approach to the Subarea Master Plan is to maximize transit accessibility and street connectivity, while protecting the quality of life of the adjacent neighborhoods. The purpose of this transportation/mobility analysis is to evaluate and test the proposed new street connections and transportation projects that resulted from the Subarea Master Plan process with the proposed development program, future traffic growth, and the increased transit accessibility of the BetILine.

1.2 Overview of the Subarea Plan

The BeltLine Study Area for Subarea 7 extends from Northside Drive on the west, Piedmont Road on the east, I-85 and I-75 on the south and the Lindbergh Drive/Lindbergh Station Area to the north. The Tax Allocation District (TAD) is the focus of this study, covering a smaller area that specifically includes key corridors, parks and open spaces, the BeltLine transit and trail corridors and potential redevelopment areas.

1.3 Guiding Principles

In early 2007, the Northside BeltLine Study Group developed a series of "Guiding Principles" that served to articulate the desired vision for the BeltLine in this area. These principles guided the master planning process.

Preservation

- Preservation of greenspace
- Create new greenspace and maximize new greenspace opportunities
- Linkage of greenspaces
- Preservation of historic assets
- Preservation of existing neighborhoods
- Minimize impact on single-family homes
- Development of consistency with scale and architecture of surrounding neighborhoods and zoning
- Provide transitional zoning and density to existing single-family residential neighborhoods

Trails and open space

- Minimize impact of trails on established neighborhoods
- Location of trail access points to minimize onstreet parking
- Well thought-out parks and greenspace along the BeltLine
- Right-of-way wide enough to accommodate large shade trees along BeltLine

Environment

- Improve Environmental Quality
- Take care to protect sensitive environmental areas
- Offer significant stormwater management that mitigates flooding

Public safety

- Safe, integrated \& convenient pedestrian access
- Safe, integrated \& convenient recreation - more bikes, fewer cars

Transportation Planning

- Comprehensive traffic planning that is integrated with existing or future transit
- Well-connected street grid
- Implement traffic calming measures and streescape improvements on existing residential streest that currently provide mobility for cutthrough traffic
- Initiate "no commercial traffic" legislation and enforcement on residential streets
- BeltLine easy to navigate

Opportunities

- Creation of opportunities for innovative public art
- Opportunities for convenient retailing
- Internships and Aapprenticeships to train residents for BeltLine jobs
- Mixed-use development nodes at stations that include affordable housing
- Have incentives to encourage community involvement

The BeltLine Process

- Physical completion and continuity of BeltLine project
- Long-term maintenance \& expansion of project
- Emphasis on design quality
- Encourage and implement quality development that is unique and complementary to existing/ surrounding development
- Inclusive and on-going process
- Green design with regard to recycling, carbon usage, ground cover and water quality

1.4 Focus Areas

The redevelopment opportunities in Subarea 7 are concentrated in two "focus areas" around BeltLine station locations: the Peachtree Road Area between Piedmont Hospital and Biscayne Drive, and the Piedmont Road Area between Garson Drive and Cheshire Bridge Road. The Illustrative Urban Design Plan demonstrates how this redevelopment should occur, focusing primarily on redevelopment within the TAD boundary and adjacent areas likely to be influenced by redevelopment.

Peachtree Road Focus Area Summary:

- Redevelopment is focused on underutilized commercial and residential uses just north of the CSX rail line and within $1 / 4$ mile of the future BeltLine transit station.
- The proposed redevelopment intensity is consistent with the area's future land use and existing zoning but should have a strong mixed use component, new open spaces, and street connectivity.
- Opportunity exists to convert floodplain areas to open space and redevelopment occurs.
- A Peachtree Transit Plaza is proposed as a significant public space built over the CSX rail line at Peachtree Road, providing new street connectivity, and serving as an identifiable transit and public space icon for the area.

Piedmont Road Focus Area Summary:

- Reconfiguration of the Buford Highway/l-85 interchange clarify access to Piedmont Road and Monroe Drive, distribute area traffic, and catalyze redevelopment.
- Extension of Monroe Drive east across Piedmont Road to Cheshire Bridge Road.
- BeltLine transit station and potential in-fill MARTA station at Armour Drive.
- Targeted redevelopment opportunities along Garson Drive and Piedmont Road.
- Additional redevelopment potential in Subarea 6 (south of Buford Highway/l-85) along Monroe Drive and north of Cheshire Bridge Road related to the potential interchange reconfiguration and associated street framework plan.

1.5 Mobility Themes \&
 Recommendations

The Subarea 7 Master Plan process looked at a wide range of solutions and mitigating improvements to manage existing and future traffic. Traffic issues in growing urban areas are not "solved" but "managed" through a wide range of strategies that include transit access, bicycle facilities, increased walkability, better connectivity, and traffic calming.

Key Mobility Recommendations:

- Prime among these strategies will be the implementation of BeltLine transit. While technical and financial hurtles exist, transit will be built in this corridor. BetlLine transit will provide a valuable link between the major employment and residential center of the Piedmont Hospital/ Peachtree Road area and MARTA, via the Lindbergh Station, making this area one of the most transit accessible places in the region. Several transit alignment options are proposed in the Armour-Ottley Industrial area to potentially maximize transit accessibility. These options will be evaluated further as part of the transit EIS process currently underway.
- The new street connections planned as part of the Street Framework will serve to improve local accessibility, distribute traffic more efficiently and create more walkable urban form. Many of these streets will be built as redevelopment occurs by private development. Several key connections such as the realignment of Spalding Drive and the Bennett Street connection across the CSX rail line may get implemented through public/ private partnerships.
- Neighborhood traffic calming is proposed in the neighborhoods along Collier Road, recognizing that the long-term livability of these neighborhoods is dependent on managing the behavior and speed of traffic that travels on their streets.
- The proposed sidewalk and streetscape improvements to surrounding streets will serve to increase walkability and encourage transit ridership by making it easy and comfortable to walk to transit.

Key Components of the Proposed Street Framework:

- Bennett Street Connector - The construction of a new transit plaza over the existing CSX rail line will include a parallel connection west of Peachtree Road that will connect the hospital campus to the north, providing an alternative means of access to Piedmont Hospital/Shepherd Center and helping distribute traffic in the area. This connection is proposed to connect north to Colonial Homes Drive and Biscayne Drive and creates a connection to Collier Road via the hospital campus streets.
- Spalding Drive Realignment - The realignment of Spalding Drive to the adjacent signal at Peachtree Valley Road will provide a valuable new access point for both Piedmont Hospital and the Shepherd Center off of Peachtree Road. Coupled with the Bennett Street Connector, this connection will provide a valuable new access to the hospital campus. It should be noted that utilizing and protecting the existing Spalding Drive right-of-way for future transit is the first priority.
- Brookwood Valley Circle Connector - On the east side of Peachtree Road, a parallel connection from Peachtree Park Drive, south to Brookwood Valley Circle will provide additional access for future redevelopment east of Peachtree Road.
- Garson Drive Connector - The plan proposes connecting Garson Drive south, parallel to Piedmont Road, across Peachtree Creek through the Rollins site and connecting back to Piedmont Road. This provides further connectivity and access for future redevelopment.
- Buford Highway Interchange Reconfiguration - The reconfiguration of this interchange eliminates existing dangerous "weave" conditions on the exit and entrance ramps, relocates the Buford Highway east-bound exit and entrance ramps to a location east of Piedmont Road, and extends Monroe Drive across Piedmont Road.

1.6 Summary of Report Contents

This Transportation Analysis Report is organized into the following sections:

- Section 2: Existing Roadway Facilities summary of existing roadway conditions.
- Section 3: Study Methodology - Summary of assumptions and methodology.
- Section 4: Existing Traffic Operations: Peachtree Road Focus Area - Summary of existing traffic operations.
- Section 5: Baseline Traffic Operations: Peachtree Road Focus Area - Analysis of 2020 and 2030 operations without Beltline projects.
- Section 6: BeltLine Traffic Operations: Peachtree Road Focus Area - Analysis of 2020 and 2030 operations with Beltline projects.
- Section 7: Buford Highway Reconfiguration Analysis-Existing capacity analysis conducted to evaluate the effect of the proposed interchange reconfiguration on existing traffic patterns and movements in order to test whether this concept should be evaluated and tested further.
- Section 8: Conclusions and Recommendations - Summary of proposed projects and connectivity improvements.

2.0 Existing Roadway Facilities

An inventory of the key roadways in the Subarea, focused on the Peachtree Road Focus Area was conducted. Key roadways in the Peachtree Road Focus Area include:

Peachtree Road

Peachtree Road (State Route 9, U.S. Route 19) is a major north/south corridor that connects Midtown Atlanta to Buckhead and is classified as an Urban Principal Arterial. In the Peachtree Road Focus Area, from Collier Road to Peachtree Hills Avenue, this corridor serves adjacent residential neighborhoods, retail, office and multi-family residential, with Piedmont Hospital and the Shepherd Center located in the center of the study area. The 2006 average daily traffic (ADT) volume in this area ranges from 40,390 vehicles per day (vpd) to 42,190 vpd (source: Georgia Department of Transportation). Peachtree Road in this area is an undivided sixlane road with left turns accommodated in the center lanes.

Collier Road

Collier Road is an east/west corridor that connects from Peachtree Road, west through residential neighborhoods and is classified as an Urban Collector Street. In
the Peachtree Road Focus Area, is serves as an important connection to Piedmont Hospital from Interstate 75, via Northside Drive. The 2006 ADT, west of Northside Drive was 11,260 vpd. Collier Road is a 2 -lane road with left turn lanes at key intersections and entrances to Piedmont Hospital.

Peachtree Hills Avenue

Peachtree Hills Avenue is an east/west corridor that connects from Peachtree Road east to Lindbergh Drive (and on to Piedmont Road), through the Peachtree Hills Neighborhood. It is an important east/west connection and has recently undergone significant traffic calming redesign related to the Lindbergh MARTA Station Transit Oriented Development.

Colonial Homes Drive/Dellwood Drive

The Colonial Homes Drive/Dellwood Drive connection is a little known link between Peachtree Road and Collier Road. The Colonial Homes Drive section includes the Colonial Homes Apartments (an older garden-style apartment complex) along with newer multi-family and commercial development. The Dellwood Drive section is a local residential street in the Collier Hills North Neighborhood. This is a valuable connection but will need to be proactively controlled and traffic calmed to manage the future traffic impact of development.

Table 1: Roadway Characteristics								
Roadway	From	To	Functional Classification	AADT	Number of Lanes			
Northside Drive	I-75	Collier Road	Urban Minor Arterial	22,380	3			
Northside Drive	Collier Road	Peachtree Battle Road	Urban Minor Arterial	13,110	3			
Peachtree Road	Deering Road	Collier Road	Urban Principal Arterial	42,190	6			
Peachtree Road	Collier Road	Peachtree Hills Avenue	Urban Principal Arterial	40,390	6			
Piedmont Road	Monroe Drive	Cheshire Bridge	Urban Minor Arterial	32,340	5			
Piedmont Road	Cheshire Bridge	Garson Drive	Urban Minor Arterial	36,620	6			
Piedmont Road	Garson Drive	Lindbergh Drive	Urban Minor Arterial	39,620	6			
Collier Road	Howell Mill Road	Northside Drive	Urban Collector Street	11,260	2			
West Wesley Road	Northside Drive	Peachtree Road	Urban Collector Street	5,140	2			
Lindbergh Road	Peachtree Road	Acorn Avenue	Urban Minor Arterial	10,320	2			
Lindbergh Road	Acorn Avenue	Peachtree Hills Avenue	Urban Minor Arterial	12,930	2			
Lindbergh Road	Peachtree Hills Avenue	Peidmont Road	Urban Minor Arterial	12,690	2			
Lindbergh Road	Piedmont Road	Lindmont Court	Urban Minor Arterial	18,080	2			
Lindbergh Road	Lindmont Court	I-85	Urban Minor Arterial	9,260	2			
Peachtree Battle	Northside Drive	Peachtree Road	Urban Collector Street	N/A	2			
Peachtree Hills Avenue	Peachtree Road	Lindbergh Drive		N/A	N/A			
Cheshire Bridge	Piedmont Road		Urban Minor Arterial	22,840	2			
Monroe Drive	Montgomery Ferry	Armour Drive	Urban Collector Street	17,490	2			
				2				

2.1 Historic \& Projected Traffic

Counts

Historic traffic counts were analyzed within the study area. The major corridors of Peachtree Road, Piedmont Road, and Northside Drive were further studied for historic and projected traffic counts between the years 2001 and 2030.

Summary

- Piedmont Road north of Buford Highway saw a slight increase in volume between 2001 and 2005 only to drop by 22% in 2006.
- Piedmont Road south of Buford Highway showed the most significant growth in volume-39\% between 2005 and 2006.
- Peachtree Road showed a slight increase in traffic volumes from 2001 to 2006 but is projected to increase by 41% by the 2030 .
- Northside Drive decreased by 17% between 2005 and 2006 but is projected to increase by 28% by 2020.
- Piedmont Road north of Buford Highway is projected to have the biggest traffic volume increase by 2030 at a 65% increase.

Piedmont Road (N)		Piedmont Road (S)		Northside Drive		Peachtree Road (N)		Peachtree Road (S)	
Year	Volume								
2001	50,924	2001	23,300	2001	27,014	2001	39,025	2001	42,007
2002	52,324	2002	23,090	2002	28,035	2002	39,930	2002	43,316
2003	52,481	2003	23,388	2003	23,206	2003	50,606	2003	43,111
2004	53,424	2004	23,811	2004	23,627	2004	42,337	2004	42,823
2005	53,950	2005	24,050	2005	25,210	2005	40,910	2005	43,250
2006	39,620	2006	32,340	2006	22,380	2006	40,390	2006	42,190
2020	61,701	2020	40,638	2020	28,831	2020	53,930	2020	50,752
2030	65,515	2030	42,105	2030	32,878	2030	57,141	2030	51,912

Table 2: Projected Volume from ARC TDM
Source: Georgia Department of Transportation, The Atlanta Regional Commission's TDM

2.2 Interstate Access \&
 Functional Classification

The area's connectivity is also influenced by access to Interstates 75 and 85 . Key observations of the study area include:

Summary

- I-85 and I-75 are major barriers to north-south connectivity.
- There are only three north-south connections that cross I-75 and I-85: Northside Drive, Peachtree Road, and Piedmont Road.
- Northside Drive has full access to Interstate 75.
- Peachtree Road has partial access to Interstate 85 (southbound exit and northbound on).
- Piedmont Road has full access to Interstate 85 (via Armour Drive, Monroe Drive, and Buford Highway).

Classification	
Table 3: Functional Classification	
Description	
Urban Interstate Principal Arterial	Uninterrupted, high-speed flow
Urban Freeways \& Expressways	Uninterrupted, high-speed flow
Urban Principal Arterial	Serves the major activity centers of a metropolitan area; the highest traffic volume cor- ridors and longest trips. The principal arterial will carry important intra-urban as well as inter-city bus routes.
Urban Minor Arterial	Provides service to trips of moderate length; distributes travel to smaller areas.
Urban Collector Street	Provide access and traffic circulation within residential neighborhoods, commercial, and industrial areas. The collector also collects traffic from local streets and channels it into the arterial street system.

Source: Georgia Department of Transportation, AASHTO

3.0 Study Methodology

Scenarios

For the purposes of analyzing the traffic implications of future development and the proposed transportation projects in the Subarea, a set of transportation and development scenarios were defined and intersection analyses conducted for each. Intersections were evaluated based on the 2000 Highway Capacity Manual operational analysis methods for the afternoon (PM) peak-hour conditions. Synchro 7 software was used for all intersection analyses.

Baseline Scenarios 2020 \& 2030

These scenarios analyze what the intersection level of service would be in the future years of 2020 and 2030 if the proposed new development occurred but without the addition of BeltLine Transit or the proposed new street framework. For this analysis, the trip generation for the new development was added to assumptions about future traffic growth for the years 2020 and 2030.

BeltLine Build Scenarios 2020 \& 2030

These scenarios analyze what the intersection level of service would be in the future years of 2020 and 2030 if the proposed new development occurred with the addition of BeltLine Transit service and the proposed new street framework to distribute traffic. For this analysis, the trip generation of the new development was added to assumptions about future traffic growth for the years 2020 and 2030. In addition, assumptions were made regarding transit usage and traffic distribution based on the new street framework.

Table 4: Highway Capacity Manual Intersection	
LOS Criteria	

Service\end{array} \quad $$
\begin{array}{c}\text { Control Delay for } \\
\text { Signalized Intersection } \\
\text { (seconds per vehicle) }\end{array}
$$\right.\right]\)

Analysis of Signalized Intersections

For signalized intersections, it is necessary to analyze both capacity and level of service in order to evaluate the overall operation of the intersection. The capacity analysis of an intersection is performed by comparing the demand flow rate (volume) of traffic using the various lane groups. This results in a volume/capacity (v/c) ratio for each lane group. A v/c ratio greater than 1.0 indicates that the volume of traffic has exceeded the capacity available and indicates a temporary excess of demand. Although the capacity of the entire intersection is not defined, a composite v / c ratio for the sum of the critical lane groups within the intersection is computed. This composite v / c ratio is an indication of the overall intersection sufficiency.

Level of service (LOS) for a signalized intersection is a qualitative measure and is defined in terms of control delay per vehicle (in seconds per vehicle). Control delay refers to the portion of total delay that can be attributed to the traffic signal operation for signalized intersections. Control delay depends upon a number of variables including traffic volumes, lane configuration, the quality of progression of traffic from adjacent intersections, the cycle length, and the ratio of green time to the cycle length. The level of service criteria for signalized intersections, based on control delay, is shown in Table 2. Level of service A indicates operations with very low control delay while level of service F describes operations with extremely high control delay. Level of service E is typically considered to be the limit of acceptable delay in urbanized areas. The City of Atlanta LOS standard is LOS D.

4.0 Existing Traffic Operations: Peachtree Road Focus Area

4.1 Existing Traffic Data

In order to establish a baseline for the traffic scenario analysis, traffic data collection was conducted along Peachtree Road in the Peachtree Road Focus Area near the proposed BeltLine station on Peachtree Road at the following intersections:

- Peachtree Hills Avenue
- Peachtree Memorial Drive
- Biscayne Drive
- Colonial Homes Drive
- Bennett Street/Peachtree Park Drive
- Peachtree Valley Road
- Darlington Entrance Drive
- Brighton Road
- Collier Road

Weekday turning movement counts were taken during the morning and evening peak periods on Tuesday, May 22, 2007 between the times of 7:00 a.m. and 8:45 a.m. and between 4:00 p.m. and 5:45 p.m. The four consecutive 15 -minute interval volumes that summed to produce the highest traffic volume at each intersection were determined to make up the peak hour traffic volumes. For the purposes of the existing conditions and scenario analysis, the evening peak period (4:45 p.m. to 5:45 p.m.) was chosen as the critical period because it is consistently higher than the morning peak period for this corridor.

The existing traffic operations were analyzed utilizing HCM methodology and Synchro software with the peak hour intersection turning movement counts, field observations of signal phasing, timing, splits, and offsets.

Observations:

In general, this section of Peachtree Road has very high levels of service, atypical for urban areas of the city. This is due in part to:

- The fact that there are no significant (high traffic volume) east-west streets that cross Peachtree Road in this area (both Collier Road and Peachtree Hills are " T " intersections with a relative small volume of traffic).
- That there is also relatively little development along Peachtree Road. Except for Piedmont Hospital and the Shepherd Center, most of the commercial and multifamily development is relatively thin (one parcel depth) with established residential neighborhoods behind.

Over time with the development of the BeltLine and the anticipated redevelopment, this area will transform into a more "urban" place that will have to consider "rebalancing" travel modes to place greater emphasis on pedestrians, cyclists, and transit. This rebalancing will likely impact vehicular levels of service.

4.2 Traffic Operations

The existing conditions analysis is based on Synchro analysis of the collected intersection turning movement counts and field observations of signal phasing, timing, splits, and offsets.

Observations:

In general, this section of Peachtree Road has very high levels of service, atypical for urban areas of the city. This is due in part to:

- The fact that there are no significant (high traffic volume) east-west streets that cross Peachtree Road in this area (both Collier Road and Peachtree Hills are " T " intersections with a relative small volume of traffic).
- There is also relatively little development along Peachtree Road. Except for Piedmont Hospital and the Shepherd Center, most of the commercial and multifamily development is relatively thin (one parcel depth) with established residential neighborhoods behind.

Over time with the development of the BeltLine and the anticipated redevelopment, this area will transform into a more "urban" place that will have to consider "rebalancing" travel modes to place greater emphasis on pedestrians, cyclists, and transit. This rebalancing will likely impact vehicular levels of service.

5.0 Baseline Traffic Operation: Peachtree Road Focus Area

5.1 Related Transportation Studies

There are a number of related studies and plans in and adjacent to the study area that have recommended future land use changes, opportunities for redevelopment, new street connections and transit recommendations. The following summarizes the key transportation recommendations from each study.

Summary

Northside Drive Corridor Study

- New sidewalks on both sides of Northside Drive south of Bellemeade Street.
- Widen Northside Drive to six lanes and a median/ turn lane south of I-75.
- Potential for future transit in outside traffic lanes.

Peachtree Corridor

- Designates Peachtree Street at the proposed BeltLine intersection as a "gateway" project.
- Widen Peachtree Street to six lanes and a center median/turn lane.
- Streetcar transit in outside traffic lanes.

BeltLine Redevelopment Plan

- Proposes new pedestrian bridge from Piedmont Hospital to Bennett Street.
- Proposes extending PeachtreeParkAvenueacross Peachtree Road to Colonial Homes property.
- Proposes extending Colonial Homes Drive across Peachtree Road.
- Intersection Improvements along Peachtree Road at Peachtree Park Avenue, Colonial Homes, Peachtree Valley.
- Realign Spalding Drive to Peachtree Valley Road.

BeltLine Street Framework Plan

- Proposed new connections from Peachtree Park Drive to Peachtree Hills Avenue and Armour Drive (running adjacent to and over the CSX rail corridor)
- New connections in Armour Drive area to create development blocks.

Cheshire Bridge

- Re-stripe Cheshire Bridge Road from six lanes to five lanes with bike lane at l-85.
- Where possible increase width of sidewalks to $10^{\prime}-0^{\prime \prime}$.

Blueprint Piedmont Heights

- Encourage a new street grid at Armour Drive.
- Realign Monroe Drive and Buford Highway interchange.
- New Connections from Piedmont Road to Armour Drive area.

Lindbergh SPI

- New street grid and block structure to organize new mixed-use redevelopment.

5.2 Programmed Projects

The planned projects listed below for this study area were taken from the City of Atlanta's Capital Improvements Program (2008-2013) and The Atlanta Regional Commission's 2008-2012 Transportation Improvement Program (TIP) and the Regional Transportation Plan (RTP).

Table 5: Programmed Projects							
Project Name	Description	Start/End Dates	Status	Source	$\begin{array}{\|c\|} \hline \text { TIP } \\ \text { Number } \end{array}$	Cost	Funding Source
Collier Road Sidewalk	Construction of sidewalks on Collier Road from Howell Mill Road to Peachtree Road	01/08-07/08	Authorized	CIP	$\begin{array}{\|l\|} \hline \text { AT-AR- } \\ \text { BP-154 } \end{array}$	\$430,000	Local
I-85 @ Monroe Slip Ramps	The reconstruction of the I-85 North and Monroe Drive interchange. It will relocate the on and off ramps to Monroe Drive		Long-range	CIP	AT-AR- 106	\$33,081,000	State/Federal
Peachtree Road \& Peachtree Battle Road	Intersection improvements	04/09-09/09	n/a	CIP	DPW-05- 0402	\$179,100	Local
Piedmont Road	Streetscape from I-85 to Peachtree Road		Long-range	CIP	$\begin{array}{\|l\|} \text { DPW-05- } \\ 0425 \end{array}$	\$945,000	$\begin{aligned} & \text { \$545,000 } \\ & \text { Local } \end{aligned}$
Peachtree Road Bridge ROW Acquisition	Piedmont Road Bridge over CSX Railroad		n/a	CIP/TIP	AT-229	\$400,000	$\begin{array}{\|l\|} \hline \$ 50,000 \\ \text { Local } \end{array}$
Piedmont Road Turn Lanes	The addition of turn lanes and median improvements on Piedmont Road from Sidney Marcus Boulevard/Morosgo Drive to Garson Road. Designed to improve traffic flow in and around MARTA Lindbergh.			CIP	$\begin{array}{\|l\|} \hline \text { DPW-06- } \\ 0050 \end{array}$	\$11,778,955	Not Funded
Peachtree Streetcar Phase 2	Phase 2 construction of Peachtree Streetcar		Long-range	TIP	AR-456B	\$84,482,300	Local
BeltLine Transit Service in NW Quadrant	BeltLIne Transit from Bankhead to Lindbergh		Long-range	TIP	AR-451D	\$266,000,000	Local
BeltLine Transportation Corridor	Bicycle/Pedestrian Facility		Programmed	TIP	AR-450	\$75,000,000	$\begin{array}{\|l} \$ 57 \mathrm{M} \\ \text { (local) } \\ \$ 18 \mathrm{M} \\ \text { (Federal) } \\ \hline \end{array}$
Lindbergh/ Emory High- Speed Transit	Transportation Service from Lindbergh MARTA Station to Emory University/CDC		Pro- grammed	TIP	$\begin{aligned} & \text { M-AR- } \\ & 288 \end{aligned}$	\$230,000,000	Local
BeltLine Transit Service in NE Quadrant	BeltLine Transit from Lindbergh to Inman		LongRange	TIP	AR-451A	\$123,500,00	Local

5.3 Current Development Trends

Proposed Redevelopment \& Existing Land Use Plan

Based on the Illustrative Urban Design Plan developed as part of the Subarea Master Plan, a conceptual redevelopment program has been developed for the Peachtree Road Focus Area. Given the prominent nature of Peachtree Road, this area already had significant future land use entitlements. This program is consistent with, and allowable under, the Future Land Use Plan of the area and required only limited recommended adjustments to promote more mixed use development.

Market Analysis

In January 2008, Robert Charles Lesser \& Co. (RCLCo) prepared "An update of Market Forecasts for the Atlanta BeltLine Study Area". This study provided an update of the 2004 market forecasts for residential, commercial, office and industrial development in the BeltLine study area and allocated the overall growth potential to the 10 Subareas. Provided here is a summary of the redevelopment program relative to the net demand projected by RCLCo by the year 2020 in Subarea 7.

Commercial Development- The proposed development program accounts for 10% of the net demand with the assumption that commercial uses will occur primarily as ground floor uses within office and residential development. This assumes that the bulk of major commercial development will occur in the Lindbergh area and within other projects up and down Peachtree Road.

Office Development- The proposed development program accounts for 72% of the net demand with the assumption that Piedmont Hospital and Shepherd Center will promote additional medical office opportunities and that this area's transit accessibility will make this an attractive employment location.

Residential Development- The proposed development program accounts for 50% of the net demand. This assumes that a significant amount of new residential development will occur in the focus area supported by its enhanced transit accessibility and Peachtree Road's residential "address" value.

Development Assumptions

The traffic analysis is based two key assumptions relative to the proposed development program. First, it is assumed that the proposed redevelopment program would occur under both the Baseline and BeltLine scenarios. This is based on the fact that the land use entitlements are in place and that the Peachtree Road "address" coupled with Piedmont Hospital are the primary development drivers in the area. Secondly, it is also assumed that the proposed development program could build-out by 2020. This is based on the comparison of the program to the RCLCo projections for 2020 which suggests that the development program represents a reasonable percentage of the 2020 forecast.

Table 6: Conceptual Development Program			
Use	Proposed Program	\% of Demand	Net* Demand $\mathbf{2 0 2 0}$
Commercial (square feet)	84,425	10%	854,211
Office (square feet)	688,390	72%	945,292
Residential (units)	3,094	50%	5,647

5.4 Background Traffic Growth

Because the development scenarios include the buildout planning years of 2020 and 2030, it is reasonable to anticipate that some growth in traffic will occur during this time in the corridor with or without the proposed development. There are generally two components to be considered in the development of background growth:

- Growth close to the site resulting from specific, identified projects already in the "pipeline" (that is, actual nearby projects already approved, or further along in the approval process), sometimes called "background development." Given the scale of the proposed redevelopment envisioned in this study, the redevelopment proposed is considered to account for "background development" in the study area.
- Traffic growth along roadways resulting from the expanding nature of the region, and to other non-specific development further from the site, often referred to as "background growth." The following methodology was used in determining the background growth of Peachtree Road.

Utilizing data from the Georgia Department of Transportation State Traffic and Report Statistics (STARS) and ARC's Travel Demand Model (TDM), historic and projected traffic volumes were used to estimate background traffic growth on Peachtree Road. These growth rates were then added to the north/south through volumes on Peachtree Road for the development scenarios.

- 2007 to 2020: Because the ARC TDM assumes a comparable amount of new socioeconomic growth in this area as the proposed development program, the historic growth rate from 2001 to 2006 was used rather than the TDM projection in order to not to "double count" traffic. The proposed development program was then added to this estimated future traffic. The growth rate from 2007-2020 was calculated by determining the historic rate from 2001-2006 (3.4\%), resulting in a 0.69% growth rate per year.
- 2020 to 2030: From 2020 to 2030 the ARC TDM predicts a 5.9% growth, resulting in a 0.58% growth rate per year.

5.5 Trip Generation: Peachtree Road Focus Area

Trip generation estimates for the proposed Peachtree Road Focus Area were calculated according to the rates and methodology published in the 7th edition of the ITE Trip Generation Handbook based on the proposed development program.

Redevelopment Plan \& Program:

- The following redevelopment program represents the proposed redevelopment in the Peachtree Road Focus Area and is assumed (for the purposes of the modeling scenarios) to have a 2020 build-out.

Internal Capture:

- Mixed-use trip reductions were applied based on the ITE Trip Generation Handbook.

Pass-by Trips:

- Pass-by trip reductions were applied to proposed commercial uses based on the ITE Trip Generation Handbook.

Transit Trip Reduction:

- Baseline: 14% (this is the existing average \% for work trips in Atlanta, and the Peachtree Road location has access to MARTA bus Route 23 with some of the most frequent peak headways in the MARTA bus system).
- BeltLine: 32% (based on Atlanta BeltLine Transit Percentage Reduction Methodology, the Peachtree Road Focus Area is within a $1 / 4$ mile of the BeltLine Station, has transit supportive density of over 20 units per acre, and is mixed use).

Table 7: Summary of Trip Generation - Total (Area A)													
Land Use	ITE Code	Intensity	Daily Trip Ends	PM Peak-Hour Trip Ends					AM Peak-Hour Trip Ends				
				Total	In		Out		Total	In		Out	
					\%	Trips	\%	Trips		\%	Trips	\%	Trips
Multi-Family	220	1,645 DU	10,037	922	65\%	600	35\%	323	810	20\%	162	80\%	648
Office	710	624.2 KSF	5,465	778	17\%	132	83\%	646	812	88\%	714	12\%	97
Retail	820	26.0 KSF	2,829	257	48\%	124	52\%	134	70	61\%	43	39\%	27
Total (Gross)			18,331	1,958		855		1,102	1,691		919		772

Table *: Summary of Trip Generation - Total (Area B)													
Land Use	ITE Code	Intensity	Daily Trip Ends	PM Peak-Hour Trip Ends					AM Peak-Hour Trip Ends				
				Total	In		Out		Total	In		Out	
					\%	Trips	\%	Trips		\%	Trips	\%	Trips
Multi-Family	220	1,449 DU	8,859	815	65\%	529	35\%	285	714	20\%	143	80\%	571
Office	710	64.2 KSF	948	151	17\%	26	83\%	125	132	88\%	116	12\%	16
Retail	820	58.4 KSF	4,787	439	48\%	211	52\%	228	113	61\%	69	39\%	44
Total			14,595	1,404		766		638	959		328		631

Land Use	ITE Code	Intensity	Daily Trip Ends	PM Peak-Hour Trip Ends					AM Peak-Hour Trip Ends				
				Total	In		Out		Total	In		Out	
					\%	Trips	\%	Trips		\%	Trips	\%	Trips
Multi-Family	220	3,094 DU	18,896	1,737	65\%	1,129	35\%	608	1,524	20\%	305	80\%	1,219
Office	710	688.4 KSF	6,413	929	17\%	158	83\%	771	943	88\%	830	12\%	113
Retail	820	84.4 KSF	7,617	696	48\%	334	52\%	362	183	61\%	112	39\%	71
Total			32,926	3,362		1,621		1,741	2,650		1,247		1,403
Internal Capture	6.33\%	6.33\%	2,084	213		103		110					
Pass-By	1.90\%	30.0\%	145	145		100		109					
Modal Split	32.0\%	32.0\%	9,823	961		454		487	848		399		449
Net External			20,873	2,043		964		1,035	1,802		848		954

5.6 Trip Distribution

Utilizing the ARC TDM, select link analysis was conducted to determine the general origination of the 2005 PM trips (work trips) to the three Traffic Analysis Zones (TAZs) that make up the Peachtree Road Focus Area. The analysis was focused on trips on the adjacent highways of I-75 southbound, I-75/85 northbound, $\mathrm{I}-85$ southbound, and GA 400 southbound. The resulting analysis estimates that approximately 38% of these trips are coming from the north and east (GA 400 and $\mathrm{I}-85$) and 62% are coming from the south and west ($1-75 / 85$ and $I-75$).

Trip Distribution: Baseline

Based partly on the select link analysis, the trip distribution for the "Baseline" scenarios will assume a 15\% north and 85% south split on Peachtree Road assuming the majority of trips are going south on Peachtree to reach I-75 and I-85.

Trip Distribution: BeltLine

Based on the proposed new network in the "BeltLine Build" scenarios, a modified distribution assumes greater connectivity between the signalized intersections of Peachtree Road at Biscayne Drive, Colonial Homes Drive, Bennett Street/Peachtree Park Drive, Spalding Drive, and Darlington. This distribution also assumes increased use of the Colonial Homes Drive/ Dellwood connection to Collier Road.

Trip Distribution to/from Focus Area TAZ's
(ARC Regional Travel Demand Model)

5.72020 \& 2030 Baseline Scenarios

Analysis Question: What would 2020 and 2030 be like with new development but without the addition of BeltLine Transit or the proposed new street framework?

2020 \& 2030 Scenario Assumptions:

- Time Horizon: 2020 \& 2030.
- Road Network: Existing (no significant projects planned that effect this area).
- Baseline Traffic: Existing intersections counts + estimated growth rate for Peachtree Road: 0.69% per year (2007 to 2020) and 0.58\% per year (2020 to 2030).
- Trip Generation: Proposed Redevelopment program (it is assumed that the existing land use entitlements and market potential of the Peachtree Road Focus Area would result in a redevelopment program equal to the proposed redevelopment program).
- Mode Split: 14\% (Atlanta average for work trips).
- Trip Assignment/Distribution: 2005 existing pattern.

Results:

General:

- Existing Condition Arterial LOS: Northbound C, Southbound C.
- 2020 Baseline Arterial LOS: Northbound F, Southbound F.
- 2030 Baseline Arterial LOS: Northbound F, Southbound F.
- The intersections of Biscayne Drive and Bennett Street are impacted significantly due to the added development without new network options (all new traffic has to go through these intersections).
- Colonial Homes Drive is impacted less relative to Bennett Street and Biscayne Drive because, while it does assume new development on the westside (redevelopment of Colonial Homes) it does not have significant new development accessing it from the eastside of Peachtree Road allowing it to operate like a " T " intersection.
- The observed decrease and/or stable level of delay at some intersections is due in part to the assumed optimization of signal timing in the future scenarios (with less priority to Peachtree Road) resulting in "added capacity" and the addition of trips to the "best performing" movements (northbound and southbound through) that serve to reduce the average delay of the intersection as a whole.

Collier Road:

- Existing Condition LOS: C (23.6 sec delay).
- 2020 Baseline LOS: F (114.3 sec . delay).
- 2030 Baseline LOS: F (124.0 sec. delay).
- Significant growth in eastbound lefts (Collier to Peachtree) and southbound rights (Peachtree to Collier).
- Additional through traffic on Peachtree Road.

Bennett Street/Peachtree Park Drive:

- Existing Condition LOS: B (11.2 sec . delay).
- 2020 Baseline LOS: F (183.4 sec . delay).
- 2030 Baseline LOS: F (196.3 sec . delay).
- Assumes significant new development (proposed development program) on both the east and west sides of Peachtree Road that have access only to Peachtree Road.
- Additional through traffic on Peachtree Road.

Biscayne Drive:

- Existing Condition LOS: A (7.7 sec. delay).
- 2020 Baseline LOS: E (73.7 sec. delay).
- 2030 Baseline LOS: F (91.4 sec . delay).
- Assumes new development (proposed development program) on both the east and west sides of Peachtree Road that have access only to Peachtree Road.
- Additional through traffic on Peachtree Road.

6.0 BeltLine Traffic Operations: Peachtree Road Focus Area

6.12020 \& 2030 BeltLine Build Scenarios

Analysis Question: What would 2020 and 2030 be like with new development and the addition of BeltLine Transit and the proposed new street framework?

Assumptions:

- Time Horizon: 2020 \& 2030.
- Road Network: Spalding Drive Realignment, new street framework from the Subarea Master Plan.
- Baseline Traffic: Existing intersections counts + estimated growth rate for Peachtree Road: 0.69\% per year (2007 to 2020) and 0.58\% per year (2020 to 2030).
- Trip Generation: Proposed Redevelopment program (it is assumed that the existing land use entitlements and market potential of the Peachtree Road Focus Area would result in a redevelopment program equal to the proposed redevelopment program).
- Mode Split: 32\% (max. under BeltLine Methodology).
- Trip Assignment/Distribution: 2005 existing pattern adjusted to reflect new street framework.

Results:

General:

- Existing Condition Arterial LOS: Northbound C, Southbound C.
- 2020 BeltLine Build Arterial LOS: Northbound D, Southbound D.
- 2030 BeltLine Build Arterial LOS: Northbound D, Southbound D.
- The intersections south of Biscayne Drive and Bennett Street are "helped" by the connectivity created by the Bennett Street connection between Spalding Drive and Biscayne Drive, allowing traffic to be distributed between three signalized intersections.
- The observed decrease and/or stable level of delay at some intersections is due in part to the assumed optimization of signal timing in the future scenarios (with less priority to Peachtree Road) resulting in "added capacity" and the addition of trips to the "best performing" movements (northbound and southbound through) that serve to reduce the average delay of the intersection as a whole.

Collier Road:

- Existing Condition LOS: C (23.6 sec . delay).
- 2020 BeltLine Build LOS: C (29.7 sec. delay).
- 2030 BeltLine Build LOS: C (33.0 sec. delay).
- The key movement here is eastbound lefts (Collier to Peachtree) and southbound rights (Peachtree to Collier).
- This movement is "helped" by the additional transit reduction in total trips, a new percentage of trips utilizing access to Collier Road via the Bennett Street bridge/Spalding Drive connection through the hospital campus, and a percentage of trips utilizing access to Collier Road via Dellwood Drive.
- Proactive traffic calming along the Colonial Homes Drive/Dellwood Drive connection and on Collier Road will be needed to manage vehicle behavior.

Bennett Street/Peachtree Park Drive:

- Existing Condition LOS: B (11.2 sec. delay).
- 2020 Baseline LOS: D (48.8 sec. delay).
- 2030 Baseline LOS: E (58.3 sec. delay).
- Assumes significant new development (proposed development program) on both the east and west sides of Peachtree Road.

Biscayne Drive:

- Existing Condition LOS: A (7.7 sec. delay).
- 2020 Baseline LOS: B (17.7 sec. delay).
- 2030 Baseline LOS: C (21.7 sec. delay).
- Assumes new development (proposed development program) on both the east and west sides of Peachtree Road.

Peachtree Road Focus Area
2020 BeltLine Traffic Volumes PM Peak Hour

Peachtree Road Focus Area 2030 BeltLine Traffic Volumes PM Peak Hour

7.0 Buford Highway Re-configuration Analysis

7.1 Context

The unique configuration of the BufordConnector/ Monroe/Piedmont interchange is a remnant of Buford Highway's former role as $\mathrm{I}-85$ and its constrained access to Piedmont Road. This interchange wants to be a direct connection to Piedmont Road but is constrained by the existing l-85 structure and Norfolk Southern rail line, creates a number of issues:

- Three sets of dangerous "weave" conditions are created on Buford Highway where exiting and entering highway traffic must cross paths in a short distance at high speeds. This creates a safety issue and current interchange design practice would avoid these types of conditions.
- The variety of ramps in different locations creates a confusing interchange overall with ramps on three different roads to the same highway (Armour Drive, Monroe Drive, and Piedmont Road).
- This fractured pattern of ramps forces traffic out of their desired direction putting pressure on local streets such as Monroe Drive. Example: traffic south bound to Piedmont Road or Cheshire Bridge Road must exit on Monroe Drive, travel to Piedmont Circle and make a right turn on Piedmont Road.

7.2 Transportation Approach

The re-configuration concept eliminates the eastbound on and off ramps on Monroe Drive and consolidates them on the east side of Piedmont Road with a new entrance ramp connected to local street network for increased access.

- By eliminating the Monroe Drive ramps, two of the weave conditions on the west bound lanes of Buford Highway are removed.
- The redesigned east bound exit and entrance ramps on the east side of Piedmont Road are designed to be reconnected into a network of streets that provide direct access to both Piedmont Road and Cheshire Bridge Road. This new access to Buford Highway can serve to catalyze development in the Cheshire Bridge Road area on underutilized parcels that can be supported by increased access.
- The extension of Monroe Drive across Piedmont Road to Cheshire Bridge Road creates a needed east-west connection in this area and takes pressure off of the Piedmont/Cheshire Bridge Road intersection.
- The future street framework of new streets and blocks will serve to distribute traffic and create more access to the interchange in the long term.

7.3 Re-configuration Analysis

The Piedmont Road Focus Area anticipates limited redevelopment with only focused sites proposed along Piedmont Road. The City has determined to protect the existing industrial land uses in the Armour Drive area by restricting land use change. In addition, the area south of Buford Highway/l-85 is within Subarea 6 which will undergo its own master planning process to determine appropriate land use change and redevelopment.

Therefore, the methodologyforanalyzing the proposed re-configuration of the Buford Highway interchange will involve two scenarios; 1) existing conditions, 2) existing conditions re-configured. These scenarios were modeled utilizing the software program Synchro in order to perform intersection capacity analysis at key intersections. The intersection capacity analysis was conducted based on Highway Capacity Methodology (HCM).

7.4 Existing Traffic

In order to establish a baseline for the traffic scenario analysis, traffic data collection was conducted Piedmont Road Focus Area adjacent to the Buford Highway interchange. Weekday turning movement counts were taken during the AM and PM peak periods at the following intersections:

- Armour Drive at the Buford Highway exit and entrance ramps
- Monroe Drive and Armour Drive intersection
- Monroe Drive at the Buford Highway exit and entrance ramps
- Monroe Drive and Piedmont Circle
- Piedmont Road and Cheshire Bridge Road intersection
- Piedmont Road and Piedmont Circle/Lambert Drive intersection

For the purposes of the scenario analysis, the PM peak period was chosen as the critical period because it is consistently higher than the AM peak period for this corridor.

In order to establish a baseline for the traffic scenario analysis, traffic data collection was conducted Piedmont Road Focus Area adjacent to the Buford Highway interchange. Weekday turning movement counts were taken during the AM and PM peak periods at the following intersections:

- Armour Drive at the Buford Highway exit and entrance ramps
- Monroe Drive and Armour Drive intersection
- Monroe Drive at the Buford Highway exit and entrance ramps
- Monroe Drive and Piedmont Circle
- Piedmont Road and Cheshire Bridge Road intersection
- Piedmont Road and Piedmont Circle/Lambert Drive intersection

For the purposes of the scenario analysis, the PM peak period was chosen as the critical period because it is consistently higher than the AM peak period for this corridor.

7.5 Re-configuration

Analysis Question: What happens when the traffic at the Monroe Drive/Buford Highway ramps is rerouted to a new set of ramps between Buford Highway and Cheshire Bridge Road?

Assumptions: (see diagrams on page 39)

- The entering trips at the existing Monroe Drive/ Buford Highway ramps are reassigned with: the westbound Monroe trips now making a left from Piedmont Road to the new ramps, and the eastbound Monroe trips split with 50% on Monroe as through trips to the new ramps, and 50\% reassigned to Piedmont Road northbound making rights at either Cheshire Bridge Road or the Monroe Drive extension.
- The exiting trips at the existing Monroe Drive/ Buford Highway ramps are reassigned with: 30\% going to Cheshire Bridge Road eastbound via Manchester Street, and 70\% going to Piedmont Road southbound via Cheshire Bridge Road.
- The Monroe Drive and Piedmont Circle intersection is assumed to be signalized and re-configured to have Piedmont Circle " T " into Monroe Drive.

Results/Conclusions:

General:

- Overall, the new and existing intersections in the re-configured scenario operate at acceptable
levels of service with current traffic counts.
- Therefore, the interchange re-configuration should be evaluated further given its potential to: 1) provide greater east-west connectivity (the extension of Monroe Drive), 2) more direct connection to Piedmont Road from Buford Highway westbound (eliminates a signal and creates a direct route from Monroe to Piedmont Road northbound), 3) eliminates the short weave conditions on Buford Highway eastbound, 4) opens up direct access to Buford Highway from Cheshire Bridge Road, and 5) restructures redevelopment opportunities in the Piedmont Road/Cheshire Bridge Road area.

Piedmont Road and Monroe Drive Extension Intersection:

- Existing Condition LOS: B (17.4 sec. delay)
- Re-configured Condition LOS: C (20.4 sec. delay)
- The re-configuration does put added pressure on this intersection with additional westbound lefts from the ramps and southbound lefts from Piedmont Road.

Monroe Drive and Piedmont Circle Intersection:

- Existing Condition LOS: not currently signalized
- Re-configured Condition LOS: B (17.5 sec. delay)
- This intersection is assumed to be re-configured with Piedmont Circle intersecting Monroe at a " T ". The re-configuration assumes a new signal at this intersection.

Piedmont Circle and Cheshire Bridge Road Intersection:

- Existing Condition LOS: B (19.4 sec. delay)
- Re-configured Condition LOS: C (20.6 sec . delay)
- The added westbound lefts to Piedmont Road south (formerly rights from Piedmont Circle) are the cause of the added delay. Gross assumptions about the reassignments were made that will need to be more fully evaluated.

Monroe Drive Extension and New Buford Highway Ramps Intersection:

- Re-configured Condition LOS: B (18.3 sec . delay)
- This intersection will distribute Buford Highway traffic to both Piedmont Road and Cheshire Bridge Road.

Manchester Street and Cheshire Bridge Road Intersection:

- Existing Condition LOS: not currently signalized
- Re-configured Condition LOS: B (18.1 sec. delay)
- Assumed a new signalized intersection here to provide direct access to the new Buford Highway ramps from Cheshire Bridge Road.

Re-configured Level of Service

Re-configuration Trip Distribution Assumptions

Buford Highway to Southbound Piedmont/Cheshire Bridge Road

Buford Highway to Northbound Piedmont Road

Monroe/Piedmont/Cheshire Bridge to Buford Highway/I-85 Northbound

8.0 Conclusions \& Recommendations

The overall mobility approach to the Subarea 7 Master Plan is to maximize transit accessibility and street connectivity, while protecting the quality of life of the adjacent neighborhoods. The purpose of this transportation/mobility analysis is to evaluate and test the proposed new street connections and transportation projects that resulted from the Subarea Master Plan process with the proposed development program, future traffic growth, and the increased transit accessibility of the BetlLine.

Key Conclusions:

The proposed BeltLine projects should be utilized to structure and organize future redevelopment, mitigate transportation impacts and improve connectivity.

- The land use and development analysis of the area suggests that the proposed development would occur with or without the BeltLine. The proposed development program is consistent with the Future Land Use Plan and zoning entitlement. The proposed street framework and BeltLine transit should be viewed as a strategy to help manage traffic and accessibility for development that is coming regardless of when the BeltLine transit is implemented.
- The intersection analysis documents that the proposed new street network and the future transit accessibility in the "BeltLine Scenario" will outperform the "Baseline Scenario" with the same amount of development.

The new Street Framework is a critical part of managing access along Peachtree Road.

- There are limited transportation alternatives to Peachtree Road in this area.
- The proposed parallel connections expand access to multiple signalized intersections along Peachtree Road, helping to provide access alternatives and balance intersection capacity across multiple intersections.

Recommendations:

Bennett Street Connector - The proposed new transit plaza over the existing CSX rail line includes a parallel connection west of Peachtree Road that can connect to Colonial Homes Drive and Biscayne Drive.

- Connects the hospital campus to adjacent development to the north providing an alternative means of access to Piedmont Hospital/Shepherd Center and helping distribute traffic in the area.
- This links development north and south of the CSX rail line and creates a connection to Collier Road via the existing hospital campus network.

The Spalding Drive Realignment - The realignment of Spalding Drive to the adjacent signal at Peachtree Valley Road will provide a valuable new access point for both Piedmont Hospital and the Shepherd Center off of Peachtree Road.

- Coupled with the Bennett Street Connector across the CSX rail line, this connection will provide a valuable new access to the hospital campus.
- Provides an additional signalized connection to Peachtree Street from the Piedmont Hospital/ Shepherd Center Campus.
- It should be noted that utilizing and protecting the existing Spalding Drive right-of-way for future transit is the first priority.

Brookwood Valley Circle Connector - On the east side of Peachtree Road, connects from the Peachtree Park Drive, south to Peachtree Valley Road and Brookwood Valley Circle.

- Provide additional parallel access for future redevelopment east of Peachtree Road.
- Links multiple development sites to three signalized intersections on Peachtree Road.

Biscayne Drive Extension - This new street connects between Biscayne Drive and Peachtree Park Drive.

- Provides a valuable link for future development on the east side of Peachtree Road, allowing multiple development sites access to Peachtree Road at two signalized intersections (Biscayne Drive and Peachtree Park Drive.

Collier Road and Dellwood Drive will experience increased traffic.

- Without a viable new connection to I-75 and I-85 southbound, development in this area will still continue to rely on Collier Road and Northside Drive for access to the interstate.
- A new street connection from the Colonial Homes area to Northside Drive is physically possible but has not been further considered here because of the impact to Bobby Jones Golf Course and by the direction of City Council during the BeltLine Redevelopment Plan.
- A connection from Peachtree Road to Piedmont Road adjacent to the CSX rail line and Peachtree Creek was considered but eliminated due to potentially significant environmental and neighborhood impact, as well as cost. This concept is documented in Appendix E Peachtree Parkway.
- Traffic calming Dellwood Drive (and the Collier Hills North neighborhood) and Collier Road should be a early priority in order to protect the character of the surrounding neighborhoods and manage the behavior of traffic.

Buford Highway Interchange Re-configuration The re-configuration of this interchange eliminates existing dangerous "weave" conditions on the exit and entrance ramps, relocates the Buford Highway east-bound exit and entrance ramps to a location east of Piedmont Road, and extends Monroe Drive across Piedmont Road.

- This concept derived out of the Piedmont Height Neighborhood Blueprints Study.
- The initial analysis suggests that the concept is worth further testing and evaluation.
- This is within Subarea 6 and will be studied further as part of that master plan process.

Trip Distribution Worksheets

Existing

Intersections	nb			sb			eb			wb		
	I	t	r	1	t	r	1		r	1	t	r
Ptree Hills		1254	44	62	1336					166		93
Ptree Memorial	54	1209	2	28	1400	57	88		54	8		6
Biscayne	21	1218	22	30	1387	29	25	5	19	36	5	47
Col Homes	30	1179			1328	80	76		41			
Bennett	17	1121	51	49	1317	18	40	8	25	78	2	79
Spalding	6	1157	24	22	1326	0				60	4	27
Darlington	24	1145	21	20	1311	38	45	2	41	47	4	61
Brighton	63	1102	20	26	1321	26	82	20	81	46	8	18
Collier	148	942			1188	232	275		425			

2020 Build

Intersections		nb			sb						wb	
		t	r	I	t	r	I		r	I	t	r
Ptree Hills	0	1495	75	62	1577	0	0	0	0	195	0	93
Ptree Memorial	54	1477	2	28	1676	57	88	0	54	8	0	6
Biscayne	119	1426	181	64	1602	54	58	5	146	169	5	75
Col Homes	128	1608	0	0	1771	105	109	0	168	0	0	0
Bennett	115	1582	210	83	1826	43	73	8	152	211	59	107
Spalding	6	1879	24	22	2096	0	0	0	0	60	4	27
Darlington	24	1866	21	20	2079	38	45	2	41	47	4	61
Brighton	63	1819	20	26	2090	26	82	20	81	46	8	18
Collier	148	1512	0	0	1817	360	407	0	425	0	0	0

2020 No Build

2030 Build

Intersections		nb			sb						wb	
		t	r	1	t	r	1		r	1	t	r
Ptree Hills	0	1577	75	62	1664	0	0	0	0	195	0	93
Ptree Memorial	54	1556	2	28	1767	57	88	0	54	8	0	6
Biscayne	119	1505	181	64	1692	54	58	5	146	169	5	75
Col Homes	128	1685	0	0	1858	105	109	0	168	0	0	0
Bennett	115	1655	210	83	1912	43	73	8	152	211	59	107
Spalding	6	1954	24	22	2182	0	0	0	0	60	4	27
Darlington	24	1940	21	20	2165	38	45	2	41	47	4	61
Brighton	63	1891	20	26	2176	26	82	20	81	46	8	18
Collier	148	1573	0	0	1894	360	407	0	425	0	0	0

2030 No Build

Intersections		nb			sb			eb			wb	
		t	r	1	t	r	1	t	r	1	t	r
Ptree Hills	0	1610	83	62	1694	0	0	0	0	203	0	93
Ptree Memorial	54	1597	2	28	1805	57	88	0	54	8	0	6
Biscayne	203	1530	267	73	1714	61	66	5	254	240	5	83
Col Homes	212	1870	0	0	2053	112	117	0	276	0	0	0
Bennett	199	1908	296	92	2200	50	81	8	260	282	2	115
Spalding	6	2377	24	22	2649	0	0	0	0	60	4	27
Darlington	24	2363	21	20	2632	38	45	2	41	47	4	61
Brighton	63	2313	20	26	2643	26	82	20	81	46	8	18
Collier	148	1701	0	0	2031	690	702	0	425	0	0	0

Jan 202009

Build	Area A		Area B									
	In	Out	In	Out								
	508	655	456	380								
Intersections	nb			sb			eb			wb		
	1	t	r	1	t	r	1	t	r	1	t	r
Ptree Hills		124	31		116					29		
Ptree Memorial		155			145							
Biscayne	98	94	159	34	85	25	33		127	133		28
Col Homes	98	319			319	25	33		127			
Bennett	98	356	159	34	386	25	33		127	133	57	28
Spalding		614			646							
Darlington		614			646							
Brighton		614			646							
Collier		482			518	128	132					
No Build	Area A		Area B									
	In	Out	In	Out								
	643	829	576	480								
Intersections	nb			sb			eb			wb		
	1	t	r	1	t	r	1	t	r	1	t	r
Ptree Hills		157	39		146					37		
Ptree Memorial		196			183							
Biscayne	182	119	245	43	107	32	41		235	204		36
Col Homes	182	504			514	32	41		235			
Bennett	182	609	245	43	674	32	41		235	204		36
Spalding		1036			1113							
Darlington		1036			1113							
Brighton		1036			1113							
Collier		610			655	458	427					
Jan 202009												

Existing Intersections

	SB				
Ptree Hills	1254	1336	2007	1	1.0069
Ptree Memorial	1209	1400	2008	1.0069	
Biscayne	1218	1387	2009	1.013848	
Col Homes	1179	1328	2010	1.020843	
Bennett	1121	1317	2011	1.027887	
Spalding	1157	1326	2012	1.034979	
Darlington	1145	1311	2013	1.042121	
Brighton	1102	1321	2014	1.049311	
Collier	942	1188	2015	1.056552	
			2016	1.063842	
			2017	1.071182	
2020 Intersections			2018	1.078574	
			2019	1.086016	
Ptree Hills	1371	1461	2020	1.093509	1.0058
Ptree Memorial	1322	1531	2021	1.099852	
Biscayne	1332	1517	2022	1.106231	
Col Homes	1289	1452	2023	1.112647	
Bennett	1226	1440	2024	1.1191	
Spalding	1265	1450	2025	1.125591	
Darlington	1252	1434	2026	1.132119	
Brighton	1205	1445	2027	1.138686	
Collier	1030	1299	2028	1.14529	
			2029	1.151933	
			2030	1.158614	

2030 Intersections

	NB	SB	
Ptree Hills	1453	1548	
Ptree Memorial	1401	1622	
Biscayne	1411	1607	
Col Homes	1366	1539	
Bennett	1299	1526	
Spalding	1341	1536	
Darlington	1327	1519	
Brighton	1277	1531	
Collier	1091	1376	

Jan 202009

APPENDIX B

Traffic Counts

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : AnjacoRd@CollierRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	ANJACO ROAD Southbound					COLLIER ROAD Westbound					ANJACO ROAD Northbound					COLLIER ROAD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	6	0	8	0	14	0	91	15	0	106	1	0	2	0	3	27	80	0	0	107	230
07:15 AM	9	0	9	0	18	0	115	17	0	132	0	0	1	0	1	30	110	0	0	140	291
07:30 AM	7	0	14	0	21	0	119	26	0	145	3	0	3	0	6	33	122	0	0	155	327
07:45 AM	11	0	9	0	20	0	135	27	0	162	3	0	2	0	5	35	121	2	0	158	345
Total	33	0	40	0	73	0	460	85	0	545	7	0	8	0	15	125	433	2	0	560	1193
08:00 AM	15	1	11	0	27	1	108	21	0	130	1	0	2	0	3	31	123	1	0	155	315
08:15 AM	14	0	15	0	29	1	87	30	0	118	3	0	3	0	6	21	119	1	0	141	294
08:30 AM	23	1	15	0	39		91	37	0	129	7	2	4	0	13	30	106	4	0	140	321
08:45 AM	20	1	18	0	39	1	92	40	0	133	5	1	2	0	8	35	117	0	0	152	332
Total	72	3	59	0	134	4	378	128	0	510	16	3	11	0	30	117	465	6	0	588	1262
Grand Total	105	3	99	0	207	4	838	213	0	1055	23	3	19	0	45	242	898	8	0	1148	2455
Apprch \%	50.7	1.4	47.8	0		0.4	79.4	20.2	0		51.1	6.7	42.2	0		21.1	78.2	0.7	0		
Total \%	4.3	0.1	4	0	8.4	0.2	34.1	8.7	0	43	0.9	0.1	0.8	0	1.8	9.9	36.6	0.3	0	46.8	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : AnjacoRd@CollierRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	ANJACO ROAD Southbound					COLLIER ROAD Westbound					ANJACO ROAD Northbound					COLLIER ROAD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:30 AM																					
07:30 AM	7	0	14	0	21	0	119	26	0	145	3	0	3	0	6	33	122	0	0	155	327
07:45 AM	11	0	9	0	20	0	135	27	0	162	3	0	2	0	5	35	121	2	0	158	345
08:00 AM	15	1	11	0	27	1	108	21	0	130	1	0	2	0	3	31	123	1	0	155	315
08:15 AM	14	0	15	0	29	1	87	30	0	118	3	0	3	0	6	21	119	1	0	141	294
Total Volume	47	1	49	0	97	2	449	104	0	555	10	0	10	0	20	120	485	4	0	609	1281
\% App. Total	48.5	1	50.5	0		0.4	80.9	18.7	0		50	0	50	0		19.7	79.6	0.7	0		
PHF	. 783	. 250	. 817	. 000	. 836	. 500	. 831	. 867	. 000	. 856	. 833	. 000	. 833	. 000	. 833	. 857	. 986	. 500	. 000	. 964	. 928

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : AnjacoRd@CollierRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	ANJACO ROAD Southbound					COLLIER ROAD Westbound					ANJACO ROAD Northbound					COLLIER ROAD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	48	2	36	0	86	1	105	9	0	115	1	0	1	0	2	26	169	5	0	200	403
04:15 PM	35	1	31	0	67	3	89	17	0	109	1	0	7	0	8	14	122	1	0	137	321
04:30 PM	36	1	36	0	73	4	75	8	0	87	0	0	3	0	3	25	166	2	0	193	356
04:45 PM	34	0	36	0	70	0	87	3	0	90	2	0	6	0	8	11	167	0	0	178	346
Total	153	4	139	0	296	8	356	37	0	401	4	0	17	0	21	76	624	8	0	708	1426
05:00 PM	22	2	28	0	52	1	103	10	0	114	0	0	3	0	3	13	145	1	0	159	328
05:15 PM	20	0	21	0	41	0	104	7	0	111	3	0	2	0	5	14	173	1	0	188	345
05:30 PM	15	5	20	0	40	2	115	6	0	123	0	0	3	0	3	11	164	6	0	181	347
05:45 PM	10	0	16	0	26	2	131	7	0	140	1	0	5	0	6	14	143	4	0	161	333
Total	67	7	85	0	159	5	453	30	0	488	4	0	13	0	17	52	625	12	0	689	1353
Grand Total	220	11	224	0	455	13	809	67	0	889	8	0	30	0	38	128	1249	20	0	1397	2779
Apprch \%	48.4	2.4	49.2	0		1.5	91	7.5	0		21.1	0	78.9	0		9.2	89.4	1.4	0		
Total \%	7.9	0.4	8.1	0	16.4	0.5	29.1	2.4	0	32	0.3	0	1.1	0	1.4	4.6	44.9	0.7	0	50.3	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : AnjacoRd@CollierRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	ANJACO ROAD Southbound					COLLIER ROAD Westbound					ANJACO ROAD Northbound					COLLIER ROAD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:00 PM																					
04:00 PM	48	2	36	0	86	1	105	9	0	115	1	0	1	0	2	26	169	5	0	200	403
04:15 PM	35	1	31	0	67	3	89	17	0	109	1	0	7	0	8	14	122	1	0	137	321
04:30 PM	36	1	36	0	73	4	75	8	0	87	0	0	3	0	3	25	166	2	0	193	356
04:45 PM	34	0	36	0	70	0	87	3	0	90	2	0	6	0	8	11	167	0	0	178	346
Total Volume	153	4	139	0	296	8	356	37	0	401	4	0	17	0	21	76	624	8	0	708	1426
\% App. Total	51.7	1.4	47	0		2	88.8	9.2	0		19	0	81	0		10.7	88.1	1.1	0		
PHF	. 797	. 500	. 965	. 000	. 860	. 500	. 848	. 544	. 000	. 872	. 500	. 000	. 607	. 000	. 656	. 731	. 923	400	. 000	. 885	. 885

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : BiscayneDr@PtreeRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					BISCAYNE DRIVE Westbound					PEACHTREE ROAD Northbound					BISCAYNE DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	5	150	2	0	157	1	0	8	0	9	3	110	4	0	117	9	1	9	0	19	302
07:15 AM	3	160	3	0	166	5	0	1	0	6	3	114	3	0	120	9	0	9	0	18	310
07:30 AM	7	216	2	0	225	6	0	7	0	13	1	185	4	0	190	12	2	9	0	23	451
07:45 AM	5	280	2	0	287	3	0	4	0	7	0	180	0	0	180	10	1	7	0	18	492
Total	20	806	9	0	835	15	0	20	0	35	7	589	11	0	607	40	4	34	0	78	1555
08:00 AM	4	287	4	0	295	6	3	6	0	15	2	160	4	0	166	18	3	5	0	26	502
08:15 AM	5	281	8	0	294	9	2	2	0	13	3	186	2	0	191	10	0	11	0	21	519
08:30 AM	8	198	6	0	212	13	0	6	0	19	1	203	2	0	206	18	2	10	0	30	467
08:45 AM	6	200	7	0	213	6	0	8	0	14	7	158	1	0	166	13	0	8	0	21	414
Total	23	966	25	0	1014	34	5	22	0	61	13	707	9	0	729	59	5	34	0	98	1902
Grand Total	43	1772	34	0	1849	49	5	42	0	96	20	1296	20	0	1336	99	9	68	0	176	3457
Apprch \%	2.3	95.8	1.8	0		51	5.2	43.8	0		1.5	97	1.5	0		56.2	5.1	38.6	0		
Total \%	1.2	51.3	1	0	53.5	1.4	0.1	1.2	0	2.8	0.6	37.5	0.6	0	38.6	2.9	0.3	2	0	5.1	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : BiscayneDr@PtreeRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					BISCAYNE DRIVE Westbound					PEACHTREE ROAD Northbound					BISCAYNE DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:45 AM																					
07:45 AM	5	280	2	0	287	3	0	4	0	7	0	180	0	0	180	10	1	7	0	18	492
08:00 AM	4	287	4	0	295	6	3	6	0	15	2	160	4	0	166	18	3	5	0	26	502
08:15 AM	5	281	8	0	294	9	2	2	0	13	3	186	2	0	191	10	0	11	0	21	519
08:30 AM	8	198	6	0	212	13	0	6	0	19	1	203	2	0	206	18	2	10	0	30	467
Total Volume	22	1046	20	0	1088	31	5	18	0	54	6	729	8	0	743	56	6	33	0	95	1980
\% App. Total	2	96.1	1.8	0		57.4	9.3	33.3	0		0.8	98.1	1.1	0		58.9	6.3	34.7	0		
PHF	. 688	. 911	. 625	. 000	. 922	. 596	417	. 750	. 000	. 711	. 500	. 898	. 500	. 000	. 902	. 778	. 500	. 750	. 000	. 792	. 954

All Traffic Data Services, Inc.
 1336 Farmer Road
 Conyers, Ga. 30012

Ph. 404-374-1283
File Name : BiscayneDr@PtreeRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROADSouthbound					BISCAYNE DRIVE Westbound					PEACHTREE ROAD Northbound					BISCAYNE DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	7	287	5	0	299	10	1	10	0	21	5	267	4	0	276	10	0	2	0	12	608
04:15 PM	8	300	13	0	321	8	2	11	0	21	8	311	6	0	325	4	2	3	0	9	676
04:30 PM	9	372	2	0	383	11	1	8	0	20	4	302	4	0	310	11	0	9	0	20	733
04:45 PM	9	322	10	0	341	9	3	13	0	25	3	325	7	0	335	3	2	5	0	10	711
Total	33	1281	30	0	1344	38	7	42	0	87	20	1205	21	0	1246	28	4	19	0	51	2728
05:00 PM	9	332	7	0	348	12	0	8	0	20	9	304	4	0	317	5	2	3	0	10	695
05:15 PM	3	361	10	0	374	4	1	18	0	23	5	287	7	0	299	6	1	2	0	9	705
05:30 PM	6	346	8	0	360	13	0	8	0	21	7	311	4	0	322	5	2	3	0	10	713
05:45 PM	13	311	15	0	339	18	2	9	0	29	9	301	4	0	314	9	0	5	0	14	696
Total	31	1350	40	0	1421	47	3	43	0	93	30	1203	19	0	1252	25	5	13	0	43	2809
Grand Total	64	2631	70	0	2765	85	10	85	0	180	50	2408	40	0	2498	53	9	32	0	94	5537
Apprch \%	2.3	95.2	2.5	0		47.2	5.6	47.2	0		2	96.4	1.6	0		56.4	9.6	34	0		
Total \%	1.2	47.5	1.3	0	49.9	1.5	0.2	1.5	0	3.3	0.9	43.5	0.7	0	45.1	1	0.2	0.6	0	1.7	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : BiscayneDr@PtreeRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					BISCAYNE DRIVE Westbound					PEACHTREE ROAD Northbound					BISCAYNE DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:30 PM																					
04:30 PM	9	372	2	0	383	11	1	8	0	20	4	302	4	0	310	11	0	9	0	20	733
04:45 PM	9	322	10	0	341	9	3	13	0	25	3	325	7	0	335	3	2	5	0	10	711
05:00 PM	9	332	7	0	348	12	0	8	0	20	9	304	4	0	317	5	2	3	0	10	695
05:15 PM	3	361	10	0	374	4	1	18	0	23	5	287	7	0	299	6	1	2	0	9	705
Total Volume	30	1387	29	0	1446	36	5	47	0	88	21	1218	22	0	1261	25	5	19	0	49	2844
\% App. Total	2.1	95.9	2	0		40.9	5.7	53.4	0		1.7	96.6	1.7	0		51	10.2	38.8	0		
PHF	. 833	. 932	. 725	. 000	. 944	. 750	. 417	. 653	. 000	. 880	. 583	. 937	. 786	. 000	. 941	. 568	. 625	. 528	. 000	. 613	. 970

All Traffic Data Services, Inc.

1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : Chilis@PTreeRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					CHILI'S Westbound					PEACHTREE ROAD Northbound					CHILI'S Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	4	183	0	0	187	0	0	0	0	0	3	113	17	0	133	0	0	3	0	3	323
07:15 AM	10	173	1	0	184	2	0		0	3	6	127	16	0	149	0	0	5	0	5	341
07:30 AM	12	219	0	0	231	2	0	0	0	2	4	187	22	0	213	1	0	3	0	4	450
07:45 AM	11	288	0	0	299	2	0	4	0	6	0	188	24	0	212	1	3	1	0	5	522
Total	37	863	1	0	901	6	0	5	0	11	13	615	79	0	707	2	3	12	0	17	1636
08:00 AM	10	310	0	0	320	6	0	4	0	10	1	160	13	0	174	1	0	3	0	4	508
08:15 AM	10	291	0	0	301	3	0	0	0	3	2	177	19	0	198	0	0	1	0	1	503
08:30 AM	8	243	0	0	251	6	0	6	0	12	1	195	19	0	215	1	1	1	0	3	481
08:45 AM	10	213	0	0	223	8	0	11	0	19	2	167	14	0	183	0	0	0	0	0	425
Total	38	1057	0	0	1095	23	0	21	0	44	6	699	65	0	770	2	1	5	0	8	1917
Grand Total	75	1920	1	0	1996	29	0	26	0	55	19	1314	144	0	1477	4	4	17	0	25	3553
Apprch \%	3.8	96.2	0.1	0		52.7	0	47.3	0		1.3	89	9.7	0		16	16	68	0		
Total \%	2.1	54	0	0	56.2	0.8	0	0.7	0	1.5	0.5	37	4.1	0	41.6	0.1	0.1	0.5	0	0.7	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : Chilis@PTreeRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					CHILI'S Westbound					PEACHTREE ROAD Northbound					CHILI'S Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:45 AM																					
07:45 AM	11	288	0	0	299	2	0	4	0	6	0	188	24	0	212	1	3	1	0	5	522
08:00 AM	10	310	0	0	320	6	0	4	0	10	1	160	13	0	174	1	0	3	0	4	508
08:15 AM	10	291	0	0	301	3	0	0	0	3	2	177	19	0	198	0	0	1	0	1	503
08:30 AM	8	243	0	0	251	6	0	6	0	12	1	195	19	0	215	1	1	1	0	3	481
Total Volume	39	1132	0	0	1171	17	0	14	0	31	4	720	75	0	799	3	4	6	0	13	2014
\% App. Total	3.3	96.7	0	0		54.8	0	45.2	0		0.5	90.1	9.4	0		23.1	30.8	46.2	0		
PHF	. 886	. 913	. 000	. 000	. 915	. 708	. 000	. 583	. 000	.646	. 500	. 923	. 781	. 000	. 929	. 750	. 333	. 500	. 000	. 650	965

All Traffic Data Services, Inc.

1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : Chilis@PTreeRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					CHILI'S Westbound					PEACHTREE ROAD Northbound					CHILI'S Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	3	277	0	0	280	9	0	11	0	20	1	282	11	0	294	3	0	1	0	4	598
04:15 PM	11	304	0	0	315	18	2	7	0	27	1	285	8	0	294	1	0	5	0	6	642
04:30 PM	6	367	0	0	373	10	0	10	0	20	1	288	6	0	295	1	0	5	0	6	694
04:45 PM	3	325	0	0	328	13	1	10	0	24	1	294	5	0	300	1	1	2	0	4	656
Total	23	1273	0	0	1296	50	3	38	0	91	4	1149	30	0	1183	6	1	13	0	20	2590
05:00 PM	2	330	0	0	332	19	1	0	0	20	3	290	5	0	298	3	0	5	0	8	658
05:15 PM	3	341	0	0	344	7	0	6	0	13	2	272	3	0	277	4	0	2	0	6	640
05:30 PM	3	357	0	0	360	15	0	3	0	18	1	283	0	0	284	1	0	3	0	4	666
05:45 PM	4	310	0	0	314	9	0	8	0	17	2	280	4	0	286	0	0	7	0	7	624
Total	12	1338	0	0	1350	50		17	0	68	8	1125	12	0	1145	8	0	17	0	25	2588
Grand Total	35	2611	0	0	2646	100	4	55	0	159	12	2274	42	0	2328	14	1	30	0	45	5178
Apprch \%	1.3	98.7	0	0		62.9	2.5	34.6	0		0.5	97.7	1.8	0		31.1	2.2	66.7	0		
Total \%	0.7	50.4	0	0	51.1	1.9	0.1	1.1	0	3.1	0.2	43.9	0.8	0	45	0.3	0	0.6	0	0.9	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : Chilis@PTreeRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					CHILI'S Westbound					PEACHTREE ROAD Northbound					CHILI'S Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:15 PM																					
04:15 PM	11	304	0	0	315	18	2	7	0	27	1	285	8	0	294	1	0	5	0	6	642
04:30 PM	6	367	0	0	373	10	0	10	0	20	1	288	6	0	295	1	0	5	0	6	694
04:45 PM	3	325	0	0	328	13	1	10	0	24	1	294	5	0	300	1	1	2	0	4	656
05:00 PM	2	330	0	0	332	19	1	0	0	20	3	290	5	0	298	3	0	5	0	8	658
Total Volume	22	1326	0	0	1348	60	4	27	0	91	6	1157	24	0	1187	6	1	17	0	24	2650
\% App. Total	1.6	98.4	0	0		65.9	4.4	29.7	0		0.5	97.5	2	0		25	4.2	70.8	0		
PHF	. 500	. 903	. 000	. 000	. 903	. 789	. 500	. 675	. 000	. 843	. 500	. 984	. 750	. 000	. 989	. 500	. 250	. 850	. 000	. 750	. 955

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : CollierRd@NSideDrAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	NORTHSIDE DRIVE Southbound					COLLIER ROAD Westbound					NORTHSIDE DRIVE Northbound					COLLIER ROAD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	2	69	100	0	171	11	80	2	0	93	1	44	3	0	48	31	30	3	0	64	376
07:15 AM	3	82	90	0	175	6	94	0	0	100	0	53	8	0	61	61	44	4	0	109	445
07:30 AM	2	80	75	0	157	13	106	5	0	124	0	108	5	0	113	53	29	3	0	85	479
07:45 AM	1	101	85	0	187	15	101	3	0	119	1	134	10	0	145	31	22	3	0	56	507
Total	8	332	350	0	690	45	381	10	0	436	2	339	26	0	367	176	125	13	0	314	1807
08:00 AM	1	105	75	0	181	8	95	5	0	108	0	180	16	0	196	40	32	6	0	78	563
08:15 AM	2	90	83	0	175	9	95	4	0	108	0	182	15	0	197	52	33	3	0	88	568
08:30 AM	4	79	89	0	172	11	89	9	0	109	1	142	20	0	163	58	22	2	0	82	526
08:45 AM	2	82	87	0	171	18	98	9	0	125	1	154	19	0	174	42	39	4	0	85	555
Total	9	356	334	0	699	46	377	27	0	450	2	658	70	0	730	192	126	15	0	333	2212
Grand Total	17	688	684	0	1389	91	758	37	0	886	4	997	96	0	1097	368	251	28	0	647	4019
Apprch \%	1.2	49.5	49.2	0		10.3	85.6	4.2	0		0.4	90.9	8.8	0		56.9	38.8	4.3	0		
Total \%	0.4	17.1	17	0	34.6	2.3	18.9	0.9	0	22	0.1	24.8	2.4	0	27.3	9.2	6.2	0.7	0	16.1	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : CollierRd@NSideDrAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	NORTHSIDE DRIVE Southbound					COLLIER ROAD Westbound					NORTHSIDE DRIVE Northbound					COLLIER ROAD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 08:00 AM																					
08:00 AM	1	105	75	0	181	8	95	5	0	108	0	180	16	0	196	40	32	6	0	78	563
08:15 AM	2	90	83	0	175	9	95	4	0	108	0	182	15	0	197	52	33	3	0	88	568
08:30 AM	4	79	89	0	172	11	89	9	0	109	1	142	20	0	163	58	22	2	0	82	526
08:45 AM	2	82	87	0	171	18	98	9	0	125	1	154	19	0	174	42	39	4	0	85	555
Total Volume	9	356	334	0	699	46	377	27	0	450	2	658	70	0	730	192	126	15	0	333	2212
\% App. Total	1.3	50.9	47.8	0		10.2	83.8	6	0		0.3	90.1	9.6	0		57.7	37.8	4.5	0		
PHF	. 563	. 848	. 938	. 000	. 965	. 639	. 962	. 750	. 000	. 900	. 500	. 904	. 875	. 000	. 926	. 828	. 808	. 625	. 000	. 946	. 974

All Traffic Data Services, Inc.

1336 Farmer Road

Conyers, Ga. 30012
Ph. 404-374-1283
File Name : CollierRd@NSideDrPM
Site Code : 00000000
Start Date: 5/22/2007
Page No : 1

Groups Printed- Class 1

	NORTHSIDE DRIVE Southbound					COLLIER ROAD Westbound					NORTHSIDE DRIVE Northbound					COLLIER ROAD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	8	107	48	0	163	8	45	7	0	60	2	118	14	0	134	76	71	1	0	148	505
04:15 PM	10	127	34	0	171	18	50	13	0	81	1	123	15	0	139	86	61	1	0	148	539
04:30 PM	9	115	40	0	164	5	43	10	0	58	0	143	17	0	160	95	58	2	0	155	537
04:45 PM	9	126	32	0	167	18	47	11	0	76	0	132	20	0	152	100	63	8	0	171	566
Total	36	475	154	0	665	49	185	41	0	275	3	516	66	0	585	357	253	12	0	622	2147
05:00 PM	13	143	38	0	194	12	62	10	0	84	1	128	22	0	151	88	52	3	0	143	572
05:15 PM	12	149	34	0	195	10	86	12	0	108	1	132	15	0	148	78	85	1	0	164	615
05:30 PM	13	140	30	0	183	12	54	12	0	78	1	140	16	0	157	69	48	1	0	118	536
05:45 PM	13	147	35	0	195	19	80	11	0	110	3	126	18	0	147	80	68	3	0	151	603
Total	51	579	137	0	767	53	282	45	0	380	6	526	71	0	603	315	253	8	0	576	2326
Grand Total	87	1054	291	0	1432	102	467	86	0	655	9	1042	137	0	1188	672	506	20	0	1198	4473
Apprch \%	6.1	73.6	20.3	0		15.6	71.3	13.1	0		0.8	87.7	11.5	0		56.1	42.2	1.7	0		
Total \%	1.9	23.6	6.5	0	32	2.3	10.4	1.9	0	14.6	0.2	23.3	3.1	0	26.6	15	11.3	0.4	0	26.8	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : CollierRd@NSideDrPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	NORTHSIDE DRIVE Southbound					COLLIER ROAD Westbound					NORTHSIDE DRIVE Northbound					COLLIER ROAD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 05:00 PM																					
05:00 PM	13	143	38	0	194	12	62	10	0	84	1	128	22	0	151	88	52	3	0	143	572
05:15 PM	12	149	34	0	195	10	86	12	0	108	1	132	15	0	148	78	85	1	0	164	615
05:30 PM	13	140	30	0	183	12	54	12	0	78	1	140	16	0	157	69	48	1	0	118	536
05:45 PM	13	147	35	0	195	19	80	11	0	110	3	126	18	0	147	80	68	3	0	151	603
Total Volume	51	579	137	0	767	53	282	45	0	380	6	526	71	0	603	315	253	8	0	576	2326
\% App. Total	6.6	75.5	17.9	0		13.9	74.2	11.8	0		1	87.2	11.8	0		54.7	43.9	1.4	0		
PHF	. 981	. 971	. 901	. 000	. 983	. 697	. 820	. 938	. 000	. 864	. 500	. 939	. 807	. 000	. 960	. 895	. 744	. 667	. 000	. 878	. 946

All Traffic Data Services, Inc.

1336 Farmer Road
Conyers, Ga. 30012

Groups Printed- Class 1

	PEACHTREE ROADSouthbound				PEACHTREE ROAD Northbound				COLONIAL HOLMES DRIVE Eastbound				
Start Time	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Int. Total
07:00 AM	155	5	0	160	7	105	0	112	11	8	0	19	291
07:15 AM	165	9	0	174	3	107	0	110	13	10	0	23	307
07:30 AM	221	7	0	228	2	177	0	179	23	10	0	33	440
07:45 AM	280	10	0	290	4	165	0	169	22	9	0	31	490
Total	821	31	0	852	16	554	0	570	69	37	0	106	1528
08:00 AM	282	17	0	299	3	150	0	153	18	11	0	29	481
08:15 AM	285	15	0	300	4	175	0	179	21	12	0	33	512
08:30 AM	223	8	0	231	6	187	0	193	24	12	0	36	460
08:45 AM	203	10	0	213	8	150	0	158	19	12	0	31	402
Total	993	50	0	1043	21	662	0	683	82	47	0	129	1855
Grand Total	1814	81	0	1895	37	1216	0	1253	151	84	0	235	3383
Apprch \%	95.7	4.3	0		3	97	0		64.3	35.7	0		
Total \%	53.6	2.4	0	56	1.1	35.9	0	37	4.5	2.5	0	6.9	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283 File Name: ColonialHolmesDr@PtreeRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound				PEACHTREE ROAD Northbound				COLONIAL HOLMES DRIVE Eastbound				
Start Time	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1													
Peak Hour for Entir	tersec	Begin	at 07:45	AM									
07:45 AM	280	10	0	290	4	165	0	169	22	9	0	31	490
08:00 AM	282	17	0	299	3	150	0	153	18	11	0	29	481
08:15 AM	285	15	0	300	4	175	0	179	21	12	0	33	512
08:30 AM	223	8	0	231	6	187	0	193	24	12	0	36	460
Total Volume	1070	50	0	1120	17	677	0	694	85	44	0	129	1943
\% App. Total	95.5	4.5	0		2.4	97.6	0		65.9	34.1	0		
PHF	. 939	. 735	. 000	. 933	. 708	. 905	. 000	. 899	. 885	. 917	. 000	. 896	. 949

	Peak Hour Data Peak Hour Begins at 07:45 AM Class 1 PEACHTREEROAD	

All Traffic Data Services, Inc.

1336 Farmer Road
Conyers, Ga. 30012

Groups Printed- Class 1

	PEACHTREE ROAD Southbound				PEACHTREE ROAD Northbound				COLONIAL HOLMES DRIVE Eastbound				
Start Time	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Int. Total
04:00 PM	280	20	0	300	9	257	0	266	17	8	0	25	591
04:15 PM	290	19	0	309	11	300	0	311	29	13	0	42	662
04:30 PM	367	10	0	377	6	285	0	291	19	10	0	29	697
04:45 PM	310	21	0	331	7	311	0	318	19	12	0	31	680
Total	1247	70	0	1317	33	1153	0	1186	84	43	0	127	2630
05:00 PM	322	20	0	342	3	296	0	299	21	7	0	28	669
05:15 PM	342	21	0	363	9	273	0	282	18	13	0	31	676
05:30 PM	354	18	0	372	11	299	0	310	18	9	0	27	709
05:45 PM	300	27	0	327	11	289	0	300	20	9	0	29	656
Total	1318	86	0	1404	34	1157	0	1191	77	38	0	115	2710
Grand Total	2565	156	0	2721	67	2310	0	2377	161	81	0	242	5340
Apprch \%	94.3	5.7	0		2.8	97.2	0		66.5	33.5	0		
Total \%	48	2.9	0	51	1.3	43.3	0	44.5	3	1.5	0	4.5	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283 File Name: ColonialHolmesDr@PtreeRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound				PEACHTREE ROADNorthbound				COLONIAL HOLMES DRIVE Eastbound				
Start Time	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1													
Peak Hour for Entir	tersec	Begin	at 04:4	PM									
04:45 PM	310	21	0	331	7	311	0	318	19	12	0	31	680
05:00 PM	322	20	0	342	3	296	0	299	21	7	0	28	669
05:15 PM	342	21	0	363	9	273	0	282	18	13	0	31	676
05:30 PM	354	18	0	372	11	299	0	310	18	9	0	27	709
Total Volume	1328	80	0	1408	30	1179	0	1209	76	41	0	117	2734
\% App. Total	94.3	5.7	0		2.5	97.5	0		65	35	0		
PHF	. 938	. 952	. 000	. 946	. 682	. 948	. 000	. 950	. 905	. 788	. 000	. 944	964

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@BennettStAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROADSouthbound					BENNETT STREETWestbound					PEACHTREE ROAD Northbound					BENNETT STREET Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	6	168	1	0	175	9	0	10	0	19	0	112	9	0	121	1	0	5	0	6	321
07:15 AM	4	170	0	0	174	11	2	7	0	20	0	121	10	0	131	0	0	1	0	1	326
07:30 AM	8	226	0	0	234	13	0	11	0	24	2	175	8	0	185	1	0	1	0	2	445
07:45 AM	1	290	1	0	292	8	0	13	0	21	1	170	11	0	182	0	0	2	0	2	497
Total	19	854	2	0	875	41	2	41	0	84	3	578	38	0	619	2	0		0	11	1589
08:00 AM	7	294	0	0	301	18	1	17	0	36	2	145	14	0	161	0	0	0	0	0	498
08:15 AM	10	286	4	0	300	12	0	9	0	21	1	170	6	0	177	1	0	1	0	2	500
08:30 AM	8	231	1	0	240	21	1	15	0	37	4	184	6	0	194	0	0	1	0	1	472
08:45 AM	7	200	6	0	213	8	0	12	0	20	3	160	6	0	169	0	0	0	0	0	402
Total	32	1011	11	0	1054	59	2	53	0	114	10	659	32	0	701	1	0	2	0	3	1872
Grand Total	51	1865	13	0	1929	100	4	94	0	198	13	1237	70	0	1320	3	0	11	0	14	3461
Apprch \%	2.6	96.7	0.7	0		50.5	2	47.5	0		1	93.7	5.3	0		21.4	0	78.6	0		
Total \%	1.5	53.9	0.4	0	55.7	2.9	0.1	2.7	0	5.7	0.4	35.7	2	0	38.1	0.1	0	0.3	0	0.4	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@BennettStAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					BENNETT STREET Westbound					PEACHTREE ROAD Northbound					BENNETT STREET Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:45 AM																					
07:45 AM	1	290	1	0	292	8	0	13	0	21	1	170	11	0	182	0	0	2	0	2	497
08:00 AM	7	294	0	0	301	18	1	17	0	36	2	145	14	0	161	0	0	0	0	0	498
08:15 AM	10	286	4	0	300	12	0	9	0	21	1	170	6	0	177	1	0	1	0	2	500
08:30 AM	8	231	1	0	240	21	1	15	0	37	4	184	6	0	194	0	0	1	0	1	472
Total Volume	26	1101	6	0	1133	59	2	54	0	115	8	669	37	0	714	1	0	4	0	5	1967
\% App. Total	2.3	97.2	0.5	0		51.3	1.7	47	0		1.1	93.7	5.2	0		20	0	80	0		
PHF	. 650	. 936	. 375	. 000	. 941	. 702	. 500	. 794	. 000	. 777	. 500	. 909	. 661	. 000	. 920	. 250	. 000	. 500	. 000	. 625	. 984

File Name : PTreeRd@BennettStPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					BENNETT STREET Westbound					PEACHTREE ROAD Northbound					BENNETT STREET Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	int. Total
04:00 PM	17	260	8	0	285	18	0	15	0	33	4	254	15	0	273	8	2	11	0	21	612
04:15 PM	5	300	4	0	309	17	1	15	0	33	4	294	9	0	307	7	1	3	0	11	660
04:30 PM	17	356	4	0	377	23	0	17	0	40	0	277	15	0	292	14	2	1	0	17	726
04:45 PM	11	310	3	0	324	19	0	22	0	41	4	300	5	0	309	7	3	7	0	17	691
Total	50	1226	19	0	1295	77	1	69	0	147	12	1125	44	0	1181	36	8	22	0	66	2689
05:00 PM	11	317	3	0	331	13	0	15	0	28	7	287	15	0	309	9	2	5	0	16	684
05:15 PM	10	334	8	0	352	23	2	25	0	50	6	257	16	0	279	10	1	12	0	23	704
05:30 PM	8	345	2	0	355	16	2	12	0	30	7	282	14	0	303	11	0	15	0	26	714
05:45 PM	16	301	0	0	317	16	3	17	0	36	2	277	10	0	289	6	0	2	0	8	650
Total	45	1297	13	0	1355	68	7	69	0	144	22	1103	55	0	1180	36	3	34	0	73	2752
Grand Total	95	2523	32	0	2650	145	8	138	0	291	34	2228	99	0	2361	72	11	56	0	139	5441
Apprch \%	3.6	95.2	1.2	0		49.8	2.7	47.4	0		1.4	94.4	4.2	0		51.8	7.9	40.3	0		
Total \%	1.7	46.4	0.6	0	48.7	2.7	0.1	2.5	0	5.3	0.6	40.9	1.8	0	43.4	1.3	0.2	1	0	2.6	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@BennettStPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					BENNETT STREET Westbound					PEACHTREE ROAD Northbound					BENNETT STREET Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:30 PM																					
04:30 PM	17	356	4	0	377	23	0	17	0	40	0	277	15	0	292	14	2	1	0	17	726
04:45 PM	11	310	3	0	324	19	0	22	0	41	4	300	5	0	309	7	3	7	0	17	691
05:00 PM	11	317	3	0	331	13	0	15	0	28	7	287	15	0	309	9	2	5	0	16	684
05:15 PM	10	334	8	0	352	23	2	25	0	50	6	257	16	0	279	10	1	12	0	23	704
Total Volume	49	1317	18	0	1384	78	2	79	0	159	17	1121	51	0	1189	40	8	25	0	73	2805
\% App. Total	3.5	95.2	1.3	0		49.1	1.3	49.7	0		1.4	94.3	4.3	0		54.8	11	34.2	0		
PHF	. 721	. 925	. 563	. 000	. 918	. 848	. 250	. 790	. 000	. 795	. 607	. 934	. 797	. 000	. 962	. 714	. 667	. 521	. 000	. 793	. 966

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@BrightonRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					BRIGHTON ROAD (CVS)Westbound					PEACHTREE ROAD Northbound					BRIGHTON ROAD (CVS) Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	6	180	7	0	193	2	1	9	0	12	5	140	0	0	145	11	2	11	0	24	374
07:15 AM	12	150	9	0	171	5	0	9	0	14	2	132	2	0	136	6	2	23	0	31	352
07:30 AM	11	200	11	0	222	3	0	8	0	11	4	198	1	0	203	3	4	18	0	25	461
07:45 AM	10	223	20	0	253	0	0	9	0	9	4	200	2	0	206	2	6	11	0	19	487
Total	39	753	47	0	839	10	1	35	0	46	15	670	5	0	690	22	14	63	0	99	1674
08:00 AM	9	281	11	0	301	3	1	3	0	7	5	155	5	0	165	4	4	12	0	20	493
08:15 AM	10	263	12	0	285	5	1	2	0	8	5	184	4	0	193	5	2	5	0	12	498
08:30 AM	7	227	8	0	242	2	3	2	0	7	0	206	2	0	208	3	2	6	0	11	468
08:45 AM	6	189	10	0	205	1	0	1	0	2	5	186	3	0	194	3	1	2	0	6	407
Total	32	960	41	0	1033	11	5	8	0	24	15	731	14	0	760	15	9	25	0	49	1866
Grand Total	71	1713	88	0	1872	21	6	43	0	70	30	1401	19	0	1450	37	23	88	0	148	3540
Apprch \%	3.8	91.5	4.7	0		30	8.6	61.4	0		2.1	96.6	1.3	0		25	15.5	59.5	0		
Total \%	2	48.4	2.5	0	52.9	0.6	0.2	1.2	0	2	0.8	39.6	0.5	0	41	1	0.6	2.5	0	4.2	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@BrightonRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					BRIGHTON ROAD (CVS) Westbound					PEACHTREE ROAD Northbound					BRIGHTON ROAD (CVS) Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:45 AM																					
07:45 AM	10	223	20	0	253	0	0	9	0	9	4	200	2	0	206	2	6	11	0	19	487
08:00 AM	9	281	11	0	301	3	1	3	0	7	5	155	5	0	165	4	4	12	0	20	493
08:15 AM	10	263	12	0	285	5	1	2	0	8	5	184	4	0	193	5	2	5	0	12	498
08:30 AM	7	227	8	0	242	2	3	2	0	7	0	206	2	0	208	3	2	6	0	11	468
Total Volume	36	994	51	0	1081	10	5	16	0	31	14	745	13	0	772	14	14	34	0	62	1946
\% App. Total	3.3	92	4.7	0		32.3	16.1	51.6	0		1.8	96.5	1.7	0		22.6	22.6	54.8	0		
PHF	. 900	. 884	. 638	. 000	. 898	. 500	417	. 444	. 000	. 861	. 700	. 904	. 650	. 000	. 928	. 700	. 583	. 708	. 000	. 775	. 977

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@BrightonRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	$\begin{aligned} & \text { PEACHTREE ROAD } \\ & \text { Southbound } \end{aligned}$					BRIGHTON ROAD (CVS)Westbound					PEACHTREE ROAD Northbound					BRIGHTON ROAD (CVS)Fastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	7	289	3	0	299	13	1	5	0	19	10	273	5	0	288	11	10	12	0	33	639
04:15 PM	10	311	4	0	325	16	5	3	0	24	13	288	3	0	304	11	9	18	0	38	691
04:30 PM	4	357	6	0	367	15	0	1	0	16	24	273	4	0	301	22	3	22	0	47	731
04:45 PM	6	321	11	0	338	7	0	8	0	15	15	266	6	0	287	25	2	24	0	51	691
Total	27	1278	24	0	1329	51	6	17	0	74	62	1100	18	0	1180	69	24	76	0	169	2752
05:00 PM	6	332	5	0	343	8	3	6	0	17	11	275	7	0	293	24	6	17	0	47	700
05:15 PM	2	308	3	0	313	5	0	5	0	10	11	258	3	0	272	25	0	16	0	41	636
05:30 PM	3	326	7	0	336	0	1	7	0	8	10	267	4	0	281	24	2	17	0	43	668
05:45 PM	5	289	2	0	296	3	0	5	0	8	8	258	1	0	267	10	1	10	0	21	592
Total	16	1255	17	0	1288	16	4	23	0	43	40	1058	15	0	1113	83	9	60	0	152	2596
Grand Total	43	2533	41	0	2617	67	10	40	0	117	102	2158	33	0	2293	152	33	136	0	321	5348
Apprch \%	1.6	96.8	1.6	0		57.3	8.5	34.2	0		4.4	94.1	1.4	0		47.4	10.3	42.4	0		
Total \%	0.8	47.4	0.8	0	48.9	1.3	0.2	0.7	0	2.2	1.9	40.4	0.6	0	42.9	2.8	0.6	2.5	0	6	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@BrightonRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					BRIGHTON ROAD (CVS) Westbound					PEACHTREE ROAD Northbound					BRIGHTON ROAD (CVS) Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:15 PM																					
04:15 PM	10	311	4	0	325	16	5	3	0	24	13	288	3	0	304	11	9	18	0	38	691
04:30 PM	4	357	6	0	367	15	0	1	0	16	24	273	4	0	301	22	3	22	0	47	731
04:45 PM	6	321	11	0	338	7	0	8	0	15	15	266	6	0	287	25	2	24	0	51	691
05:00 PM	6	332	5	0	343	8	3	6	0	17	11	275	7	0	293	24	6	17	0	47	700
Total Volume	26	1321	26	0	1373	46	8	18	0	72	63	1102	20	0	1185	82	20	81	0	183	2813
\% App. Total	1.9	96.2	1.9	0		63.9	11.1	25	0		5.3	93	1.7	0		44.8	10.9	44.3	0		
PHF	. 650	. 925	. 591	. 000	. 935	. 719	400	. 563	. 000	. 750	. 656	. 957	. 714	. 000	. 975	. 820	. 556	. 844	. 000	. 897	. 962

All Traffic Data Services, Inc.
 1336 Farmer Road
 Conyers, Ga. 30012

Ph. 404-374-1283

File Name : PTreeRd@CollierRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROADSouthbound				PEACHTREE ROAD Northbound				COLLIER ROAD Eastbound				
Start Time	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Int. Total
07:00 AM	136	41	0	177	66	112	0	178	42	18	0	60	415
07:15 AM	122	56	0	178	74	105	0	179	58	55	0	113	470
07:30 AM	145	70	0	215	89	148	0	237	63	63	0	126	578
07:45 AM	164	80	0	244	86	165	0	251	58	61	0	119	614
Total	567	247	0	814	315	530	0	845	221	197	0	418	2077
08:00 AM	245	59	0	304	97	134	0	231	78	89	0	167	702
08:15 AM	200	52	0	252	67	145	0	212	75	62	0	137	601
08:30 AM	186	49	0	235	86	142	0	228	72	76	0	148	611
08:45 AM	162	54	0	216	92	140	0	232	68	51	0	119	567
Total	793	214	0	1007	342	561	0	903	293	278	0	571	2481
Grand Total	1360	461	0	1821	657	1091	0	1748	514	475	0	989	4558
Apprch \%	74.7	25.3	0		37.6	62.4	0		52	48	0		
Total \%	29.8	10.1	0	40	14.4	23.9	0	38.4	11.3	10.4	0	21.7	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@CollierRdAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound				PEACHTREE ROAD Northbound				COLLIER ROAD Eastbound				
Start Time	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1													
Peak Hour for Entire Intersection Begins at 07:45 AM													
07:45 AM	164	80	0	244	86	165	0	251	58	61	0	119	614
08:00 AM	245	59	0	304	97	134	0	231	78	89	0	167	702
08:15 AM	200	52	0	252	67	145	0	212	75	62	0	137	601
08:30 AM	186	49	0	235	86	142	0	228	72	76	0	148	611
Total Volume	795	240	0	1035	336	586	0	922	283	288	0	571	2528
\% App. Total	76.8	23.2	0		36.4	63.6	0		49.6	50.4	0		
PHF	. 811	. 750	. 000	. 851	. 866	. 888	. 000	. 918	. 907	. 809	. 000	. 855	. 900

All Traffic Data Services, Inc.
 1336 Farmer Road
 Conyers, Ga. 30012

Ph. 404-374-1283

File Name : PTreeRd@CollierRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound				PEACHTREE ROAD Northbound				COLLIER ROAD Eastbound				
Start Time	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Int. Total
04:00 PM	230	70	0	300	32	200	0	232	88	105	0	193	725
04:15 PM	267	62	0	329	47	243	0	290	65	109	0	174	793
04:30 PM	331	55	0	386	24	221	0	245	90	100	0	190	821
04:45 PM	296	51	0	347	25	243	0	268	56	114	0	170	785
Total	1124	238	0	1362	128	907	0	1035	299	428	0	727	3124
05:00 PM	294	64	0	358	52	235	0	287	64	102	0	166	811
05:15 PM	290	45	0	335	28	226	0	254	55	107	0	162	751
05:30 PM	277	74	0	351	35	231	0	266	61	100	0	161	778
05:45 PM	256	54	0	310	49	200	0	249	74	87	0	161	720
Total	1117	237	0	1354	164	892	0	1056	254	396	0	650	3060
Grand Total	2241	475	0	2716	292	1799	0	2091	553	824	0	1377	6184
Apprch \%	82.5	17.5	0		14	86	0		40.2	59.8	0		
Total \%	36.2	7.7	0	43.9	4.7	29.1	0	33.8	8.9	13.3	0	22.3	

All Traffic Data Services, Inc.

1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@CollierRdPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound				PEACHTREE ROAD Northbound				COLLIER ROAD Eastbound				
Start Time	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:15 PM													
04:15 PM	267	62	0	329	47	243	0	290	65	109	0	174	793
04:30 PM	331	55	0	386	24	221	0	245	90	100	0	190	821
04:45 PM	296	51	0	347	25	243	0	268	56	114	0	170	785
05:00 PM	294	64	0	358	52	235	0	287	64	102	0	166	811
Total Volume	1188	232	0	1420	148	942	0	1090	275	425	0	700	3210
\% App. Total	83.7	16.3	0		13.6	86.4	0		39.3	60.7	0		
PHF	. 897	. 906	. 000	. 920	. 712	. 969	. 000	. 940	764	. 932	. 000	. 921	. 977

	Peak Hour Data Peak Hour Begins at 04:15 PM Class 1	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@DarlingtonAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					DARLINGTON Westbound					PEACHTREE ROAD Northbound					DARLINGTON Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	11	177	3	0	191	3	0	14	0	17	2	130	9	0	141	2	0	6	0	8	357
07:15 AM	15	157	5	0	177	4	0	13	0	17	3	143	12	0	158	3	1	4	0	8	360
07:30 AM	13	200	2	0	215	5	0	6	0	11	3	197	14	0	214	16	0	11	0	27	467
07:45 AM	29	250	5	0	284	6	0	7	0	13	8	200	11	0	219	14	0	7	0	21	537
Total	68	784	15	0	867	18	0	40	0	58	16	670	46	0	732	35	1	28	0	64	1721
08:00 AM	23	289	5	0	317	4	0	5	0	9	0	176	3	0	179	9	1	7	0	17	522
08:15 AM	10	277	8	0	295	5	0	3	0	8	5	189	13	0	207	7	0	5	0	12	522
08:30 AM	16	231	5	0	252	7	0	3	0	10	1	205	11	0	217	14	1	6	0	21	500
08:45 AM	18	196	7	0	221	3	1	5	0	9	0	180	12	0	192	19	0	2	0	21	443
Total	67	993	25	0	1085	19	1	16	0	36	6	750	39	0	795	49	2	20	0	71	1987
Grand Total	135	1777	40	0	1952	37	1	56	0	94	22	1420	85	0	1527	84	3	48	0	135	3708
Apprch \%	6.9	91	2	0		39.4	1.1	59.6	0		1.4	93	5.6	0		62.2	2.2	35.6	0		
Total \%	3.6	47.9	1.1	0	52.6	1	0	1.5	0	2.5	0.6	38.3	2.3	0	41.2	2.3	0.1	1.3	0	3.6	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@DarlingtonAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					DARLINGTON Westbound					PEACHTREE ROAD Northbound					DARLINGTON Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:45 AM																					
07:45 AM	29	250	5	0	284	6	0	7	0	13	8	200	11	0	219	14	0	7	0	21	537
08:00 AM	23	289	5	0	317	4	0	5	0	9	0	176	3	0	179	9	1	7	0	17	522
08:15 AM	10	277	8	0	295	5	0	3	0	8	5	189	13	0	207	7	0	5	0	12	522
08:30 AM	16	231	5	0	252	7	0	3	0	10	1	205	11	0	217	14	1	6	0	21	500
Total Volume	78	1047	23	0	1148	22	0	18	0	40	14	770	38	0	822	44	2	25	0	71	2081
\% App. Total	6.8	91.2	2	0		55	0	45	0		1.7	93.7	4.6	0		62	2.8	35.2	0		
PHF	. 672	. 906	. 719	. 000	. 905	. 786	. 000	. 643	. 000	769	. 438	. 939	. 731	. 000	. 938	. 786	500	. 893	. 000	. 845	. 969

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@DarlingtonPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					DARLINGTON Westbound					PEACHTREE ROAD Northbound					DARLINGTON Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	11	274	4	0	289	15	1	18	0	34	3	287	8	0	298	9	2	12	0	23	644
04:15 PM	4	306	7	0	317	12	2	19	0	33	12	281	5	0	298	16	0	10	0	26	674
04:30 PM	5	363	13	0	381	12	0	16	0	28	4	289	6	0	299	8	0	10	0	18	726
04:45 PM	7	320	7	0	334	11	1	15	0	27	3	284	6	0	293	6	0	8	0	14	668
Total	27	1263	31	0	1321	50	4	68	0	122	22	1141	25	0	1188	39	2	40	0	81	2712
05:00 PM	4	322	11	0	337	12	1	11	0	24	5	291	4	0	300	15	2	13	0	30	691
05:15 PM	12	319	16	0	347	9	1	6	0	16	7	264	6	0	277	17	0	6	0	23	663
05:30 PM	3	336	37	1	377	11	0	23	0	34	7	267	7	0	281	10	0	10	0	20	712
05:45 PM	9	300	12	0	321	6	0	5	0	11	8	268	2	0	278	11	0	11	0	22	632
Total	28	1277	76	1	1382	38	2	45	0	85	27	1090	19	0	1136	53	2	40	0	95	2698
Grand Total	55	2540	107	1	2703	88	6	113	0	207	49	2231	44	0	2324	92	4	80	0	176	5410
Apprch \%	2	94	4	0		42.5	2.9	54.6	0		2.1	96	1.9	0		52.3	2.3	45.5	0		
Total \%	1	47	2	0	50	1.6	0.1	2.1	0	3.8	0.9	41.2	0.8	0	43	1.7	0.1	1.5	0	3.3	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@DarlingtonPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					DARLINGTON Westbound					PEACHTREE ROAD Northbound					DARLINGTON Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:15 PM																					
04:15 PM	4	306	7	0	317	12	2	19	0	33	12	281	5	0	298	16	0	10	0	26	674
04:30 PM	5	363	13	0	381	12	0	16	0	28	4	289	6	0	299	8	0	10	0	18	726
04:45 PM	7	320	7	0	334	11	1	15	0	27	3	284	6	0	293	6	0	8	0	14	668
05:00 PM	4	322	11	0	337	12	1	11	0	24	5	291	4	0	300	15	2	13	0	30	691
Total Volume	20	1311	38	0	1369	47	4	61	0	112	24	1145	21	0	1190	45	2	41	0	88	2759
\% App. Total	1.5	95.8	2.8	0		42	3.6	54.5	0		2	96.2	1.8	0		51.1	2.3	46.6	0		
PHF	. 714	. 903	. 731	. 000	. 898	. 979	. 500	. 803	. 000	. 848	. 500	. 984	. 875	. 000	. 992	. 703	. 250	. 788	. 000	.733	950

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@PTreeHillAveAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

	PEACHTREE ROAD Southbound				PEACHTREE HILL AVENUE Westbound				PEACHTREE ROAD Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	6	128	0	134	27	9	0	36	105	11	0	116	286
07:15 AM	7	121	0	128	25	20	0	45	124	6	0	130	303
07:30 AM	5	167	0	172	31	24	0	55	182	14	0	196	423
07:45 AM	5	249	0	254	41	18	0	59	179	14	0	193	506
Total	23	665	0	688	124	71	0	195	590	45	0	635	1518
08:00 AM	14	217	0	231	48	26	0	74	154	14	0	168	473
08:15 AM	11	235	0	246	49	14	0	63	194	9	0	203	512
08:30 AM	17	147	0	164	28	23	0	51	209	17	0	226	441
08:45 AM	24	156	0	180	45	12	0	57	157	14	0	171	408
Total	66	755	0	821	170	75	0	245	714	54	0	768	1834
Grand Total	89	1420	0	1509	294	146	0	440	1304	99	0	1403	3352
Apprch \%	5.9	94.1	0		66.8	33.2	0		92.9	7.1	0		
Total \%	2.7	42.4	0	45	8.8	4.4	0	13.1	38.9	3	0	41.9	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@PTreeHillAveAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound				PEACHTREE HILL AVENUE Westbound				PEACHTREE ROAD Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:45 AM													
07:45 AM	5	249	0	254	41	18	0	59	179	14	0	193	506
08:00 AM	14	217	0	231	48	26	0	74	154	14	0	168	473
08:15 AM	11	235	0	246	49	14	0	63	194	9	0	203	512
08:30 AM	17	147	0	164	28	23	0	51	209	17	0	226	441
Total Volume	47	848	0	895	166	81	0	247	736	54	0	790	1932
\% App. Total	5.3	94.7	0		67.2	32.8	0		93.2	6.8	0		
PHF	. 691	. 851	. 000	. 881	. 847	. 779	. 000	. 834	. 880	. 794	. 000	. 874	. 943

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@PTreeHillAvePM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

	PEACHTREE ROAD Southbound				PEACHTREE HILL AVENUE Westbound				PEACHTREE ROAD Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	11	254	0	265	54	13	0	67	350	17	0	367	699
04:15 PM	14	277	0	291	35	14	0	49	300	14	0	314	654
04:30 PM	13	354	0	367	36	24	0	60	311	11	0	322	749
04:45 PM	16	332	0	348	28	21	0	49	345	11	0	356	753
Total	54	1217	0	1271	153	72	0	225	1306	53	0	1359	2855
05:00 PM	12	296	0	308	63	27	0	90	312	7	0	319	717
05:15 PM	21	354	0	375	39	21	0	60	286	15	0	301	736
05:30 PM	17	321	0	338	55	11	0	66	321	9	0	330	734
05:45 PM	27	307	0	334	60	8	0	68	300	16	0	316	718
Total	77	1278	0	1355	217	67	0	284	1219	47	0	1266	2905
Grand Total	131	2495	0	2626	370	139	0	509	2525	100	0	2625	5760
Apprch \%	5	95	0		72.7	27.3	0		96.2	3.8	0		
Total \%	2.3	43.3	0	45.6	6.4	2.4	0	8.8	43.8	1.7	0	45.6	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PTreeRd@PTreeHillAvePM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound				PEACHTREE HILL AVENUE Westbound				PEACHTREE ROAD Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1													
04:30 PM	13	354	0	367	36	24	0	60	311	11	0	322	749
04:45 PM	16	332	0	348	28	21	0	49	345	11	0	356	753
05:00 PM	12	296	0	308	63	27	0	90	312	7	0	319	717
05:15 PM	21	354	0	375	39	21	0	60	286	15	0	301	736
Total Volume	62	1336	0	1398	166	93	0	259	1254	44	0	1298	2955
\% App. Total	4.4	95.6	0		64.1	35.9	0		96.6	3.4	0		
PHF	. 738	. 944	. 000	. 932	659	. 861	. 000	. 719	. 909	. 733	. 000	. 912	. 981

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PtreeRd@PTreeMemDrAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					PEACHTREE MEMORIAL DRIVE Westbound					PEACHTREE ROAD Northbound					PEACHTREE MEMORIAL DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	3	150	5	0	158	2	0	2	0	4	8	110	0	0	118	5	0	6	0	11	291
07:15 AM	2	154	6	0	162	1	0	5	0	6	3	121	0	0	124	10	0	11	0	21	313
07:30 AM	1	200	7	0	208	2	0	2	0	4	9	187	3	0	199	11	0	21	0	32	443
07:45 AM	0	275	8	2	285	4	0	1	0	5	8	184	1	0	193	10	0	11	1	22	505
Total	6	779	26	2	813	9	0	10	0	19	28	602	4	0	634	36	0	49	1	86	1552
08:00 AM	2	276	9	0	287	3	0	2	0	5	4	160	1	0	165	17	0	13	0	30	487
08:15 AM	2	280	6	0	288	4	0	2	0	6	10	188	2	0	200	18	0	13	0	31	525
08:30 AM	4	198	5	0	207	3	0	8	0	11	7	210	2	0	219	16	0	11	0	27	464
08:45 AM	2	200	8	0	210	4	0	6	0	10	4	156	5	0	165	25	2	15	0	42	427
Total	10	954	28	0	992	14	0	18	0	32	25	714	10	0	749	76	2	52	0	130	1903
Grand Total	16	1733	54	2	1805	23	0	28	0	51	53	1316	14	0	1383	112	2	101	1	216	3455
Apprch \%	0.9	96	3	0.1		45.1	0	54.9	0		3.8	95.2	1	0		51.9	0.9	46.8	0.5		
Total \%	0.5	50.2	1.6	0.1	52.2	0.7	0	0.8	0	1.5	1.5	38.1	0.4	0	40	3.2	0.1	2.9	0	6.3	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PtreeRd@PTreeMemDrAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PEACHTREE ROAD Southbound					PEACHTREE MEMORIAL DRIVE Westbound					PEACHTREE ROAD Northbound					PEACHTREE MEMORIAL DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:45 AM																					
07:45 AM	0	275	8	2	285	4	0	1	0	5	8	184	1	0	193	10	0	11	1	22	505
08:00 AM	2	276	9	0	287	3	0	2	0	5	4	160	1	0	165	17	0	13	0	30	487
08:15 AM	2	280	6	0	288	4	0	2	0	6	10	188	2	0	200	18	0	13	0	31	525
08:30 AM	4	198	5	0	207	3	0	8	0	11	7	210	2	0	219	16	0	11	0	27	464
Total Volume	8	1029	28	2	1067	14	0	13	0	27	29	742	6	0	777	61	0	48	1	110	1981
\% App. Total	0.7	96.4	2.6	0.2		51.9	0	48.1	0		3.7	95.5	0.8	0		55.5	0	43.6	0.9		
PHF	. 500	. 919	. 778	. 250	. 926	. 875	. 000	. 406	. 000	. 614	. 725	. 883	750	. 000	. 887	. 847	. 000	. 923	. 250	. 887	. 943

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PtreeRd@PTreeMemDrPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PEACHTREE ROAD Southbound					PEACHTREE MEMORIAL DRIVE Westbound					PEACHTREE ROAD Northbound					PEACHTREE MEMORIAL DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	5	286	15	0	306	1	0	3	0	4	13	357	3	0	373	23	0	12	0	35	718
04:15 PM	4	306	8	0	318	4	0	6	0	10	5	307	7	0	319	10	0	21	0	31	678
04:30 PM	10	360	15	0	385	0	0	2	0	2	13	298	4	0	315	20	1	19	0	40	742
04:45 PM	6	331	19	0	356	3	0	2	0	5	16	320	1	0	337	25	0	12	0	37	735
Total	25	1283	57	0	1365	8	0	13	0	21	47	1282	15	0	1344	78	1	64	0	143	2873
05:00 PM	2	341	7	0	350	2	0	1	0	3	16	301	5	0	322	22	0	10	0	32	707
05:15 PM	10	368	16	0	394	3	0	1	0	4	9	285	2	0	296	21	0	13	0	34	728
05:30 PM	6	351	18	0	375	2	0	5	0	7	13	308	6	0	327	20	0	13	0	33	742
05:45 PM	10	341	12	0	363	4	0	4	0	8	13	293	4	0	310	16	1	11	0	28	709
Total	28	1401	53	0	1482	11	0	11	0	22	51	1187	17	0	1255	79	1	47	0	127	2886
Grand Total	53	2684	110	0	2847	19	0	24	0	43	98	2469	32	0	2599	157	2	111	0	270	5759
Apprch \%	1.9	94.3	3.9	0		44.2	0	55.8	0		3.8	95	1.2	0		58.1	0.7	41.1	0		
Total \%	0.9	46.6	1.9	0	49.4	0.3	0	0.4	0	0.7	1.7	42.9	0.6	0	45.1	2.7	0	1.9	0	4.7	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PtreeRd@PTreeMemDrPM
Site Code : 00000000
Start Date : 5/22/2007
Page No :2

	PEACHTREE ROAD Southbound					PEACHTREE MEMORIAL DRIVE Westbound					PEACHTREE ROAD Northbound					PEACHTREE MEMORIAL DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:30 PM																					
04:30 PM	10	360	15	0	385	0	0	2	0	2	13	298	4	0	315	20	1	19	0	40	742
04:45 PM	6	331	19	0	356	3	0	2	0	5	16	320	1	0	337	25	0	12	0	37	735
05:00 PM	2	341	7	0	350	2	0	1	0	3	16	301	5	0	322	22	0	10	0	32	707
05:15 PM	10	368	16	0	394	3	0	1	0	4	9	285	2	0	296	21	0	13	0	34	728
Total Volume	28	1400	57	0	1485	8	0	6	0	14	54	1204	12	0	1270	88	1	54	0	143	2912
\% App. Total	1.9	94.3	3.8	0		57.1	0	42.9	0		4.3	94.8	0.9	0		61.5	0.7	37.8	0		
PHF	700	. 951	. 750	. 000	. 942	. 667	. 000	. 750	. 000	. 700	. 844	. 941	600	. 000	. 942	. 880	250	. 711	. 000	. 894	981

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, GA. 30012
Site Code: A
ph. (404)-374-1283
Station ID: A
SB RAMP TO WB BUFORD HWY.

Start	23-May-07	SB		Hour Totals		
Time	Wed	Morning	Afternoon	Morning		Afternoon
12:00		80	236			
12:15		66	249			
12:30		49	241			
12:45		50	258		245	984
01:00		52	230			
01:15		52	239			
01:30		34	245			
01:45		30	247		168	961
02:00		38	241			
02:15		28	249			
02:30		30	210			
02:45		34	208		130	908
03:00		37	232			
03:15		34	324			
03:30		34	298			
03:45		31	306		136	1160
04:00		27	280			
04:15		15	285			
04:30		24	280			
04:45		34	286		100	1131
05:00		16	247			
05:15		38	330			
05:30		50	272			
05:45		40	264		144	1113
06:00		53	266			
06:15		69	270			
06:30		98	312			
06:45		138	264		358	1112
07:00		143	227			
07:15		190	311			
07:30		226	256			
07:45		263	214		822	1008
08:00		245	172			
08:15		314	164			
08:30		332	170			
08:45		290	144		1181	650
09:00		258	144			
09:15		267	163			
09:30		206	106			
09:45		226	146		957	559
10:00		194	154			
10:15		213	128			
10:30		206	106			
10:45		212	115		825	503
11:00		184	98			
11:15		216	114			
11:30		224	104			
11:45		241	82		865	398
Total		5931	10487			
Percent		36.1\%	63.9\%			
Grand Total		5931	10487			
Percent		36.1\%	63.9\%			
ADT		Not Calculated				

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, GA. $30012 \quad$ Site Code: B
ph. (404)-374-1283
Station ID: B EB BUFORD HWY. TO NB

PIEDMONT RD.

Start Time	24-May-07	WB		Hour Totals	
	Thu	Morning	Afternoon	Morning	Afternoon
12:00		39	121		
12:15		28	105		
12:30		38	99		
12:45		30	111	135	436
01:00		21	121		
01:15		16	107		
01:30		9	119		
01:45		20	126	66	473
02:00		15	118		
02:15		11	108		
02:30		10	110		
02:45		14	136	50	472
03:00		16	100		
03:15		10	96		
03:30		15	94		
03:45		17	117	58	407
04:00		21	102		
04:15		14	88		
04:30		19	102		
04:45		15	90	69	382
05:00		26	113		
05:15		32	132		
05:30		45	122		
05:45		62	118	165	485
06:00		78	126		
06:15		89	120		
06:30		122	123		
06:45		142	120	431	489
07:00		154	117		
07:15		145	108		
07:30		174	97		
07:45		172	98	645	420
08:00		152	78		
08:15		160	70		
08:30		164	74		
08:45		150	66	626	288
09:00		152	56		
09:15		133	76		
09:30		128	68		
09:45		141	79	554	279
10:00		111	63		
10:15		102	57		
10:30		84	88		
10:45		116	83	413	291
11:00		106	68		
11:15		98	47		
11:30		101	45		
11:45		113	70	418	230
Total		3630	4652		
Percent		43.8\%	56.2\%		
Grand Total		3630	4652		
Percent		43.8\%	56.2\%		
ADT		Not Calculated			

1336 Farmer Road
Conyers, GA. 30012
Site Code: C
ph. (404)-374-1283
Station ID: C
EB BUFORD HWY RAMP TO SB \& NB PIEDMONT RD.

Start	23-May-07	EB		Hour Totals		
Time	Wed	Morning	Afternoon	Morning		Afternoon
12:00		28	202			
12:15		25	190			
12:30		32	182			
12:45		29	150		114	724
01:00		37	183			
01:15		28	171			
01:30		24	162			
01:45		20	174		109	690
02:00		17	170			
02:15		22	157			
02:30		24	160			
02:45		25	160		88	647
03:00		19	127			
03:15		20	175			
03:30		24	136			
03:45		26	188		89	626
04:00		26	174			
04:15		44	168			
04:30		50	210			
04:45		112	210		232	762
05:00		92	224			
05:15		110	232			
05:30		120	142			
05:45		150	136		472	734
06:00		128	134			
06:15		140	134			
06:30		160	147			
06:45		179	148		607	563
07:00		161	116			
07:15		176	122			
07:30		164	90			
07:45		176	110		677	438
08:00		180	106			
08:15		191	92			
08:30		162	100			
08:45		184	84		717	382
09:00		182	86			
09:15		169	76			
09:30		176	117			
09:45		170	74		697	353
10:00		164	74			
10:15		191	56			
10:30		183	56			
10:45		179	52		717	238
11:00		173	38			
11:15		222	58			
11:30		178	36			
11:45		189	36		762	168
Total		5281	6325			
Percent		45.5\%	54.5\%			
Grand Total		5281	6325			
Percent		45.5\%	54.5\%			
ADT		Not Calculated				

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : ArmourDr@MonroeDrAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	ARMOUR DRIVE Southbound				MONROE DRIVE Westbound				MONROE DRIVE Eastbound				
Start Time	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Int. Total
07:00 AM	32	40	0	72	32	103	0	135	38	74	0	112	319
07:15 AM	24	53	0	77	35	131	0	166	64	106	0	170	413
07:30 AM	55	57	0	112	24	127	0	151	60	122	0	182	445
07:45 AM	51	56	0	107	28	126	0	154	65	116	0	181	442
Total	162	206	0	368	119	487	0	606	227	418	0	645	1619
08:00 AM	62	65	0	127	49	122	0	171	60	74	0	134	432
08:15 AM	58	59	0	117	50	125	0	175	76	128	0	204	496
08:30 AM	46	71	0	117	49	121	0	170	81	93	0	174	461
08:45 AM	51	76	0	127	59	135	0	194	69	99	0	168	489
Total	217	271	0	488	207	503	0	710	286	394	0	680	1878
Grand Total	379	477	0	856	326	990	0	1316	513	812	0	1325	3497
Apprch \%	44.3	55.7	0		24.8	75.2	0		38.7	61.3	0		
Total \%	10.8	13.6	0	24.5	9.3	28.3	0	37.6	14.7	23.2	0	37.9	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name: ArmourDr@MonroeDrAM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	ARMOUR DRIVE Southbound				MONROE DRIVE Westbound				MONROE DRIVE Eastbound				
Start Time	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1													
Peak Hour for Entir	ersec	Begin	at 08:00										
08:00 AM	62	65	0	127	49	122	0	171	60	74	0	134	432
08:15 AM	58	59	0	117	50	125	0	175	76	128	0	204	496
08:30 AM	46	71	0	117	49	121	0	170	81	93	0	174	461
08:45 AM	51	76	0	127	59	135	0	194	69	99	0	168	489
Total Volume	217	271	0	488	207	503	0	710	286	394	0	680	1878
\% App. Total	44.5	55.5	0		29.2	70.8	0		42.1	57.9	0		
PHF	. 875	. 891	. 000	. 961	. 877	. 931	. 000	. 915	. 883	. 770	. 000	. 833	947

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : ArmourDr@MonroeDrPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	ARMOUR DRIVE Southbound				MONROE DRIVE Westbound				MONROE DRIVE Eastbound				
Start Time	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Int. Total
04:00 PM	81	96	0	177	40	116	0	156	43	86	0	129	462
04:15 PM	70	121	0	191	57	105	0	162	36	93	0	129	482
04:30 PM	60	135	0	195	49	97	0	146	44	76	0	120	461
04:45 PM	70	141	0	211	61	82	0	143	57	77	0	134	488
Total	281	493	0	774	207	400	0	607	180	332	0	512	1893
05:00 PM	129	113	0	242	46	93	0	139	44	91	0	135	516
05:15 PM	67	129	0	196	76	70	0	146	33	93	0	126	468
05:30 PM	68	125	0	193	84	71	0	155	49	108	0	157	505
05:45 PM	81	115	0	196	60	94	0	154	73	86	0	159	509
Total	345	482	0	827	266	328	0	594	199	378	0	577	1998
Grand Total	626	975	0	1601	473	728	0	1201	379	710	0	1089	3891
Apprch \%	39.1	60.9	0		39.4	60.6	0		34.8	65.2	0		
Total \%	16.1	25.1	0	41.1	12.2	18.7	0	30.9	9.7	18.2	0	28	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : ArmourDr@MonroeDrPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	ARMOUR DRIVE Southbound				MONROE DRIVE Westbound				MONROE DRIVE Eastbound				
Start Time	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Left	Thru	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 05:00 PM													
05:00 PM	129	113	0	242	46	93	0	139	44	91	0	135	516
05:15 PM	67	129	0	196	76	70	0	146	33	93	0	126	468
05:30 PM	68	125	0	193	84	71	0	155	49	108	0	157	505
05:45 PM	81	115	0	196	60	94	0	154	73	86	0	159	509
Total Volume	345	482	0	827	266	328	0	594	199	378	0	577	1998
\% App. Total	41.7	58.3	0		44.8	55.2	0		34.5	65.5	0		
PHF	. 669	. 934	. 000	. 854	. 792	. 872	. 000	958	. 682	. 875	. 000	. 907	. 968

Groups Printed- Class 1

	ARMOUR DRIVE Southbound					BUFORD HWY EXIT / ENTRANCE Westbound					ARMOUR DRIVE Northbound					BUFORD HWY EXIT / ENTRANCE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	0	12	34	0	46	65	0	10	0	75	100	43	0	0	143	0	0	0	0	0	264
07:15 AM	0	15	28	0	43	60	6	3	0	69	156	47	0	0	203	0	0	0	0	0	315
07:30 AM	0	49	17	0	66	63	0	5	0	68	143	45	0	0	188	0	0	0	0	0	322
07:45 AM	0	46	16	0	62	61	2	9	0	72	144	56	4	0	204	0	0	0	0	0	338
Total	0	122	95	0	217	249	8	27	0	284	543	191	4	0	738	0	0	0	0	0	1239
08:00 AM	0	49	29	0	78	73	0	0	0	73	143	37	0	0	180	0	0	0	0	0	331
08:15 AM	0	39	19	0	58	75	2	0	0	77	178	30	0	0	208	0	0	0	0	0	343
08:30 AM	0	43	11	0	54	63	0	5	0	68	177	26	0	0	203	0	0	0	0	0	325
08:45 AM	0	43	34	0	77	78	5	3	0	86	179	28	0	0	207	0	0	0	0	0	370
Total	0	174	93	0	267	289	7	8	0	304	677	121	0	0	798	0	0	0	0	0	1369
Grand Total	0	296	188	0	484	538	15	35	0	588	1220	312	4	0	1536	0	0	0	0	0	2608
Apprch \%	0	61.2	38.8	0		91.5	2.6	6	0		79.4	20.3	0.3	0		0	0	0	0		
Total \%	0	11.3	7.2	0	18.6	20.6	0.6	1.3	0	22.5	46.8	12	0.2	0	58.9	0	0	0	0	0	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283 File Name : BufordHwyExEnt@ArmourDrAM
Site Code : 00000000
Start Date : 5/22/2007
Page No :2

	ARMOUR DRIVE Southbound					BUFORD HWY EXIT / ENTRANCE Westbound					ARMOUR DRIVE Northbound					BUFORD HWY EXIT / ENTRANCE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 08:00 AM																					
08:00 AM	0	49	29	0	78	73	0	0	0	73	143	37	0	0	180	0	0	0	0	0	331
08:15 AM	0	39	19	0	58	75	2	0	0	77	178	30	0	0	208	0	0	0	0	0	343
08:30 AM	0	43	11	0	54	63	0	5	0	68	177	26	0	0	203	0	0	0	0	0	325
08:45 AM	0	43	34	0	77	78	5	3	0	86	179	28	0	0	207	0	0	0	0	0	370
Total Volume	0	174	93	0	267	289	7	8	0	304	677	121	0	0	798	0	0	0	0	0	1369
\% App. Total	0	65.2	34.8	0		95.1	2.3	2.6	0		84.8	15.2	0	0		0	0	0	0		
PHF	. 000	. 888	. 684	. 000	. 856	. 926	. 350	. 400	. 000	. 884	. 946	. 818	. 000	. 000	. 959	. 000	000	. 000	. 000	. 000	925

Groups Printed- Class 1

	ARMOUR DRIVE Southbound					BUFORD HWY EXIT / ENTRANCE Westbound					ARMOUR DRIVE Northbound					BUFORD HWY EXIT / ENTRANCE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	0	72	23	0	95	100	0	1	0	101	122	35	0	0	157	0	0	0	0	0	353
04:15 PM	0	57	20	0	77	132	2	3	0	137	100	45	0	0	145	0	0	0	0	0	359
04:30 PM	0	55	18	0	73	144	0	6	0	150	110	31	0	0	141	0	0	0	0	0	364
04:45 PM	0	62	24	0	86	155	1	10	0	166	97	27	0	0	124	0	0	0	0	0	376
Total	0	246	85	0	331	531	3	20	0	554	429	138	0	0	567	0	0	0	0	0	1452
05:00 PM	0	47	18	0	65	189	3	11	0	203	106	34	0	0	140	0	0	0	0	0	408
05:15 PM	0	77	11	0	88	122	0	22	0	144	59	52	0	0	111	0	0	0	0	0	343
05:30 PM	0	49	12	0	61	153	0	12	0	165	76	51	0	0	127	0	0	0	0	0	353
05:45 PM	0	52	18	0	70	132	0	11	0	143	122	45	0	0	167	0	0	0	0	0	380
Total	0	225	59	0	284	596	3	56	0	655	363	182	0	0	545	0	0	0	0	0	1484
Grand Total	0	471	144	0	615	1127	6	76	0	1209	792	320	0	0	1112	0	0	0	0	0	2936
Apprch \%	0	76.6	23.4	0		93.2	0.5	6.3	0		71.2	28.8	0	0		0	0	0	0		
Total \%	0	16	4.9	0	20.9	38.4	0.2	2.6	0	41.2	27	10.9	0	0	37.9	0	0	0	0	0	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283 File Name : BufordHwyExEnt@ArmourDrPM
Site Code : 00000000
Start Date : 5/22/2007
Page No :2

	ARMOUR DRIVE Southbound					BUFORD HWY EXIT / ENTRANCE Westbound					ARMOUR DRIVE Northbound					BUFORD HWY EXIT / ENTRANCE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:15 PM																					
04:15 PM	0	57	20	0	77	132	2	3	0	137	100	45	0	0	145	0	0	0	0	0	359
04:30 PM	0	55	18	0	73	144	0	6	0	150	110	31	0	0	141	0	0	0	0	0	364
04:45 PM	0	62	24	0	86	155	1	10	0	166	97	27	0	0	124	0	0	0	0	0	376
05:00 PM	0	47	18	0	65	189	3	11	0	203	106	34	0	0	140	0	0	0	0	0	408
Total Volume	0	221	80	0	301	620	6	30	0	656	413	137	0	0	550	0	0	0	0	0	1507
\% App. Total	0	73.4	26.6	0		94.5	0.9	4.6	0		75.1	24.9	0	0		0	0	0	0		
PHF	. 000	. 891	. 833	. 000	. 875	. 820	. 500	. 682	. 000	. 808	. 939	. 761	. 000	. 000	. 948	. 000	. 000	. 000	. 000	. 000	. 923

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : Lambert\&PiedmontAM
Site Code : 6
Start Date : 5/23/2007
Page No : 1

Groups Printed- Class 1

	PIEDMONT ROAD Southbound					LAMBERT DRIVE / BUFORDHWY RAMPWestbound					PIEDMONT ROAD Northbound					MONROE DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	0	35	23	0	58	1	6	79	0	86	9	84	3	0	96	15	14	3	0	32	272
07:15 AM	3	65	29	0	97	0	4	99	0	103	15	160	0	0	175	23	10	4	0	37	412
07:30 AM	3	98	38	0	139	1	6	86	0	93	14	179	0	0	193	39	7	2	0	48	473
07:45 AM	0	105	36	0	141	2	8	51	0	61	14	210	0	0	224	21	11	4	0	36	462
Total	6	303	126	0	435	4	24	315	0	343	52	633	3	0	688	98	42	13	0	153	1619
08:00 AM	2	121	46	0	169	3	6	27	0	36	22	195	0	0	217	25	11	2	0	38	460
08:15 AM	2	137	32	0	171	1	3	56	0	60	32	222	0	0	254	21	7	0	0	28	513
08:30 AM	1	133	31	0	165	1	3	62	0	66	15	201	2	0	218	23	8	1	0	32	481
08:45 AM	1	118	24	0	143	2	10	78	0	90	14	233	1	0	248	32	9	3	0	44	525
Total	6	509	133	0	648	7	22	223	0	252	83	851	3	0	937	101	35	6	0	142	1979
Grand Total	12	812	259	0	1083	11	46	538	0	595	135	1484	6	0	1625	199	77	19	0	295	3598
Apprch \%	1.1	75	23.9	0		1.8	7.7	90.4	0		8.3	91.3	0.4	0		67.5	26.1	6.4	0		
Total \%	0.3	22.6	7.2	0	30.1	0.3	1.3	15	0	16.5	3.8	41.2	0.2	0	45.2	5.5	2.1	0.5	0	8.2	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : Lambert\&PiedmontAM Site Code : 6 Start Date : 5/23/2007
Page No : 2

	PIEDMONT ROAD Southbound					LAMBERT DRIVE / BUFORD HWY RAMP Westbound					PIEDMONT ROAD Northbound					MONROE DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 08:00 AM																					
08:00 AM	2	121	46	0	169	3	6	27	0	36	22	195	0	0	217	25	11	2	0	38	460
08:15 AM	2	137	32	0	171	1	3	56	0	60	32	222	0	0	254	21	7	0	0	28	513
08:30 AM	1	133	31	0	165	1	3	62	0	66	15	201	2	0	218	23	8	1	0	32	481
08:45 AM	1	118	24	0	143	2	10	78	0	90	14	233	1	0	248	32	9	3	0	44	525
Total Volume	6	509	133	0	648	7	22	223	0	252	83	851	3	0	937	101	35	6	0	142	1979
\% App. Total	0.9	78.5	20.5	0		2.8	8.7	88.5	0		8.9	90.8	0.3	0		71.1	24.6	4.2	0		
PHF	. 750	. 929	. 723	. 000	. 947	. 583	. 550	. 715	. 000	700	. 648	. 913	. 375	. 000	. 922	789	. 795	. 500	. 000	. 807	. 942

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : Lambert\&PiedmontPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	PIEDMONT ROAD Southbound					LAMBERT DRIVE / BUFORDHWY RAMPWestbound					PIEDMONT ROAD Northbound					MONROE DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	3	215	81	0	299	10	1	88	1	100	19	119	0	0	138	42	1	4	0	47	584
04:15 PM	4	207	90	0	301	4	7	62	0	73	15	143	0	0	158	37	3	4	0	44	576
04:30 PM	2	234	76	0	312	9	13	55	0	77	20	158	2	0	180	31	1	7	0	39	608
04:45 PM	0	300	73	0	373	2	6	77	0	85	13	143	2	0	158	35	3	3	0	41	657
Total	9	956	320	0	1285	25	27	282	1	335	67	563	4	0	634	145	8	18	0	171	2425
05:00 PM	0	287	87	0	374	2	8	93	0	103	18	148	0	0	166	40	5	3	0	48	691
05:15 PM	1	304	109	0	414	0	9	88	0	97	11	164	0	0	175	38	0	2	0	40	726
05:30 PM	7	311	81	0	399	2	18	93	0	113	11	200	0	0	211	31	,	5	0	38	761
05:45 PM	2	334	87	0	423	4	7	96	0	107	14	156	1	0	171	26		3	0	32	733
Total	10	1236	364	0	1610	8	42	370	0	420	54	668	1	0	723	135	10	13	0	158	2911
Grand Total	19	2192	684	0	2895	33	69	652	1	755	121	1231	5	0	1357	280	18	31	0	329	5336
Apprch \%	0.7	75.7	23.6	0		4.4	9.1	86.4	0.1		8.9	90.7	0.4	0		85.1	5.5	9.4	0		
Total \%	0.4	41.1	12.8	0	54.3	0.6	1.3	12.2	0	14.1	2.3	23.1	0.1	0	25.4	5.2	0.3	0.6	0	6.2	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : Lambert\&PiedmontPM
Site Code : 00000000
Start Date : 5/22/2007
Page No : 2

	PIEDMONT ROAD Southbound					LAMBERT DRIVE / BUFORD HWY RAMP Westbound					PIEDMONT ROAD Northbound					MONROE DRIVE Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 05:00 PM																					
05:00 PM	0	287	87	0	374	2	8	93	0	103	18	148	0	0	166	40	5	3	0	48	691
05:15 PM	1	304	109	0	414	0	9	88	0	97	11	164	0	0	175	38	0	2	0	40	726
05:30 PM	7	311	81	0	399	2	18	93	0	113	11	200	0	0	211	31	2	5	0	38	761
05:45 PM	2	334	87	0	423	4	7	96	0	107	14	156	1	0	171	26	3	3	0	32	733
Total Volume	10	1236	364	0	1610	8	42	370	0	420	54	668	1	0	723	135	10	13	0	158	2911
\% App. Total	0.6	76.8	22.6	0		1.9	10	88.1	0		7.5	92.4	0.1	0		85.4	6.3	8.2	0		
PHF	. 357	. 925	. 835	. 000	. 952	. 500	. 583	. 964	. 000	. 929	. 750	. 835	. 250	. 000	. 857	. 844	. 500	. 650	. 000	. 823	. 956

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283 File Name : MonroeDr@BufordHwyExEntAM
Site Code $: 3$
Start Date $: 5 / 23 / 2007$
Page No $: 1$

Groups Printed- Class 1

	MONROE DRIVE Southbound				BUFORD HWY EXIT / ENTRANCE Westbound				MONROE DRIVE Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	87	54	0	141	46	45	0	91	68	26	0	94	326
07:15 AM	79	50	0	129	51	20	0	71	71	34	0	105	305
07:30 AM	66	67	0	133	42	12	0	54	97	46	0	143	330
07:45 AM	69	57	0	126	60	10	0	70	84	40	0	124	320
Total	301	228	0	529	199	87	0	286	320	146	0	466	1281
08:00 AM	56	78	0	134	54	18	0	72	89	60	0	149	355
08:15 AM	53	69	0	122	66	14	0	80	68	48	0	116	318
08:30 AM	46	77	0	123	42	17	0	59	79	53	0	132	314
08:45 AM	26	65	0	91	60	10	0	70	77	56	0	133	294
Total	181	289	0	470	222	59	0	281	313	217	0	530	1281
Grand Total	482	517	0	999	421	146	0	567	633	363	0	996	2562
Apprch \%	48.2	51.8	0		74.3	25.7	0		63.6	36.4	0		
Total \%	18.8	20.2	0	39	16.4	5.7	0	22.1	24.7	14.2	0	38.9	

All Traffic Data Services, Inc.

1336 Farmer Road
Conyers, Ga. 30012
$\begin{aligned} & \text { Ph. 404-374-1283 File Name }: \text { MonroeDr@BufordHwyExEntAM } \\ & \text { Site Code }: 3 \\ & \text { Start Date }: 5 / 23 / 2007 \\ & \text { Page No }: 2\end{aligned}$

	MONROE DRIVE Southbound				BUFORD HWY EXIT / ENTRANCE Westbound				MONROE DRIVE Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:30 AM													
07:30 AM	66	67	0	133	42	12	0	54	97	46	0	143	330
07:45 AM	69	57	0	126	60	10	0	70	84	40	0	124	320
08:00 AM	56	78	0	134	54	18	0	72	89	60	0	149	355
08:15 AM	53	69	0	122	66	14	0	80	68	48	0	116	318
Total Volume	244	271	0	515	222	54	0	276	338	194	0	532	1323
\% App. Total	47.4	52.6	0		80.4	19.6	0		63.5	36.5	0		
PHF	. 884	. 869	. 000	. 961	. 841	. 750	. 000	. 863	. 871	. 808	. 000	. 893	. 932

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283 File Name : MonroeDr@BufordHwyExEntPM
Site Code $: 00000000$
Start Date $: 5 / 23 / 2007$
Page No $: 1$

	MONROE DRIVE Southbound				BUFORD HWY ENT / EXIT Westbound				MONROE DRIVE Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	74	77	0	151	66	13	0	79	89	71	0	160	390
04:15 PM	100	60	0	160	96	9	0	105	60	81	0	141	406
04:30 PM	45	84	0	129	67	11	0	78	89	67	0	156	363
04:45 PM	56	85	0	141	54	12	0	66	85	65	0	150	357
Total	275	306	0	581	283	45	0	328	323	284	0	607	1516
05:00 PM	66	81	0	147	70	12	0	82	77	98	0	175	404
05:15 PM	95	85	0	180	41	9	0	50	80	70	0	150	380
05:30 PM	116	88	0	204	42	11	0	53	50	77	0	127	384
05:45 PM	71	80	0	151	59	8	0	67	60	86	0	146	364
Total	348	334	0	682	212	40	0	252	267	331	0	598	1532
Grand Total	623	640	0	1263	495	85	0	580	590	615	0	1205	3048
Apprch \%	49.3	50.7	0		85.3	14.7	0		49	51	0		
Total \%	20.4	21	0	41.4	16.2	2.8	0	19	19.4	20.2	0	39.5	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283 File Name : MonroeDr@BufordHwyExEntPM
Site Code : 00000000
Start Date : 5/23/2007
Page No : 2

	MONROE DRIVE Southbound				BUFORD HWY ENT / EXIT Westbound				MONROE DRIVE Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 05:00 PM													
05:00 PM	66	81	0	147	70	12	0	82	77	98	0	175	404
05:15 PM	95	85	0	180	41	9	0	50	80	70	0	150	380
05:30 PM	116	88	0	204	42	11	0	53	50	77	0	127	384
05:45 PM	71	80	0	151	59	8	0	67	60	86	0	146	364
Total Volume	348	334	0	682	212	40	0	252	267	331	0	598	1532
\% App. Total	51	49	0		84.1	15.9	0		44.6	55.4	0		
PHF	. 750	. 949	. 000	. 836	. 757	. 833	. 000	. 768	. 834	. 844	. 000	. 854	. 948

All Traffic Data Services, Inc.

1336 Farmer Road

Conyers, Ga. 30012
$\begin{aligned} \text { Ph. 404-374-128File Name } & : \text { Piedmont-Cheshire\&PiedmontAM } \\ \text { Site Code } & : 5 \\ \text { Start Date } & : 5 / 23 / 2007 \\ \text { Page No } & : 1\end{aligned}$

Groups Printed- Class 1

	PIEDMONT ROAD Southbound					PIEDMONT CIRCLE / CHESHIRE BRIDGE RD Westbound					PIEDMONT ROAD Northbound					PIEDMONT CIRCLE / CHESHIRE BRIDGE RD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	2	39	1	0	42	33	33	6	0	72	7	82	37	0	126	3	28	15	0	46	286
07:15 AM	6	60	2	0	68	54	56	10	0	120	12	168	35	0	215	2	32	20	0	54	457
07:30 AM	5	92	1	0	98	91	73	9	0	173	7	183	55	0	245	4	34	34	0	72	588
07:45 AM	10	98	2	0	110	89	68	13	0	170	7	210	63	0	280	7	46	24	0	77	637
Total	23	289	6	0	318	267	230	38	0	535	33	643	190	0	866	16	140	93	0	249	1968
08:00 AM	5	119	3	0	127	114	63	8	0	185	7	207	61	0	275	5	51	28	0	84	671
08:15 AM	5	133	3	0	141	91	84	10	0	185	20	238	87	0	345	7	37	31	0	75	746
08:30 AM	11	113	8	0	132	74	79	16	0	169	3	207	60	0	270	2	39	34	0	75	646
08:45 AM	3	118	6	0	127	108	67	19	0	194	26	230	95	0	351	10	33	37	0	80	752
Total	24	483	20	0	527	387	293	53	0	733	56	882	303	0	1241	24	160	130	0	314	2815
Grand Total	47	772	26	0	845	654	523	91	0	1268	89	1525	493	0	2107	40	300	223	0	563	4783
Apprch \%	5.6	91.4	3.1	0		51.6	41.2	7.2	0		4.2	72.4	23.4	0		7.1	53.3	39.6	0		
Total \%	1	16.1	0.5	0	17.7	13.7	10.9	1.9	0	26.5	1.9	31.9	10.3	0	44.1	0.8	6.3	4.7	0	11.8	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-128File Name : Piedmont-Cheshire\&PiedmontAM
Site Code : 5
Start Date : 5/23/2007
Page No : 2

	PIEDMONT ROAD Southbound					PIEDMONT CIRCLE / CHESHIRE BRIDGE RD Westbound					PIEDMONT ROAD Northbound					PIEDMONT CIRCLE / CHESHIRE BRIDGE RD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 08:00 AM																					
08:00 AM	5	119	3	0	127	114	63	8	0	185	7	207	61	0	275	5	51	28	0	84	671
08:15 AM	5	133	3	0	141	91	84	10	0	185	20	238	87	0	345	7	37	31	0	75	746
08:30 AM	11	113	8	0	132	74	79	16	0	169	3	207	60	0	270	2	39	34	0	75	646
08:45 AM	3	118	6	0	127	108	67	19	0	194	26	230	95	0	351	10	33	37	0	80	752
Total Volume	24	483	20	0	527	387	293	53	0	733	56	882	303	0	1241	24	160	130	0	314	2815
\% App. Total	4.6	91.7	3.8	0		52.8	40	7.2	0		4.5	71.1	24.4	0		7.6	51	41.4	0		
PHF	. 545	. 908	. 625	. 000	. 934	. 849	. 872	. 697	. 000	. 945	. 538	. 926	. 797	. 000	. 884	. 600	784	. 878	000	. 935	. 936

All Traffic Data Services, Inc.

1336 Farmer Road

Conyers, Ga. 30012
$\begin{aligned} \text { Ph. 404-374-128File Name } & \text { : Piedmont-Cheshire\&PiedmontPM } \\ \text { Site Code } & : 5 \\ \text { Start Date } & : 5 / 23 / 2007 \\ \text { Page No } & : 1\end{aligned}$

Groups Printed- Class 1

	PIEDMONT ROAD Southbound					PIEDMONT CIRCLE / CHESHIRE BRIDGE RD Westbound					PIEDMONT ROAD Northbound					PIEDMONT CIRCLE / CHESHIRE BRIDGE RD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
04:00 PM	14	203	4	0	221	55	64	8	0	127	9	118	59	0	186	8	42	35	0	85	619
04:15 PM	10	201	1	0	212	68	69	12	0	149	15	148	53	0	216	10	67	38	0	115	692
04:30 PM	11	229	2	0	242	62	46	15	0	123	12	154	80	0	246	8	52	26	0	86	697
04:45 PM	9	298	2	0	309	86	50	18	0	154	4	133	83	0	220	5	78	29	0	112	795
Total	44	931	9	0	984	271	229	53	0	553	40	553	275	0	868	31	239	128	0	398	2803
05:00 PM	13	263	2	0	278	100	41	16	0	157	3	138	87	0	228	4	87	29	0	120	783
05:15 PM	17	284	3	0	304	90	39	5	0	134	12	169	103	0	284	6	84	40	0	130	852
05:30 PM	21	289	8	0	318	69	54	10	0	133	4	196	88	0	288	11	98	41	0	150	889
05:45 PM	22	315	3	0	340	89	38	5	0	132	4	150	82	0	236	10	90	39	0	139	847
Total	73	1151	16	0	1240	348	172	36	0	556	23	653	360	0	1036	31	359	149	0	539	3371
Grand Total	117	2082	25	0	2224	619	401	89	0	1109	63	1206	635	0	1904	62	598	277	0	937	6174
Apprch \%	5.3	93.6	1.1	0		55.8	36.2	8	0		3.3	63.3	33.4	0		6.6	63.8	29.6	0		
Total \%	1.9	33.7	0.4	0	36	10	6.5	1.4	0	18	1	19.5	10.3	0	30.8	1	9.7	4.5	0	15.2	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-128File Name : Piedmont-Cheshire\&PiedmontPM
Site Code : 5
Start Date : 5/23/2007
Page No : 2

	PIEDMONT ROAD Southbound					PIEDMONT CIRCLE / CHESHIRE BRIDGE RD Westbound					PIEDMONT ROAD Northbound					PIEDMONT CIRCLE / CHESHIRE BRIDGE RD Eastbound					
Start Time	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Left	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 05:00 PM																					
05:00 PM	13	263	2	0	278	100	41	16	0	157	3	138	87	0	228	4	87	29	0	120	783
05:15 PM	17	284	3	0	304	90	39	5	0	134	12	169	103	0	284	6	84	40	0	130	852
05:30 PM	21	289	8	0	318	69	54	10	0	133	4	196	88	0	288	11	98	41	0	150	889
05:45 PM	22	315	3	0	340	89	38	5	0	132	4	150	82	0	236	10	90	39	0	139	847
Total Volume	73	1151	16	0	1240	348	172	36	0	556	23	653	360	0	1036	31	359	149	0	539	3371
\% App. Total	5.9	92.8	1.3	0		62.6	30.9	6.5	0		2.2	63	34.7	0		5.8	66.6	27.6	0		
PHF	. 830	. 913	. 500	. 000	. 912	. 870	796	. 563	. 000	. 885	. 479	. 833	. 874	000	. 899	. 705	. 916	. 909	. 000	. 898	. 948

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PiedmontCir\&MonroeAM
Site Code : 4
Start Date : 5/22/2007
Page No : 1

Groups Printed- Class 1

	MONROE DRIVE Southbound				MONROE DRIVE Westbound				PIEDMONT CIRCLE Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
07:00 AM	33	51	0	84	1	33	0	34	50	4	0	54	172
07:15 AM	33	61	0	94	4	41	0	45	72	4	0	76	215
07:30 AM	37	71	0	108		57	0	58	82	4	0	86	252
07:45 AM	28	82	0	110	7	51	0	58	71	2	0	73	241
Total	131	265	0	396	13	182	0	195	275	14	0	289	880
08:00 AM	38	91	0	129	8	65	0	73	79	5	0	84	286
08:15 AM	35	82	0	117	7	62	0	69	64	3	0	67	253
08:30 AM	39	75	0	114	2	46	0	48	76	5	0	81	243
08:45 AM	43	80	0	123	7	48	0	55	72	7	0	79	257
Total	155	328	0	483	24	221	0	245	291	20	0	311	1039
Grand Total	286	593	0	879	37	403	0	440	566	34	0	600	1919
Apprch \%	32.5	67.5	0		8.4	91.6	0		94.3	5.7	0		
Total \%	14.9	30.9	0	45.8	1.9	21	0	22.9	29.5	1.8	0	31.3	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PiedmontCir\&MonroeAM
Site Code : 4
Start Date : 5/22/2007
Page No : 2

	MONROE DRIVE Southbound				MONROE DRIVE Westbound				PIEDMONT CIRCLE Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1													
Peak Hour for Entir	ersec	Begin	at 08:00	AM									
08:00 AM	38	91	0	129	8	65	0	73	79	5	0	84	286
08:15 AM	35	82	0	117	7	62	0	69	64	3	0	67	253
08:30 AM	39	75	0	114	2	46	0	48	76	5	0	81	243
08:45 AM	43	80	0	123	7	48	0	55	72	7	0	79	257
Total Volume	155	328	0	483	24	221	0	245	291	20	0	311	1039
\% App. Total	32.1	67.9	0		9.8	90.2	0		93.6	6.4	0		
PHF	. 901	. 901	. 000	. 936	. 750	. 850	. 000	. 839	. 921	. 714	. 000	. 926	. 908

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PiedmontCir\&MonroePM
Site Code : 4
Start Date : 5/23/2007
Page No : 1

Groups Printed- Class 1

	MONROE DRIVE Southbound				MONROE DRIVE Westbound				PIEDMONT CIRCLE Northbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
06:00 AM	31	102	0	133	15	94	0	109	65	11	0	76	318
06:15 AM	41	110	0	151	11	90	0	101	53	8	0	61	313
06:30 AM	37	121	0	158	12	98	0	110	57	4	0	61	329
06:45 AM	46	111	0	157	12	82	0	94	65	5	0	70	321
Total	155	444	0	599	50	364	0	414	240	28	0	268	1281
07:00 AM	40	104	0	144	11	105	0	116	68	6	0	74	334
07:15 AM	27	120	0	147	10	100	0	110	48	4	0	52	309
07:30 AM	23	109	0	132	16	71	0	87	53	2	0	55	274
07:45 AM	29	94	0	123	11	83	0	94	58	3	0	61	278
Total	119	427	0	546	48	359	0	407	227	15	0	242	1195
Grand Total	274	871	0	1145	98	723	0	821	467	43	0	510	2476
Apprch \%	23.9	76.1	0		11.9	88.1	0		91.6	8.4	0		
Total \%	11.1	35.2	0	46.2	4	29.2	0	33.2	18.9	1.7	0	20.6	

All Traffic Data Services, Inc.
1336 Farmer Road
Conyers, Ga. 30012
Ph. 404-374-1283
File Name : PiedmontCir\&MonroePM
Site Code : 4
Start Date : 5/23/2007
Page No : 2

	MONROE DRIVE Southbound				MONROE DRIVE Westbound				PIEDMONT CIRCLENorthbound				
Start Time	Left	Thru	Other	App. Total	Left	Rght	Other	App. Total	Thru	Rght	Other	App. Total	Int. Total
Peak Hour Analysis From 06:00 AM to 07:45 AM - Peak 1 of 1													
Peak Hour for Entir	ersec	Begin	at 06:15										
06:15 AM	41	110	0	151	11	90	0	101	53	8	0	61	313
06:30 AM	37	121	0	158	12	98	0	110	57	4	0	61	329
06:45 AM	46	111	0	157	12	82	0	94	65	5	0	70	321
07:00 AM	40	104	0	144	11	105	0	116	68	6	0	74	334
Total Volume	164	446	0	610	46	375	0	421	243	23	0	266	1297
\% App. Total	26.9	73.1	0		10.9	89.1	0		91.4	8.6	0		
PHF	. 891	. 921	. 000	. 965	. 958	. 893	. 000	. 907	. 893	. 719	. 000	. 899	. 971

Capacity Analysis

Arterial Level of Service: NB Peachtree Rd NE

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Collier Rd	IV	30	13.8	89.2	103.0	0.08	2.7	F
Brighton	IV	30	20.6	62.8	83.4	0.11	4.9	F
Darlington	IV	30	25.5	0.8	26.3	0.17	23.3	B
Spalding	IV	30	12.6	1.3	13.9	0.06	14.3	C
Peachtree Park Dr	IV	30	12.3	260.8	273.1	0.05	0.7	F
Colonial Homes Dr	IV	30	17.4	17.2	34.6	0.10	10.1	D
Biscayne Dr	IV	30	13.7	124.4	138.1	0.08	2.0	F
Peachtree Memorial D	IV	30	19.9	1.6	21.5	0.13	22.2	B
Peachtree Hills Av	IV	30	22.3	9.5	31.8	0.15	16.9	C
Total	IV		158.1	567.6	725.7	0.93	4.6	F

Arterial Level of Service: SB Peachtree Rd NE

	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Cross Street	III	30	42.3	11.8	54.1	0.33	22.2	C
Peachtree Hills Av	30	19.9	4.9	24.8	0.15	21.6	C	
Peachtree Memorial D	III	30	17.7	52.7	70.4	0.13	6.8	F
Biscayne Dr	III	30	10.7	3.1	13.8	0.08	19.9	C
Colonial Homes Dr	III	30	13.6	152.0	165.6	0.10	2.1	F
Bennett St	III	30	8.4	4.3	12.7	0.05	15.4	D
Spalding	III	30	8.6	18.7	27.3	0.06	7.3	F
Darlington	III	30	22.8	10.6	33.4	0.17	18.4	C
Piedmont Hospital	III	30	16.1	142.9	159.0	0.11	2.6	F
Collier Rd	III		160.1	401.0	561.1	1.18	7.6	F

	ψ		4		\pm	\pm	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	${ }^{7}$	「		＊个4	性 ${ }^{\text {a }}$		
Volume（vph）	702	425	148	1701	2031	690	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	10	10	10	10	10	10	
Total Lost time（s）	4.0	4.0		4.0	4.0		
Lane Util．Factor	1.00	1.00		0.91	0.91		
Frt	1.00	0.85		1.00	0.96		
Flt Protected	0.95	1.00		1.00	1.00		
Satd．Flow（prot）	1652	1478		4690	4529		
Flt Permitted	0.95	1.00		0.64	1.00		
Satd．Flow（perm）	1652	1478		3024	4529		
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj．Flow（vph）	763	462	161	1849	2208	750	
RTOR Reduction（vph）	0	44	0	0	51	0	
Lane Group Flow（vph）	763	418	0	2010	2907	0	
Bus Blockages（\＃／hr）	0	0	0	6	6	6	
Turn Type		Perm	pm＋pt				
Protected Phases	4		5	2	6		
Permitted Phases		4	2				
Actuated Green，G（s）	43.0	43.0		69.0	61.0		
Effective Green，g（s）	43.0	43.0		69.0	61.0		
Actuated g／C Ratio	0.36	0.36		0.57	0.51		
Clearance Time（s）	4.0	4.0		4.0	4.0		
Lane Grp Cap（vph）	592	530		1794	2302		
v／s Ratio Prot	c0．46			c0．04	c0．64		
v／s Ratio Perm		0.28		0.61			
v／c Ratio	1.29	0.79		1．45dl	1.26		
Uniform Delay，d1	38.5	34.4		25.5	29.5		
Progression Factor	1.00	1.00		1.00	0.90		
Incremental Delay，d2	142.4	11.3		62.3	119.7		
Delay（s）	180.9	45.7		87.8	146.2		
Level of Service	F	D		F	F		
Approach Delay（s）	129.9			87.8	146.2		
Approach LOS	F			F	F		
Intersection Summary							
HCM Average Control Delay			124.0		HCM Lev	Service	F
HCM Volume to Capacity ratio			1.24				
Actuated Cycle Length（s）			120.0		Sum of lo	me（s）	8.0
Intersection Capacity Utilization			139．4\％		ICU Leve	Service	H
Analysis Period（min） 15							
dl Defacto Left Lane．Recode with 1 though lane as a left lane．							
c Critical Lane Group							

	\dagger	\rightarrow	\checkmark	7		4	4	\dagger	7		\ddagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊		${ }^{1}$	个			＊中t			个＊${ }^{\text {\％}}$	
Volume（vph）	82	20	81	46	8	18	63	2313	20	26	2643	26
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.94		1.00	0.90			1.00			1.00	
Flt Protected		0.98		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1713		1770	1670			4696			4699	
Flt Permitted		0.84		0.48	1.00			0.68			0.84	
Satd．Flow（perm）		1475		889	1670			3218			3946	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	89	22	88	50	9	20	68	2514	22	28	2873	28
RTOR Reduction（vph）	0	7	0	0	17	0	0	1	0	0	1	0
Lane Group Flow（vph）	0	192	0	50	12	0	0	2603	0	0	2928	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			pm＋pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		16.0		16.0	16.0			88.0			96.0	
Effective Green，g（s）		16.0		16.0	16.0			88.0			96.0	
Actuated g／C Ratio		0.13		0.13	0.13			0.73			0.80	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		197		119	223			2360			3182	
v／s Ratio Prot					0.01						c0．03	
v／s Ratio Perm		c0．13		0.06				c0．81			0.71	
v／c Ratio		0.97		0.42	0.05			1．19dl			0.92	
Uniform Delay，d1		51.8		47.7	45.4			16.0			9.1	
Progression Factor		1.00		1.00	1.00			0.79			0.87	
Incremental Delay，d2		57.9		10.5	0.4			47.1			1.8	
Delay（s）		109.7		58.3	45.8			59.7			9.7	
Level of Service		F		E	D			E			A	
Approach Delay（s）		109.7			53.7			59.7			9.7	
Approach LOS		F			D			E			A	
Intersection Summary												
HCM Average Control Delay			36.1		HCM Leve	of Service			D			
HCM Volume to Capacity ratio			1.06									
Actuated Cycle Length（s）			120.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			14．5\％		ICU Level	Service			H			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
5：Spalding \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow	\checkmark	\checkmark		4	4	\dagger	p		$\frac{1}{1}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			\＄			¢个中			¢个\％	
Volume（vph）	0	0	0	60	0	27	6	2377	24	22	2649	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）					4.0			4.0			4.0	
Lane Util．Factor					1.00			0.91			0.91	
Frt					0.96			1.00			1.00	
Flt Protected					0.97			1.00			1.00	
Satd．Flow（prot）					1726			4701			4706	
Flt Permitted					0.79			0.92			0.85	
Satd．Flow（perm）					1416			4310			4006	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	0	65	0	29	7	2584	26	24	2879	0
RTOR Reduction（vph）	0	0	0	0	11	0	0	1	0	0	0	0
Lane Group Flow（vph）	0	0	0	0	83	0	0	2616	0	0	2903	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type P	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）					16.0			96.0			96.0	
Effective Green，g（s）					16.0			96.0			96.0	
Actuated g／C Ratio					0.13			0.80			0.80	
Clearance Time（s）					4.0			4.0			4.0	
Lane Grp Cap（vph）					189			3448			3205	
v／s Ratio Prot												
v／s Ratio Perm					c0．06			0.61			c0．72	
v／c Ratio					0.44			0.76			0.91	
Uniform Delay，d1					47.9			6.1			8.7	
Progression Factor					1.00			0.07			0.38	
Incremental Delay，d2					7.2			0.9			0.5	
Delay（s）					55.1			1.3			3.8	
Level of Service					E			A			A	
Approach Delay（s）		0.0			55.1			1.3			3.8	
Approach LOS		A			E			A			A	
Intersection Summary												
HCM Average Control Delay			3.5		CM Leve	of Service			A			
HCM Volume to Capacity ratio			0.84									
Actuated Cycle Length（s）			120.0		um of los	time（s）			8.0			
Intersection Capacity Utilization			78．0\％		U Level	Service			D			
Analysis Period（min）			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
6：Bennett St \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow		\checkmark	\Perp	4	4	\dagger	\％		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄		${ }^{1}$	\uparrow			¢中 ${ }^{\text {¢ }}$			个个¢	
Volume（vph）	81	8	260	282	2	115	199	1908	296	92	2200	50
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.90		1.00	0.85			0.98			1.00	
Flt Protected		0.99		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1656		1770	1588			4602			4684	
Flt Permitted		0.89		0.37	1.00			0.64			0.64	
Satd．Flow（perm）		1492		698	1588			2944			2996	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	88	9	283	307	2	125	216	2074	322	100	2391	54
RTOR Reduction（vph）	0	5	0	0	47	0	0	15	0	0	2	0
Lane Group Flow（vph）	0	375	0	307	80	0	0	2597	0	0	2543	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			m＋pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		35.0		35.0	35.0			69.0			77.0	
Effective Green，g（s）		35.0		35.0	35.0			69.0			77.0	
Actuated g／C Ratio		0.29		0.29	0.29			0.57			0.64	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		435		204	463			1693			1979	
v／s Ratio Prot					0.05						c0．04	
v／s Ratio Perm		0.25		c0．44				c0．88			0.78	
v／c Ratio		0.86		1.50	0.17			3．00dl			1.29	
Uniform Delay，d1		40.2		42.5	31.7			25.5			21.5	
Progression Factor		1.00		1.00	1.00			0.70			0.77	
Incremental Delay，d2		19.7		251.0	0.8			242.1			131.1	
Delay（s）		59.9		293.5	32.5			260.0			147.6	
Level of Service		E		F	C			F			F	
Approach Delay（s）		59.9			217.1			260.0			147.6	
Approach LOS		E			F			F			F	
Intersection Summary												
HCM Average Control Delay			196.3		HCM Level	of Service			F			
HCM Volume to Capacity ratio			1.48									
Actuated Cycle Length（s）			120.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			142．9\％		CU Level	Service			H			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
7: Colonial Homes Dr \& Peachtree Rd NE

	4		4	4		\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	${ }^{1}$	「		-44*	性 ${ }^{\text {c }}$		
Volume (vph)	117	276	212	1870	2053	112	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	10	10	10	10	
Total Lost time (s)	4.0	4.0		4.0	4.0		
Lane Util. Factor	1.00	1.00		0.91	0.91		
Frt	1.00	0.85		1.00	0.99		
Flt Protected	0.95	1.00		0.99	1.00		
Satd. Flow (prot)	1770	1583		4684	4672		
Flt Permitted	0.95	1.00		0.63	1.00		
Satd. Flow (perm)	1770	1583		2970	4672		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	127	300	230	2033	2232	122	
RTOR Reduction (vph)	0	18	0	0	5	0	
Lane Group Flow (vph)	127	283	0	2263	2349	0	
Bus Blockages (\#/hr)	0	0	0	6	6	6	
Turn Type		Perm	Perm				
Protected Phases	4			2	6		
Permitted Phases		4	2				
Actuated Green, G (s)	20.0	20.0		92.0	92.0		
Effective Green, g (s)	20.0	20.0		92.0	92.0		
Actuated g/C Ratio	0.17	0.17		0.77	0.77		
Clearance Time (s)	4.0	4.0		4.0	4.0		
Lane Grp Cap (vph)	295	264		2277	3582		
v/s Ratio Prot	0.07				0.50		
v/s Ratio Perm		c0.18		c0.76			
v/c Ratio	0.43	1.07		3.59dl	0.66		
Uniform Delay, d1	44.9	50.0		13.7	6.6		
Progression Factor	1.00	1.00		0.87	0.46		
Incremental Delay, d2	4.5	75.2		4.4	0.1		
Delay (s)	49.4	125.2		16.3	3.1		
Level of Service	D	F		B	A		
Approach Delay (s)	102.7			16.3	3.1		
Approach LOS	F			B	A		
Intersection Summary							
HCM Average Control Delay			17.5		HCM Lev	of Service	B
HCM Volume to Capacity ratio			1.01				
Actuated Cycle Length (s)			120.0		Sum of lo	ime (s)	8.0
Intersection Capacity Utilization			99.1\%		ICU Leve	Service	F
Analysis Period (min)			15				
dl Defacto Left Lane. Recode with 1 though lane as a left lane.							
c Critical Lane Group							

	4	\rightarrow		7		4	4	\dagger	p		\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＆			\＄			¢个中			个中F	
Volume（vph）	88	0	54	8	0	6	54	1597	2	28	1805	57
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0			4.0			4.0			4.0	
Lane Util．Factor		1.00			1.00			0.91			0.91	
Frt		0.95			0.94			1.00			1.00	
Flt Protected		0.97			0.97			1.00			1.00	
Satd．Flow（prot）		1714			1705			4700			4684	
Flt Permitted		0.80			0.87			0.74			0.86	
Satd．Flow（perm）		1417			1523			3489			4025	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	96	0	59	9	0	7	59	1736	2	30	1962	62
RTOR Reduction（vph）	0	19	0	0	6	0	0	0	0	0	3	0
Lane Group Flow（vph）	0	136	0	0	10	0	0	1797	0	0	2051	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type P	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		23.0			23.0			89.0			89.0	
Effective Green，g（s）		23.0			23.0			89.0			89.0	
Actuated g／C Ratio		0.19			0.19			0.74			0.74	
Clearance Time（s）		4.0			4.0			4.0			4.0	
Lane Grp Cap（vph）		272			292			2588			2985	
v／s Ratio Prot												
v／s Ratio Perm		c0．10			0.01			c0．52			0.51	
v／c Ratio		0.50			0.04			0.69			0.69	
Uniform Delay，d1		43.4			39.5			8.3			8.2	
Progression Factor		1.00			1.00			0.17			0.48	
Incremental Delay，d2		6.5			0.2			0.1			0.9	
Delay（s）		49.8			39.7			1.6			4.8	
Level of Service		D			D			A			A	
Approach Delay（s）		49.8			39.7			1.6			4.8	
Approach LOS		D			D			A			A	
Intersection Summary												
HCM Average Control Delay			5.2		HCM Leve	of Service			A			
HCM Volume to Capacity ratio			0.65									
Actuated Cycle Length（s）			120.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			87．3\％		CU Level	Service			E			
Analysis Period（min）			15									

Analysis Period（min）
C Critical Lane Group

	7	4			1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	${ }^{7}$	「	虾 ${ }^{\text {a }}$			个44	
Volume（vph）	203	93	1610	83	62	1694	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	10	10	10	10	
Total Lost time（s）	4.0	4.0	4.0			4.0	
Lane Util．Factor	1.00	1.00	0.91			0.91	
Frt	1.00	0.85	0.99			1.00	
Flt Protected	0.95	1.00	1.00			1.00	
Satd．Flow（prot）	1770	1583	4674			4700	
Flt Permitted	0.95	1.00	1.00			0.73	
Satd．Flow（perm）	1770	1583	4674			3446	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj．Flow（vph）	221	101	1750	90	67	1841	
RTOR Reduction（vph）	0	64	5	0	0	0	
Lane Group Flow（vph）	221	37	1835	0	0	1908	
Bus Blockages（\＃／hr）	0	0	6	6	0	6	
Turn Type		Perm			pm＋pt		
Protected Phases	8		2		1	6	
Permitted Phases		8			6		
Actuated Green，G（s）	25.0	25.0	79.0			87.0	
Effective Green，g（s）	25.0	25.0	79.0			87.0	
Actuated g／C Ratio	0.21	0.21	0.66			0.72	
Clearance Time（s）	4.0	4.0	4.0			4.0	
Lane Grp Cap（vph）	369	330	3077			2540	
v／s Ratio Prot	c0．12		0.39			c0．03	
v／s Ratio Perm		0.02				c0．52	
v／c Ratio	0.60	0.11	0.60			0.75	
Uniform Delay，d1	43.0	38.5	11.5			10.0	
Progression Factor	1.00	1.00	0.77			1.00	
Incremental Delay，d2	7.0	0.7	0.6			2.1	
Delay（s）	50.0	39.2	9.5			12.1	
Level of Service	D	D	A			B	
Approach Delay（s）	46.6		9.5			12.1	
Approach LOS	D		A			B	
Intersection Summary							
HCM Average Control Delay			13.6		HCM Lev	f Service	B
HCM Volume to Capacity ratio			0.71				
Actuated Cycle Length（s）			120.0		Sum of lo	me（s）	8.0
Intersection Capacity Utilization			88．2\％	ICU Level of Service			E
Analysis Period（min）		15					

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
24: Biscayne Dr \& Peachtree Rd NE
1/20/2009

	4	\rightarrow	\cdots	$\%$	\Perp	4	4	\dagger	p		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\&			¢中 ${ }^{\text {¢ }}$			¢中 ${ }^{\text {¢ }}$	
Volume (vph)	66	5	254	240	5	83	203	1530	267	73	1714	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			0.91			0.91	
Frt		0.89			0.97			0.98			1.00	
Fit Protected		0.99			0.96			0.99			1.00	
Satd. Flow (prot)		1649			1736			4591			4676	
Flt Permitted		0.88			0.46			0.63			0.67	
Satd. Flow (perm)		1471			829			2926			3153	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	72	5	276	261	5	90	221	1663	290	79	1863	66
RTOR Reduction (vph)	0	11	0	0	10	0	0	17	0	0	3	0
Lane Group Flow (vph)	0	342	0	0	346	0	0	2157	0	0	2005	0
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		40.0			40.0			72.0			72.0	
Effective Green, g (s)		40.0			40.0			72.0			72.0	
Actuated g/C Ratio		0.33			0.33			0.60			0.60	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Lane Grp Cap (vph)		490			276			1756			1892	
v/s Ratio Prot												
v/s Ratio Perm		0.23			c0.42			c0.74			0.64	
v/c Ratio		0.70			1.25			2.99dl			1.32dl	
Uniform Delay, d1		34.8			40.0			24.0			24.0	
Progression Factor		1.00			1.00			0.75			0.61	
Incremental Delay, d2		8.0			140.3			104.4			36.0	
Delay (s)		42.8			180.3			122.3			50.6	
Level of Service		D			F			F			D	
Approach Delay (s)		42.8			180.3			122.3			50.6	
Approach LOS		D			F			F			D	
Intersection Summary												
HCM Average Control Delay			91.4		HCM Leve	of Service			F			
HCM Volume to Capacity ratio			1.24									
Actuated Cycle Length (s)			120.0		Sum of los	time (s)			8.0			
Intersection Capacity Utilization			27.1\%		ICU Level	Service			H			
Analysis Period (min)			15									
dl Defacto Left Lane. Recode with 1 though lane as a left lane.												
c Critical Lane Group												

	4	\rightarrow	\cdots	7		4	4	\dagger	7		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＆		＊	$\hat{\beta}$			＊中t			个中个	
Volume（vph）	45	2	41	47	4	61	24	2363	24	20	2632	38
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.94		1.00	0.86			1.00			1.00	
Flt Protected		0.98		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1701		1770	1599			4699			4697	
Flt Permitted		0.81		0.65	1.00			0.82			0.86	
Satd．Flow（perm）		1421		1203	1599			3852			4037	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	49	2	45	51	4	66	26	2568	26	22	2861	41
RTOR Reduction（vph）	0	27	0	0	12	0	0	1	0	0	1	0
Lane Group Flow（vph）	0	69	0	51	58	0	0	2619	0	0	2923	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			pm＋pt			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		16.0		16.0	16.0			96.0			88.0	
Effective Green，g（s）		16.0		16.0	16.0			96.0			88.0	
Actuated g／C Ratio		0.13		0.13	0.13			0.80			0.73	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		189		160	213			3110			2960	
v／s Ratio Prot					0.04			c0．03				
v／s Ratio Perm		c0．05		0.04				0.65			c0．72	
v／c Ratio		0.37		0.32	0.27			0.84			0.99	
Uniform Delay，d1		47.4		47.1	46.8			7.4			15.5	
Progression Factor		1.00		1.00	1.00			0.07			0.61	
Incremental Delay，d2		5.4		5.2	3.1			0.3			8.2	
Delay（s）		52.8		52.2	49.9			0.8			17.7	
Level of Service		D		D	D			A			B	
Approach Delay（s）		52.8			50.9			0.8			17.7	
Approach LOS		D			D			A			B	
Intersection Summary												
HCM Average Control Delay			11.3		HCM Leve	f Service			B			
HCM Volume to Capacity ratio			0.87									
Actuated Cycle Length（s）			120.0		Sum of los	ime（s）			8.0			
Intersection Capacity Utilization			84．0\％	ICU Level of Service					E			
Analysis Period（min）			15									

C Critical Lane Group

Zone 1 Totals

Number of Intersections	9
Control Delay / Veh (s/v)	60
Queue Delay / Veh (s/v)	13
Total Delay / Veh (s/v)	73
Total Delay (hr)	887
Stops (\#)	18292
Average Speed (mph)	5
Total Travel Time (hr)	1052
Distance Traveled (mi)	4955
Fuel Consumed (gal)	955
Fuel Economy (mpg)	5.2
Unserved Vehicles (\#)	3137
Vehicles in dilemma zone (\#)	0
Performance Index	937.7

Arterial Level of Service: NB Peachtree Rd NE

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Collier Rd	IV	30	13.8	31.5	45.3	0.08	6.1	F
Brighton	IV	30	20.6	12.9	33.5	0.11	12.3	D
Darlington	IV	30	25.5	6.6	32.1	0.17	19.1	B
Spalding	IV	30	12.6	1.9	14.5	0.06	13.7	C
Peachtree Park Dr	IV	30	12.3	83.7	96.0	0.05	2.0	F
Colonial Homes Dr	IV	30	17.4	3.1	20.5	0.10	17.0	C
Biscayne Dr	IV	30	13.7	21.7	35.4	0.08	7.7	E
Peachtree Memorial D	IV	30	19.9	7.5	27.4	0.13	17.4	C
Peachtree Hills Av	IV	30	22.3	5.2	27.5	0.15	19.5	B
Total	IV		158.1	174.1	332.2	0.93	10.0	D

Arterial Level of Service: SB Peachtree Rd NE

	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Cross Street	III	30	42.3	10.9	53.2	0.33	22.5	C
Peachtree Hills Av	30	19.9	7.3	27.2	0.15	19.7	C	
Peachtree Memorial D	IIII	30	17.7	9.8	27.5	0.13	17.3	D
Biscayne Dr	III	30	10.7	2.3	13.0	0.08	21.1	C
Colonial Homes Dr	III	30	13.6	26.3	39.9	0.10	8.7	F
Bennett St	III	30	8.4	4.3	12.7	0.05	15.4	D
Spalding	III	30	8.6	9.9	18.5	0.06	10.8	E
Darlington	III	30	22.8	1.4	24.2	0.17	25.3	B
Piedmont Hospital	III	30	16.1	22.9	39.0	0.11	10.6	E
Collier Rd	III		160.1	95.1	255.2	1.18	16.7	D

	4	\rightarrow	\checkmark	7		4	4	\dagger	7		\ddagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊		${ }^{1}$	个			＊中t			个＊${ }^{\text {\％}}$	
Volume（vph）	82	20	81	46	8	18	63	1891	20	26	2176	26
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.94		1.00	0.90			1.00			1.00	
Flt Protected		0.98		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1713		1770	1670			4694			4697	
Flt Permitted		0.84		0.51	1.00			0.71			0.86	
Satd．Flow（perm）		1475		943	1670			3330			4049	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	89	22	88	50	9	20	68	2055	22	28	2365	28
RTOR Reduction（vph）	0	14	0	0	17	0	0	1	0	0	1	0
Lane Group Flow（vph）	0	185	0	50	12	0	0	2144	0	0	2420	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			pm＋pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		17.0		17.0	17.0			77.0			85.0	
Effective Green，g（s）		17.0		17.0	17.0			77.0			85.0	
Actuated g／C Ratio		0.15		0.15	0.15			0.70			0.77	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		228		146	258			2331			3152	
v／s Ratio Prot					0.01						c0．03	
v／s Ratio Perm		c0．13		0.05				c0．64			0.57	
v／c Ratio		0.81		0.34	0.05			1．08dl			0.77	
Uniform Delay，d1		44.9		41.5	39.6			13.9			7.0	
Progression Factor		1.00		1.00	1.00			0.66			0.05	
Incremental Delay，d2		25.8		6.3	0.3			2.8			1.1	
Delay（s）		70.8		47.8	39.9			12.0			1.4	
Level of Service		E		D	D			B			A	
Approach Delay（s）		70.8			44.9			12.0			1.4	
Approach LOS		E			D			B			A	
Intersection Summary												
HCM Average Control Delay			9.6		HCM Leve	of Service			A			
HCM Volume to Capacity ratio			0.88									
Actuated Cycle Length（s）			110.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			06．9\％		ICU Level	Service			G			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
5：Spalding \＆Peachtree Rd NE

	4	\rightarrow	\checkmark	\checkmark		4	4	\dagger	\％		$\frac{1}{1}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\$$			\＄			个性			¢中t	
Volume（vph）	0	0	0	60	4	27	6	1954	24	22	2182	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）					4.0			4.0			4.0	
Lane Util．Factor					1.00			0.91			0.91	
Frt					0.96			1.00			1.00	
Flt Protected					0.97			1.00			1.00	
Satd．Flow（prot）					1731			4699			4706	
Flt Permitted					0.80			0.92			0.87	
Satd．Flow（perm）					1437			4341			4100	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	0	65	4	29	7	2124	26	24	2372	0
RTOR Reduction（vph）	0	0	0	0	14	0	0	1	0	0	0	0
Lane Group Flow（vph）	0	0	0	0	84	0	0	2156	0	0	2396	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）					16.0			86.0			86.0	
Effective Green，g（s）					16.0			86.0			86.0	
Actuated g／C Ratio					0.15			0.78			0.78	
Clearance Time（s）					4.0			4.0			4.0	
Lane Grp Cap（vph）				209				3394			3205	
v／s Ratio Prot												
v／s Ratio Perm				c0．06				0.50		c0．58		
v／c Ratio				0.40				0.64		0.75		
Uniform Delay，d1				42.7				5.2		6.3		
Progression Factor				1.00				0.23		0.60		
Incremental Delay，d2				5.7				0.7		0.4		
Delay（s）				48.4				1.9		4.2		
Level of Service				D				A		A		
Approach Delay（s）		0.0		48.4				1.9		4.2		
Approach LOS		A		D				A		A		
Intersection Summary												
HCM Average Control Delay			4.0	HCM Level of Service				A				
HCM Volume to Capacity ratio			0.69									
Actuated Cycle Length（s）			110.0	Sum of lost time（s）				8.0				
Intersection Capacity Utilization			69．3\％	ICU Level of Service				C				
Analysis Period（min）			15									

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
6：Bennett St \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow		\checkmark	\Perp	4	4	\dagger	\％		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄		${ }^{1}$	\uparrow			¢中 ${ }^{\text {¢ }}$			个个¢	
Volume（vph）	73	8	152	211	59	107	115	1655	210	83	1912	43
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.91		1.00	0.90			0.98			1.00	
Flt Protected		0.98		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1673		1770	1683			4620			4684	
Flt Permitted		0.71		0.46	1.00			0.64			0.68	
Satd．Flow（perm）		1209		848	1683			2977			3168	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	79	9	165	229	64	116	125	1799	228	90	2078	47
RTOR Reduction（vph）	0	15	0	0	60	0	0	13	0	0	2	0
Lane Group Flow（vph）	0	238	0	229	121	0	0	2139	0	0	2213	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			m＋pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		25.0		25.0	25.0			69.0			77.0	
Effective Green，g（s）		25.0		25.0	25.0			69.0			77.0	
Actuated g／C Ratio		0.23		0.23	0.23			0.63			0.70	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		275		193	383			1867			2273	
v／s Ratio Prot					0.07						c0．04	
v／s Ratio Perm		0.20		c0．27				c0．72			0.65	
v／c Ratio		0.86		1.19	0.31			1．64dl			0.97	
Uniform Delay，d1		40.9		42.5	35.4			20.5			15.5	
Progression Factor		1.00		1.00	1.00			0.45			0.93	
Incremental Delay，d2		28.4		124.1	2.1			70.9			11.8	
Delay（s）		69.2		166.6	37.5			80.1			26.3	
Level of Service		E		F	D			F			C	
Approach Delay（s）		69.2			109.8			80.1			26.3	
Approach LOS		E			F			F			C	
Intersection Summary												
HCM Average Control Delay			58.3		HCM Level	of Service			E			
HCM Volume to Capacity ratio			1.16									
Actuated Cycle Length（s）			110.0		Sum of los	time（s）			12.0			
Intersection Capacity Utilization			117．4\％		CU Level	Service			H			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
7: Colonial Homes Dr \& Peachtree Rd NE

	4	\rightarrow		7		4	4	\dagger	p		\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＆			\＆			¢个中			个㻢	
Volume（vph）	88	1	54	8	0	6	54	1556	2	28	1767	57
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0			4.0			4.0			4.0	
Lane Util．Factor		1.00			1.00			0.91			0.91	
Frt		0.95			0.94			1.00			1.00	
Flt Protected		0.97			0.97			1.00			1.00	
Satd．Flow（prot）		1715			1705			4700			4683	
Flt Permitted		0.80			0.87			0.75			0.86	
Satd．Flow（perm）		1423			1529			3527			4051	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	96	1	59	9	0	7	59	1691	2	30	1921	62
RTOR Reduction（vph）	0	20	0	0	6	0	0	0	0	0	3	0
Lane Group Flow（vph）	0	136	0	0	10	0	0	1752	0	0	2010	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type P	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		23.0			23.0			79.0			79.0	
Effective Green，g（s）		23.0			23.0			79.0			79.0	
Actuated g／C Ratio		0.21			0.21			0.72			0.72	
Clearance Time（s）		4.0			4.0			4.0			4.0	
Lane Grp Cap（vph）		298			320			2533			2909	
v／s Ratio Prot												
v／s Ratio Perm		c0．10			0.01			c0．50			0.50	
v／c Ratio		0.46			0.03			0.69			0.69	
Uniform Delay，d1		38.0			34.6			8.7			8.7	
Progression Factor		1.00			1.00			0.79			0.72	
Incremental Delay，d2		5.0			0.2			0.5			0.9	
Delay（s）		43.0			34.8			7.3			7.2	
Level of Service		D			C			A			A	
Approach Delay（s）		43.0			34.8			7.3			7.2	
Approach LOS		D			C			A			A	
Intersection Summary												
HCM Average Control Delay			8.8		HCM Leve	of Service			A			
HCM Volume to Capacity ratio			0.64									
Actuated Cycle Length（s）			110.0		Sum of lo	time（s）			8.0			
Intersection Capacity Utilization			86．6\％		CU Level	Service			E			
Analysis Period（min）			15									

Analysis Period（min） 15
C Critical Lane Group

	7	4			1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	${ }^{7}$	「	蚛 ${ }^{\text {a }}$			个44	
Volume（vph）	195	93	1577	75	62	1664	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	10	10	10	10	
Total Lost time（s）	4.0	4.0	4.0			4.0	
Lane Util．Factor	1.00	1.00	0.91			0.91	
Frt	1.00	0.85	0.99			1.00	
Flt Protected	0.95	1.00	1.00			1.00	
Satd．Flow（prot）	1770	1583	4676			4700	
Flt Permitted	0.95	1.00	1.00			0.74	
Satd．Flow（perm）	1770	1583	4676			3497	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj．Flow（vph）	212	101	1714	82	67	1809	
RTOR Reduction（vph）	0	69	5	0	0	0	
Lane Group Flow（vph）	212	32	1791	0	0	1876	
Bus Blockages（\＃／hr）	0	0	6	6	0	6	
Turn Type		Perm			pm＋pt		
Protected Phases	8		2		1	6	
Permitted Phases		8			6		
Actuated Green，G（s）	23.0	23.0	71.0			79.0	
Effective Green，g（s）	23.0	23.0	71.0			79.0	
Actuated g／C Ratio	0.21	0.21	0.65			0.72	
Clearance Time（s）	4.0	4.0	4.0			4.0	
Lane Grp Cap（vph）	370	331	3018			2555	
v／s Ratio Prot	c0．12		0.38			c0．03	
v／s Ratio Perm		0.02				c0．50	
v／c Ratio	0.57	0.10	0.59			0.73	
Uniform Delay，d1	39.1	35.1	11.2			9.2	
Progression Factor	1.00	1.00	0.40			1.00	
Incremental Delay，d2	6.3	0.6	0.6			1.9	
Delay（s）	45.4	35.7	5.2			11.2	
Level of Service	D	D	A			B	
Approach Delay（s）	42.3		5.2			11.2	
Approach LOS	D		A			B	
Intersection Summary							
HCM Average Control Delay			10.9		HCM Lev	S Service	B
HCM Volume to Capacity ratio			0.70				
Actuated Cycle Length（s）			110.0		Sum of lo	me（s）	8.0
Intersection Capacity Utilization			86．3\％	ICU Level of Service			E
Analysis Period（min）		15					

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
24：Biscayne Dr \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow	\cdots	$\%$	\nsim	4	4	\dagger	p		1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			\＆			¢个¢			个㻢	
Volume（vph）	58	5	146	169	5	75	119	1505	181	64	1692	54
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0			4.0			4.0			4.0	
Lane Util．Factor		1.00			1.00			0.91			0.91	
Frt		0.91			0.96			0.98			1.00	
Fit Protected		0.99			0.97			1.00			1.00	
Satd．Flow（prot）		1664			1728			4622			4679	
Flt Permitted		0.86			0.56			0.64			0.72	
Satd．Flow（perm）		1458			998			2989			3395	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	63	5	159	184	5	82	129	1636	197	70	1839	59
RTOR Reduction（vph）	0	20	0	0	14	0	0	12	0	0	3	0
Lane Group Flow（vph）	0	207	0	0	257	0	0	1950	0	0	1965	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		28.0			28.0			74.0			74.0	
Effective Green，g（s）		28.0			28.0			74.0			74.0	
Actuated g／C Ratio		0.25			0.25			0.67			0.67	
Clearance Time（s）		4.0			4.0			4.0			4.0	
Lane Grp Cap（vph）		371			254			2011			2284	
v／s Ratio Prot												
v／s Ratio Perm		0.14			c0．26			c0．65			0.58	
v／c Ratio		0.56			1.01			1．36dl			0.86	
Uniform Delay，d1		35.6			41.0			16.9			14.0	
Progression Factor		1.00			1.00			0.68			0.44	
Incremental Delay，d2		5.9			59.4			9.3			3.3	
Delay（s）		41.6			100.4			20.8			9.5	
Level of Service		D			F			C			A	
Approach Delay（s）		41.6			100.4			20.8			9.5	
Approach LOS		D			F			C			A	
Intersection Summary												
HCM Average Control Delay			21.7		HCM Leve	f Service			C			
HCM Volume to Capacity ratio			0.98									
Actuated Cycle Length（s）			110.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			10．7\％		ICU Level	Service			H			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

C Critical Lane Group

Zone 1 Totals

Number of Intersections	9
Control Delay / Veh (s/v)	19
Queue Delay / Veh (s/v)	3
Total Delay / Veh (s/v)	22
Total Delay (hr)	229
Stops (\#)	13696
Average Speed (mph)	12
Total Travel Time (hr)	374
Distance Traveled (mi)	4375
Fuel Consumed (gal)	423
Fuel Economy (mpg)	10.3
Unserved Vehicles (\#)	284
Vehicles in dilemma zone (\#)	0
Performance Index	266.7

Arterial Level of Service: NB Peachtree Rd NE

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Collier Rd	IV	30	13.8	83.0	96.8	0.08	2.9	F
Brighton	IV	30	20.6	52.5	73.1	0.11	5.6	F
Darlington	IV	30	25.5	2.7	28.2	0.17	21.7	B
Spalding	IV	30	12.6	1.7	14.3	0.06	13.9	C
Peachtree Park Dr	IV	30	12.3	251.9	264.2	0.05	0.7	F
Colonial Homes Dr	IV	30	17.4	13.8	31.2	0.10	11.2	D
Biscayne Dr	IV	30	13.7	102.6	116.3	0.08	2.4	F
Peachtree Memorial D	IV	30	19.9	1.6	21.5	0.13	22.2	B
Peachtree Hills Av	IV	30	22.3	9.8	32.1	0.15	16.7	C
Total	IV		158.1	519.6	677.7	0.93	4.9	F

Arterial Level of Service: SB Peachtree Rd NE

Cross Street	Arterial Class	$\begin{array}{r} \text { Flow } \\ \text { Speed } \\ \hline \end{array}$	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arteria LOS
Peachtree Hills Av	III	30	42.3	10.5	52.8	0.33	22.7	C
Peachtree Memorial D	III	30	19.9	5.8	25.7	0.15	20.9	C
Biscayne Dr	III	30	17.7	31.2	48.9	0.13	9.7	F
Colonial Homes Dr	III	30	10.7	3.7	14.4	0.08	19.0	C
Bennett St	III	30	13.6	134.0	147.6	0.10	2.4	F
Spalding	III	30	8.4	4.0	12.4	0.05	15.8	D
Darlington	III	30	8.6	16.0	24.6	0.06	8.1	F
Piedmont Hospital	III	30	22.8	7.0	29.8	0.17	20.6	C
Collier Rd	III	30	16.1	128.3	144.4	0.11	2.9	F
Total	III		160.1	340.5	500.6	1.18	8.5	F

	4		4	\dagger	\dagger	\pm	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	${ }^{7}$	「		- \uparrow 4	性 ${ }^{\text {c }}$		
Volume (vph)	702	425	148	1680	1954	690	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	10	10	10	10	10	10	
Total Lost time (s)	4.0	4.0		4.0	4.0		
Lane Util. Factor	1.00	1.00		0.91	0.91		
Frt	1.00	0.85		1.00	0.96		
Flt Protected	0.95	1.00		1.00	1.00		
Satd. Flow (prot)	1652	1478		4689	4524		
Flt Permitted	0.95	1.00		0.64	1.00		
Satd. Flow (perm)	1652	1478		3027	4524		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	763	462	161	1826	2124	750	
RTOR Reduction (vph)	0	47	0	0	56	0	
Lane Group Flow (vph)	763	415	0	1987	2818	0	
Bus Blockages (\#/hr)	0	0	0	6	6	6	
Turn Type		Perm	pm+pt				
Protected Phases	4		5	2	6		
Permitted Phases		4	2				
Actuated Green, G (s)	41.0	41.0		66.0	58.0		
Effective Green, g (s)	41.0	41.0		66.0	58.0		
Actuated g/C Ratio	0.36	0.36		0.57	0.50		
Clearance Time (s)	4.0	4.0		4.0	4.0		
Lane Grp Cap (vph)	589	527		1795	2282		
v/s Ratio Prot	c0.46			c0.04	c0.62		
v/s Ratio Perm		0.28		0.60			
v/c Ratio	1.30	0.79		1.40dl	1.24		
Uniform Delay, d1	37.0	33.1		24.5	28.5		
Progression Factor	1.00	1.00		1.00	0.79		
Incremental Delay, d2	145.2	11.3		56.9	107.6		
Delay (s)	182.2	44.4		81.4	130.2		
Level of Service	F	D		F	F		
Approach Delay (s)	130.2			81.4	130.2		
Approach LOS	F			F	F		
Intersection Summary							
HCM Average Control Delay			114.3		HCM Lev	f Service	F
HCM Volume to Capacity ratio			1.22				
Actuated Cycle Length (s)			115.0		Sum of lo	ime (s)	8.0
Intersection Capacity Utilization			137.5\%		ICU Leve	Service	H
Analysis Period (min) 15							
dl Defacto Left Lane. Recode with 1 though lane as a left lane.							
c Critical Lane Group							

	4	\rightarrow	\cdots	$\%$		4	4	\dagger	p	（	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		${ }^{1}$	\uparrow			＊中个			¢中 ${ }^{\text {¢ }}$	
Volume（vph）	82	20	81	46	8	18	63	2241	20	26	2557	26
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.94		1.00	0.90			1.00			1.00	
Fit Protected		0.98		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1713		1770	1670			4696			4699	
Flt Permitted		0.84		0.49	1.00			0.69			0.84	
Satd．Flow（perm）		1475		906	1670			3244			3972	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	89	22	88	50	9	20	68	2436	22	28	2779	28
RTOR Reduction（vph）	0	8	0	0	17	0	0	1	0	0	1	0
Lane Group Flow（vph）	0	191	0	50	12	0	0	2525	0	0	2834	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			pm＋pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		16.0		16.0	16.0			83.0			91.0	
Effective Green，g（s）		16.0		16.0	16.0			83.0			91.0	
Actuated g／C Ratio		0.14		0.14	0.14			0.72			0.79	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		205		126	232			2341			3168	
v／s Ratio Prot					0.01						c0．03	
v／s Ratio Perm		c0．13		0.06				c0．78			0.68	
v／c Ratio		0.93		0.40	0.05			1．15dl			0.89	
Uniform Delay，d1		49.0		45.1	42.9			16.0			8.6	
Progression Factor		1.00		1.00	1.00			0.88			0.57	
Incremental Delay，d2		47.5		9.1	0.4			36.3			1.6	
Delay（s）		96.4		54.2	43.3			50.5			6.4	
Level of Service		F		D	D			D			A	
Approach Delay（s）		96.4			50.2			50.5			6.4	
Approach LOS		F			D			D			A	
Intersection Summary												
HCM Average Control Delay			29.9		HCM Leve	of Service			C			
HCM Volume to Capacity ratio			1.03									
Actuated Cycle Length（s）			115.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			13．2\％		ICU Level	Service			H			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
5：Spalding \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow	\checkmark	\checkmark	\nsim	4	4	\dagger	p		$\frac{1}{1}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			\ddagger			¢个中			¢个\％	
Volume（vph）	0	0	0	60	4	27	6	2301	24	22	2563	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）					4.0			4.0			4.0	
Lane Util．Factor					1.00			0.91			0.91	
Frt					0.96			1.00			1.00	
Flt Protected					0.97			1.00			1.00	
Satd．Flow（prot）					1731			4700			4706	
Flt Permitted					0.80			0.92			0.86	
Satd．Flow（perm）					1433			4318			4030	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	0	65	4	29	7	2501	26	24	2786	0
RTOR Reduction（vph）	0	0	0	0	12	0	0	1	0	0	0	0
Lane Group Flow（vph）	0	0	0	0	86	0	0	2533	0	0	2810	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type P	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）					16.0			91.0			91.0	
Effective Green，g（s）					16.0			91.0			91.0	
Actuated g／C Ratio					0.14			0.79			0.79	
Clearance Time（s）					4.0			4.0			4.0	
Lane Grp Cap（vph）					199			3417			3189	
v／s Ratio Prot												
v／s Ratio Perm					c0．06			0.59			c0．70	
v／c Ratio					0.43			0.74			0.88	
Uniform Delay，d1					45.3			6.1			8.3	
Progression Factor					1.00			0.14			0.41	
Incremental Delay，d2					6.7			0.9			0.4	
Delay（s）					52.0			1.7			3.8	
Level of Service					D			A			A	
Approach Delay（s）		0.0			52.0			1.7			3.8	
Approach LOS		A			D			A			A	
Intersection Summary												
HCM Average Control Delay			3.7		HCM Leve	f Service			A			
HCM Volume to Capacity ratio			0.81									
Actuated Cycle Length（s）			115.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			76．6\％		CU Level	Service			D			
Analysis Period（min）			15									

c Critical Lane Group

	4	\rightarrow	\checkmark	7		4	4	\dagger	p	（	$\frac{1}{1}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄		${ }^{1}$	个			¢中 ${ }^{\text {¢ }}$			¢个\％	
Volume（vph）	81	8	259	282	2	115	199	1835	296	92	2114	50
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.90		1.00	0.85			0.98			1.00	
Flt Protected		0.99		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1656		1770	1588			4599			4683	
Flt Permitted		0.89		0.38	1.00			0.64			0.64	
Satd．Flow（perm）		1493		708	1588			2939			3004	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	88	9	282	307	2	125	216	1995	322	100	2298	54
RTOR Reduction（vph）	0	6	0	0	50	0	0	17	0	0	2	0
Lane Group Flow（vph）	0	373	0	307	77	0	0	2516	0	0	2450	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			m＋pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		34.0		34.0	34.0			65.0			73.0	
Effective Green，g（s）		34.0		34.0	34.0			65.0			73.0	
Actuated g／C Ratio		0.30		0.30	0.30			0.57			0.63	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		441		209	469			1661			1965	
v／s Ratio Prot					0.05						c0．04	
v／s Ratio Perm		0.25		c0．43				c0．86			0.75	
v／c Ratio		0.85		1.47	0.16			2．84dl			1.25	
Uniform Delay，d1		38.1		40.5	30.0			25.0			21.0	
Progression Factor		1.00		1.00	1.00			0.62			0.80	
Incremental Delay，d2		17.9		235.2	0.8			233.8			114.4	
Delay（s）		55.9		275.7	30.7			249.4			131.2	
Level of Service		E		F	C			F			F	
Approach Delay（s）		55.9			204.0			249.4			131.2	
Approach LOS		E			F			F			F	
Intersection Summary												
HCM Average Control Delay			183.4		HCM Leve	f Service			F			
HCM Volume to Capacity ratio			1.50									
Actuated Cycle Length（s）			115.0		Sum of los	time（s）			12.0			
Intersection Capacity Utilization			139．7\％		CU Level	Service			H			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
7: Colonial Homes Dr \& Peachtree Rd NE

	4	\%	4			4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	${ }^{7}$	「		¢44	虫 ${ }^{\text {c }}$		
Volume (vph)	117	276	212	1794	1966	112	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	10	10	10	10	
Total Lost time (s)	4.0	4.0		4.0	4.0		
Lane Util. Factor	1.00	1.00		0.91	0.91		
Frt	1.00	0.85		1.00	0.99		
Fit Protected	0.95	1.00		0.99	1.00		
Satd. Flow (prot)	1770	1583		4684	4670		
Flt Permitted	0.95	1.00		0.63	1.00		
Satd. Flow (perm)	1770	1583		2973	4670		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	127	300	230	1950	2137	122	
RTOR Reduction (vph)	0	20	0	0	5	0	
Lane Group Flow (vph)	127	280	0	2180	2254	0	
Bus Blockages (\#/hr)	0	0	0	6	6	6	
Turn Type		Perm	Perm				
Protected Phases	4			2	6		
Permitted Phases		4	2				
Actuated Green, G (s)	20.0	20.0		87.0	87.0		
Effective Green, g (s)	20.0	20.0		87.0	87.0		
Actuated g/C Ratio	0.17	0.17		0.76	0.76		
Clearance Time (s)	4.0	4.0		4.0	4.0		
Lane Grp Cap (vph)	308	275		2249	3533		
v/s Ratio Prot	0.07				0.48		
v/s Ratio Perm		c0.18		c0.73			
v/c Ratio	0.41	1.02		3.29dl	0.64		
Uniform Delay, d1	42.3	47.5		12.8	6.6		
Progression Factor	1.00	1.00		0.83	0.53		
Incremental Delay, d2	4.0	59.2		2.0	0.2		
Delay (s)	46.3	106.7		12.7	3.7		
Level of Service	D	F		B	A		
Approach Delay (s)	88.7			12.7	3.7		
Approach LOS	F			B	A		
Intersection Summary							
HCM Average Control Delay			15.2		HCM Lev	of Service	B
HCM Volume to Capacity ratio			0.98				
Actuated Cycle Length (s)			115.0		Sum of lo	ime (s)	8.0
Intersection Capacity Utilization			95.9\%		ICU Leve	Service	F
Analysis Period (min)			15				
dl Defacto Left Lane. Recode with 1 though lane as a left lane.							
c Critical Lane Group							

Analysis Period (min)
C Critical Lane Group

	7	4			1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	${ }^{7}$	「	虾 ${ }^{\text {a }}$			个44	
Volume（vph）	203	93	1528	83	62	1607	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	10	10	10	10	
Total Lost time（s）	4.0	4.0	4.0			4.0	
Lane Util．Factor	1.00	1.00	0.91			0.91	
Frt	1.00	0.85	0.99			1.00	
Flt Protected	0.95	1.00	1.00			1.00	
Satd．Flow（prot）	1770	1583	4672			4700	
Flt Permitted	0.95	1.00	1.00			0.74	
Satd．Flow（perm）	1770	1583	4672			3493	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj．Flow（vph）	221	101	1661	90	67	1747	
RTOR Reduction（vph）	0	70	5	0	0	0	
Lane Group Flow（vph）	221	31	1746	0	0	1814	
Bus Blockages（\＃／hr）	0	0	6	6	0	6	
Turn Type		Perm			pm＋pt		
Protected Phases	8		2		1	6	
Permitted Phases		8			6		
Actuated Green，G（s）	24.0	24.0	75.0			83.0	
Effective Green，g（s）	24.0	24.0	75.0			83.0	
Actuated g／C Ratio	0.21	0.21	0.65			0.72	
Clearance Time（s）	4.0	4.0	4.0			4.0	
Lane Grp Cap（vph）	369	330	3047			2563	
v／s Ratio Prot	c0．12		0.37			c0．02	
v／s Ratio Perm		0.02				c0．49	
v／c Ratio	0.60	0.09	0.57			0.71	
Uniform Delay，d1	41.1	36.7	11.1			9.1	
Progression Factor	1.00	1.00	0.83			1.00	
Incremental Delay，d2	7.0	0.6	0.6			1.7	
Delay（s）	48.2	37.3	9.8			10.8	
Level of Service	D	D	A			B	
Approach Delay（s）	44.7		9.8			10.8	
Approach LOS	D		A			B	
Intersection Summary							
HCM Average Control Delay			13.2		HCM Lev	f Service	B
HCM Volume to Capacity ratio			0.68				
Actuated Cycle Length（s）			115.0		Sum of lo	me（s）	8.0
Intersection Capacity Utilization			84．9\％	ICU Level of Service			E
Analysis Period（min）		15					

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
24: Biscayne Dr \& Peachtree Rd NE
1/20/2009

	4	\rightarrow	\cdots	$\%$	\Perp	4	4	\dagger	p		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\&			¢个¢			¢中 ${ }^{\text {¢ }}$	
Volume (vph)	66	5	254	240	5	83	203	1451	267	73	1624	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			0.91			0.91	
Frt		0.89			0.97			0.98			0.99	
Fit Protected		0.99			0.96			0.99			1.00	
Satd. Flow (prot)		1649			1736			4586			4674	
Flt Permitted		0.88			0.46			0.63			0.68	
Satd. Flow (perm)		1473			827			2924			3186	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	72	5	276	261	5	90	221	1577	290	79	1765	66
RTOR Reduction (vph)	0	13	0	0	11	0	0	19	0	0	3	0
Lane Group Flow (vph)	0	340	0	0	345	0	0	2069	0	0	1907	0
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		38.0			38.0			69.0			69.0	
Effective Green, g (s)		38.0			38.0			69.0			69.0	
Actuated g/C Ratio		0.33			0.33			0.60			0.60	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Lane Grp Cap (vph)		487			273			1754			1912	
v/s Ratio Prot												
v/s Ratio Perm		0.23			c0.42			c0.71			0.60	
v/c Ratio		0.70			1.26			2.57dl			1.27 dl	
Uniform Delay, d1		33.5			38.5			23.0			22.9	
Progression Factor		1.00			1.00			0.76			0.55	
Incremental Delay, d2		8.0			145.0			83.1			17.1	
Delay (s)		41.5			183.5			100.6			29.7	
Level of Service		D			F			F			C	
Approach Delay (s)		41.5			183.5			100.6			29.7	
Approach LOS		D			F			F			C	
Intersection Summary												
HCM Average Control Delay			73.7		HCM Leve	of Service			E			
HCM Volume to Capacity ratio			1.21									
Actuated Cycle Length (s)			115.0		Sum of los	time (s)			8.0			
Intersection Capacity Utilization			23.9\%		ICU Level	Service			H			
Analysis Period (min)			15									
dl Defacto Left Lane. Recode with 1 though lane as a left lane.												
c Critical Lane Group												

	4	\rightarrow	\cdots	7		4	4	\dagger	7		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&		*	$\hat{\beta}$			*中t			*中 ${ }^{\text {¢ }}$	
Volume (vph)	45	2	41	47	4	61	24	2288	21	20	2546	38
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time (s)		4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.94		1.00	0.86			1.00			1.00	
Flt Protected		0.98		0.95	1.00			1.00			1.00	
Satd. Flow (prot)		1701		1770	1599			4699			4696	
Flt Permitted		0.82		0.65	1.00			0.83			0.86	
Satd. Flow (perm)		1424		1216	1599			3897			4059	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	49	2	45	51	4	66	26	2487	23	22	2767	41
RTOR Reduction (vph)	0	28	0	0	13	0	0	1	0	0	1	0
Lane Group Flow (vph)	0	68	0	51	57	0	0	2535	0	0	2829	0
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			pm+pt			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		16.0		16.0	16.0			91.0			83.0	
Effective Green, g (s)		16.0		16.0	16.0			91.0			83.0	
Actuated g/C Ratio		0.14		0.14	0.14			0.79			0.72	
Clearance Time (s)		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap (vph)		198		169	222			3112			2930	
v/s Ratio Prot					0.04			c0.03				
v/s Ratio Perm		c0.05		0.04				0.62			c0.70	
v/c Ratio		0.35		0.30	0.26			0.81			0.97	
Uniform Delay, d1		44.8		44.5	44.2			7.0			14.7	
Progression Factor		1.00		1.00	1.00			0.33			0.63	
Incremental Delay, d2		4.7		4.5	2.8			0.2			5.8	
Delay (s)		49.5		49.0	47.0			2.5			15.1	
Level of Service		D		D	D			A			B	
Approach Delay (s)		49.5			47.8			2.5			15.1	
Approach LOS		D			D			A			B	
Intersection Summary												
HCM Average Control Delay			10.7		HCM Leve	f Service			B			
HCM Volume to Capacity ratio			0.85									
Actuated Cycle Length (s)			115.0		Sum of los	ime (s)			8.0			
Intersection Capacity Utilization			82.3\%	ICU Level of Service					E			
Analysis Period (min)			15									

C Critical Lane Group

Zone 1 Totals

Number of Intersections	9
Control Delay / Veh (s/v)	55
Queue Delay / Veh (s/v)	11
Total Delay / Veh (s/v)	66
Total Delay (hr)	768
Stops (\#)	18142
Average Speed (mph)	5
Total Travel Time (hr)	928
Distance Traveled (mi)	4786
Fuel Consumed (gal)	861
Fuel Economy (mpg)	5.6
Unserved Vehicles (\#)	2684
Vehicles in dilemma zone (\#)	0
Performance Index	818.9

Arterial Level of Service: NB Peachtree Rd NE

	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Cross Street	IV	30	13.8	29.1	42.9	0.08	6.5	F
Collier Rd	IV	30	20.6	14.7	35.3	0.11	11.7	D
Brighton	IV	30	25.5	2.7	28.2	0.17	21.7	B
Darlington	IV	30	12.6	1.0	13.6	0.06	14.6	C
Spalding	30	12.3	70.8	83.1	0.05	2.4	F	
Peachtree Park Dr	IV	30	17.4	1.8	19.2	0.10	18.1	C
Colonial Homes Dr	IV	30	13.7	17.6	31.3	0.08	8.8	E
Biscayne Dr	IV	30	19.9	8.2	28.1	0.13	17.0	C
Peachtree Memorial D	IV	30	22.3	6.6	28.9	0.15	18.5	C
Peachtree Hills Av	IV		158.1	152.5	310.6	0.93	10.7	D

Arterial Level of Service: SB Peachtree Rd NE

	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Cross Street	III	30	42.3	9.9	52.2	0.33	23.0	C
Peachtree Hills Av	30	19.9	6.5	26.4	0.15	20.3	C	
Peachtree Memorial D	IIII	30	17.7	8.2	25.9	0.13	18.4	C
Biscayne Dr	III	30	10.7	2.0	12.7	0.08	21.6	C
Colonial Homes Dr	III	30	13.6	16.4	30.0	0.10	11.6	E
Bennett St	III	30	8.4	3.3	11.7	0.05	16.7	D
Spalding	III	30	8.6	8.9	17.5	0.06	11.4	E
Darlington	III	30	22.8	5.2	28.0	0.17	21.9	C
Piedmont Hospital	III	30	16.1	19.6	35.7	0.11	11.5	E
Collier Rd	III		160.1	80	240.1	1.18	17.7	D

HCM Signalized Intersection Capacity Analysis
4：Piedmont Hospital \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow	\cdots	7		4	4	\dagger	7	\pm	$\frac{1}{1}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄		${ }^{1}$	\uparrow			＊个中			¢中个	
Volume（vph）	82	20	81	46	8	18	63	1819	20	26	2090	26
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.94		1.00	0.90			1.00			1.00	
Flt Protected		0.98		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1713		1770	1670			4693			4697	
Flt Permitted		0.84		0.51	1.00			0.71			0.86	
Satd．Flow（perm）		1475		943	1670			3352			4060	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	89	22	88	50	9	20	68	1977	22	28	2272	28
RTOR Reduction（vph）	0	17	0	0	17	0	0	1	0	0	1	0
Lane Group Flow（vph）	0	182	0	50	12	0	0	2066	0	0	2327	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			pm＋pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		17.0		17.0	17.0			77.0			85.0	
Effective Green，g（s）		17.0		17.0	17.0			77.0			85.0	
Actuated g／C Ratio		0.15		0.15	0.15			0.70			0.77	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		228		146	258			2346			3160	
v／s Ratio Prot					0.01						c0．03	
v／s Ratio Perm		c0．12		0.05				c0．62			0.54	
v／c Ratio		0.80		0.34	0.05			1．08dl			0.74	
Uniform Delay，d1		44.8		41.5	39.6			12.9			6.6	
Progression Factor		1.00		1.00	1.00			0.93			0.61	
Incremental Delay，d2		24.6		6.3	0.3			2.1			1.0	
Delay（s）		69.5		47.8	39.9			14.0			5.0	
Level of Service		E		D	D			B			A	
Approach Delay（s）		69.5			44.9			14.0			5.0	
Approach LOS		E			D			B			A	
Intersection Summary												
HCM Average Control Delay			12.4		HCM Leve	of Service			B			
HCM Volume to Capacity ratio			0.84									
Actuated Cycle Length（s）			110.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			05．6\％		ICU Level	Service			G			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
5：Spalding \＆Peachtree Rd NE
1／20／2009

	$\stackrel{ }{*}$			7				\uparrow			\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			¢个か			¢个か	
Volume（vph）	0	0	0	60	4	27	6	1879	24	22	2096	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）					4.0			4.0			4.0	
Lane Util．Factor					1.00			0.91			0.91	
Frt					0.96			1.00			1.00	
Flt Protected					0.97			1.00			1.00	
Satd．Flow（prot）					1731			4699			4706	
Flt Permitted					0.81			0.92			0.87	
Satd．Flow（perm）					1442			4345			4111	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	0	65	4	29	7	2042	26	24	2278	0
RTOR Reduction（vph）	0	0	0	0	14	0	0	1	0	0	0	0
Lane Group Flow（vph）	0	0	0	0	84	0	0	2074	0	0	2302	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）					17.0			85.0			85.0	
Effective Green，g（s）					17.0			85.0			85.0	
Actuated g／C Ratio					0.15			0.77			0.77	
Clearance Time（s）					4.0			4.0			4.0	
Lane Grp Cap（vph）					223			3358			3177	
v／s Ratio Prot												
v／s Ratio Perm					c0．06			0.48			c0．56	
v／c Ratio					0.38			0.62			0.72	
Uniform Delay，d1					41.8			5.4			6.5	
Progression Factor					1.00			0.06			0.42	
Incremental Delay，d2					4.8			0.7			0.5	
Delay（s）					46.6			1.0			3.2	
Level of Service					D			A			A	
Approach Delay（s）		0.0			46.6			1.0			3.2	
Approach LOS		A			D			A			A	
Intersection Summary												
HCM Average Control Delay			3.1		CM Leve	of Service			A			
HCM Volume to Capacity ratio			0.67									
Actuated Cycle Length（s）			110.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			67．6\％		CU Level	fervice			C			
Analysis Period（min）			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
6：Bennett St \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow		\checkmark	\Perp	4	4	\dagger	\％		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄		${ }^{1}$	\uparrow			¢中 ${ }^{\text {¢ }}$			个个¢	
Volume（vph）	73	8	152	211	59	107	115	1582	210	83	1826	43
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor		1.00		1.00	1.00			0.91			0.91	
Frt		0.91		1.00	0.90			0.98			1.00	
Flt Protected		0.98		0.95	1.00			1.00			1.00	
Satd．Flow（prot）		1673		1770	1683			4617			4683	
Flt Permitted		0.71		0.46	1.00			0.64			0.68	
Satd．Flow（perm）		1209		848	1683			2969			3201	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	79	9	165	229	64	116	125	1720	228	90	1985	47
RTOR Reduction（vph）	0	19	0	0	60	0	0	14	0	0	2	0
Lane Group Flow（vph）	0	234	0	229	121	0	0	2059	0	0	2120	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			m＋pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		25.0		25.0	25.0			69.0			77.0	
Effective Green，g（s）		25.0		25.0	25.0			69.0			77.0	
Actuated g／C Ratio		0.23		0.23	0.23			0.63			0.70	
Clearance Time（s）		4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）		275		193	383			1862			2295	
v／s Ratio Prot					0.07						c0．03	
v／s Ratio Perm		0.19		c0．27				c0．69			0.61	
v／c Ratio		0.85		1.19	0.31			1.64 dl			0.92	
Uniform Delay，d1		40.7		42.5	35.4			20.5			14.0	
Progression Factor		1.00		1.00	1.00			0.70			0.61	
Incremental Delay，d2		26.9		124.1	2.1			54.5			6.6	
Delay（s）		67.7		166.6	37.5			68.8			15.2	
Level of Service		E		F	D			E			B	
Approach Delay（s）		67.7			109.8			68.8			15.2	
Approach LOS		E			F			E			B	
Intersection Summary												
HCM Average Control Delay			48.8		HCM Level	of Service			D			
HCM Volume to Capacity ratio			1.09									
Actuated Cycle Length（s）			110.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			114．3\％		CU Level	Service			H			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
7: Colonial Homes Dr \& Peachtree Rd NE

	4	\rightarrow		7		4	4	\dagger	p		\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＆			\＆			今个¢			个中\％	
Volume（vph）	88	1	54	8	0	6	54	1477	2	28	1676	57
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0			4.0			4.0			4.0	
Lane Util．Factor		1.00			1.00			0.91			0.91	
Frt		0.95			0.94			1.00			1.00	
Flt Protected		0.97			0.97			1.00			1.00	
Satd．Flow（prot）		1715			1705			4699			4682	
Flt Permitted		0.80			0.87			0.76			0.87	
Satd．Flow（perm）		1423			1529			3554			4064	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	96	1	59	9	0	7	59	1605	2	30	1822	62
RTOR Reduction（vph）	0	20	0	0	6	0	0	0	0	0	3	0
Lane Group Flow（vph）	0	136	0	0	10	0	0	1666	0	0	1911	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type P	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		23.0			23.0			79.0			79.0	
Effective Green，g（s）		23.0			23.0			79.0			79.0	
Actuated g／C Ratio		0.21			0.21			0.72			0.72	
Clearance Time（s）		4.0			4.0			4.0			4.0	
Lane Grp Cap（vph）		298			320			2552			2919	
v／s Ratio Prot												
v／s Ratio Perm		c0．10			0.01			0.47			c0．47	
v／c Ratio		0.46			0.03			0.65			0.65	
Uniform Delay，d1		38.0			34.6			8.2			8.2	
Progression Factor		1.00			1.00			0.91			0.67	
Incremental Delay，d2		5.0			0.2			0.5			0.8	
Delay（s）		43.0			34.8			8.0			6.4	
Level of Service		D			C			A			A	
Approach Delay（s）		43.0			34.8			8.0			6.4	
Approach LOS		D			C			A			A	
Intersection Summary												
HCM Average Control Delay			8.7		CM Leve	of Service			A			
HCM Volume to Capacity ratio			0.61									
Actuated Cycle Length（s）			110.0		um of lo	time（s）			8.0			
Intersection Capacity Utilization			84．2\％		CU Level	Service			E			
Analysis Period（min）			15									

Analysis Period（min）
C Critical Lane Group

	7	4			1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	${ }^{7}$	「	性 ${ }^{\text {a }}$			个44	
Volume（vph）	195	93	1495	75	62	1577	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	10	10	10	10	
Total Lost time（s）	4.0	4.0	4.0			4.0	
Lane Util．Factor	1.00	1.00	0.91			0.91	
Frt	1.00	0.85	0.99			1.00	
Flt Protected	0.95	1.00	1.00			1.00	
Satd．Flow（prot）	1770	1583	4674			4699	
Flt Permitted	0.95	1.00	1.00			0.75	
Satd．Flow（perm）	1770	1583	4674			3528	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj．Flow（vph）	212	101	1625	82	67	1714	
RTOR Reduction（vph）	0	74	5	0	0	0	
Lane Group Flow（vph）	212	27	1702	0	0	1781	
Bus Blockages（\＃／hr）	0	0	6	6	0	6	
Turn Type		Perm			pm＋pt		
Protected Phases	8		2		1	6	
Permitted Phases		8			6		
Actuated Green，G（s）	23.0	23.0	71.0			79.0	
Effective Green，g（s）	23.0	23.0	71.0			79.0	
Actuated g／C Ratio	0.21	0.21	0.65			0.72	
Clearance Time（s）	4.0	4.0	4.0			4.0	
Lane Grp Cap（vph）	370	331	3017			2576	
v／s Ratio Prot	c0．12		0.36			c0．03	
v／s Ratio Perm		0.02				c0．47	
v／c Ratio	0.57	0.08	0.56			0.69	
Uniform Delay，d1	39.1	35.0	10.9			8.7	
Progression Factor	1.00	1.00	0.55			1.00	
Incremental Delay，d2	6.3	0.5	0.6			1.5	
Delay（s）	45.4	35.5	6.5			10.2	
Level of Service	D	D	A			B	
Approach Delay（s）	42.2		6.5			10.2	
Approach LOS	D		A			B	
Intersection Summary							
HCM Average Control Delay			11.2		HCM Lev	f Service	B
HCM Volume to Capacity ratio			0.66				
Actuated Cycle Length（s）			110.0		Sum of lo	me（s）	8.0
Intersection Capacity Utilization			83．1\％	ICU Level of Service			E
Analysis Period（min）		15					

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
24：Biscayne Dr \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow	\checkmark	\checkmark	\Perp	4	4	\dagger	p		$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			\＄			＊中t			个衡	
Volume（vph）	169	5	75	58	5	146	119	1426	181	64	1602	54
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0			4.0			4.0			4.0	
Lane Util．Factor		1.00			1.00			0.91			0.91	
Frt		0.96			0.91			0.98			1.00	
Flt Protected		0.97			0.99			1.00			1.00	
Satd．Flow（prot）		1728			1664			4618			4677	
Flt Permitted		0.57			0.86			0.65			0.73	
Satd．Flow（perm）		1019			1454			2997			3406	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	184	5	82	63	5	159	129	1550	197	70	1741	59
RTOR Reduction（vph）	0	15	0	0	33	0	0	13	0	0	3	0
Lane Group Flow（vph）	0	256	0	0	194	0	0	1863	0	0	1867	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		30.0			30.0			72.0			72.0	
Effective Green，g（s）		30.0			30.0			72.0			72.0	
Actuated g／C Ratio		0.27			0.27			0.65			0.65	
Clearance Time（s）		4.0			4.0			4.0			4.0	
Lane Grp Cap（vph）		278			397			1962			2229	
v／s Ratio Prot												
v／s Ratio Perm		c0．25			0.13			c0．62			0.55	
v／c Ratio		0.92			0.49			1．26dl			0.84	
Uniform Delay，d1		38.9			33.6			17.3			14.5	
Progression Factor		1.00			1.00			0.51			0.35	
Incremental Delay，d2		37.3			4.3			7.6			3.0	
Delay（s）		76.1			37.8			16.5			8.1	
Level of Service		E			D			B			A	
Approach Delay（s）		76.1			37.8			16.5			8.1	
Approach LOS		E			D			B			A	
Intersection Summary												
HCM Average Control Delay			17.7		HCM Leve	of Servic			B			
HCM Volume to Capacity ratio			0.94									
Actuated Cycle Length（s）			110.0		Sum of los	time（s）			8.0			
Intersection Capacity Utilization			07．5\％		CU Level	Service			G			
Analysis Period（min）			15									
dl Defacto Left Lane．Recode with 1 though lane as a left lane．												
c Critical Lane Group												

C Critical Lane Group

Zone 1 Totals

Number of Intersections	9
Control Delay / Veh (s/v)	17
Queue Delay / Veh (s/v)	2
Total Delay / Veh (s/v)	19
Total Delay (hr)	192
Stops (\#)	13370
Average Speed (mph)	13
Total Travel Time (hr)	332
Distance Traveled (mi)	4201
Fuel Consumed (gal)	387
Fuel Economy (mpg)	10.8
Unserved Vehicles (\#)	213
Vehicles in dilemma zone (\#)	0
Performance Index	228.8

	4			\downarrow			4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				\%	\hat{i}		\%	\uparrow			\uparrow	F
Volume (vph)	0	0	0	620	6	30	413	137	0	0	221	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	11	11	11	11	11	11	11	11	11
Total Lost time (s)				4.0	4.0		4.0	4.0			4.0	4.0
Lane Utill. Factor				1.00	1.00		1.00	1.00			1.00	1.00
Frt				1.00	0.88		1.00	1.00			1.00	0.85
Flt Protected				0.95	1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)				1711	1578		1711	1701			1701	1531
Flt Permitted				0.95	1.00		0.57	1.00			1.00	1.00
Satd. Flow (perm)				1711	1578		1021	1701			1701	1531
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	674	7	33	449	149	0	0	240	87
RTOR Reduction (vph)	0	0	0	0	19	0	0	0	0	0	0	44
Lane Group Flow (vph)	0	0	0	674	21	0	449	149	0	0	240	43
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	8\%	2\%	2\%	8\%	2\%
Turn Type				Perm			Perm					Perm
Protected Phases					8			2			6	
Permitted Phases				8			2					6
Actuated Green, G (s)				38.0	38.0		44.0	44.0			44.0	44.0
Effective Green, g (s)				38.0	38.0		44.0	44.0			44.0	44.0
Actuated g/C Ratio				0.42	0.42		0.49	0.49			0.49	0.49
Clearance Time (s)				4.0	4.0		4.0	4.0			4.0	4.0
Lane Grp Cap (vph)				722	666		499	832			832	748
v/s Ratio Prot					0.01			0.09			0.14	
v/s Ratio Perm				c0.39			c0.44					0.03
v/c Ratio				0.93	0.03		0.90	0.18			0.29	0.06
Uniform Delay, d1				24.8	15.2		21.0	12.9			13.7	12.1
Progression Factor				1.00	1.00		0.42	0.47			1.00	1.00
Incremental Delay, d2				20.7	0.1		20.2	0.4			0.9	0.1
Delay (s)				45.5	15.3		29.0	6.5			14.6	12.2
Level of Service				D	B		C	A			B	B
Approach Delay (s)		0.0			43.8			23.4			13.9	
Approach LOS		A			D			C			B	
Intersection Summary												
HCM Average Control Delay			30.4		HCM Level	of Service			C			
HCM Volume to Capacity ratio			0.92									
Actuated Cycle Length (s)			90.0		Sum of lost	time (s)			8.0			
Intersection Capacity Utilization			78.9\%		CU Level	Service			D			
Analysis Period (min)			15									

c Critical Lane Group

	$\stackrel{ }{*}$			\checkmark		4	4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		7	\uparrow	F		$\hat{*}$		\%	性	
Volume (vph)	135	210	13	158	82	370	54	668	1	341	1236	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	11	11	11	11
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0		4.0		4.0	4.0	
Lane Utill. Factor	1.00	1.00		1.00	1.00	1.00		0.95		1.00	0.95	
Frt	1.00	0.99		1.00	1.00	0.85		1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00	1.00		1.00		0.95	1.00	
Satd. Flow (prot)	1770	1847		1770	1863	1583		3232		1711	3223	
Flt Permitted	0.70	1.00		0.43	1.00	1.00		0.73		0.32	1.00	
Satd. Flow (perm)	1303	1847		801	1863	1583		2376		580	3223	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	147	228	14	172	89	402	59	726	1	371	1343	36
RTOR Reduction (vph)	0	2	0	0	0	195	0	0	0	0	2	0
Lane Group Flow (vph)	147	240	0	172	89	207	0	786	0	371	1377	0
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	8\%	2\%	2\%	8\%	2\%
Turn Type	Perm			Perm		Perm	Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	25.0	25.0		25.0	25.0	25.0		65.0		65.0	65.0	
Effective Green, g (s)	25.0	25.0		25.0	25.0	25.0		65.0		65.0	65.0	
Actuated g/C Ratio	0.26	0.26		0.26	0.26	0.26		0.66		0.66	0.66	
Clearance Time (s)	4.0	4.0		4.0	4.0	4.0		4.0		4.0	4.0	
Lane Grp Cap (vph)	332	471		204	475	404		1576		385	2138	
v/s Ratio Prot		0.13			0.05						0.43	
v/s Ratio Perm	0.11			c0.21		0.13		0.33		c0.64		
v/c Ratio	0.44	0.51		0.84	0.19	0.51		0.50		0.96	0.64	
Uniform Delay, d1	30.7	31.2		34.6	28.6	31.3		8.3		15.4	9.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	
Incremental Delay, d2	4.2	3.9		32.5	0.9	4.6		1.1		37.6	1.5	
Delay (s)	34.9	35.1		67.1	29.4	35.9		9.4		53.0	11.2	
Level of Service	C	D		E	C	D		A		D	B	
Approach Delay (s)		35.0			43.1			9.4			20.1	
Approach LOS		D			D			A			C	
Intersection Summary												
HCM Average Control Delay			23.6		HCM Leve	of Service			C			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length (s)			98.0		Sum of los	time (s)			8.0			
Intersection Capacity Utilization			89.2\%		CU Level	of Service			E			
Analysis Period (min)			15									

C Critical Lane Group

C Critical Lane Group

c Critical Lane Group

c Critical Lane Group

Analysis Period (min) 15

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
5：Chili＇s \＆Peachtree Rd NE

	4	\rightarrow	\cdots	7		4	4	\dagger	7		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\$$			\＄			介性			¢中 ${ }^{\text {¢ }}$	
Volume（vph）	6	1	17	60	4	27	6	1157	24	22	1326	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0			4.0			4.0			4.0	
Lane Util．Factor		1.00			1.00			0.91			0.91	
Frt		0.91			0.96			1.00			1.00	
Flt Protected		0.99			0.97			1.00			1.00	
Satd．Flow（prot）		1666			1731			4693			4704	
Flt Permitted		0.95			0.82			0.93			0.89	
Satd．Flow（perm）		1606			1459			4363			4198	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	7	1	18	65	4	29	7	1258	26	24	1441	0
RTOR Reduction（vph）	0	12	0	0	13	0	0	2	0	0	0	0
Lane Group Flow（vph）	0	14	0	0	85	0	0	1289	0	0	1465	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		39.0			39.0			73.0			73.0	
Effective Green，g（s）		39.0			39.0			73.0			73.0	
Actuated g／C Ratio		0.32			0.32			0.61			0.61	
Clearance Time（s）		4.0			4.0			4.0			4.0	
Lane Grp Cap（vph）		522			474			2654			2554	
v／s Ratio Prot												
v／s Ratio Perm		0.01			c0．06			0.30			c0．35	
v／c Ratio		0.03			0.18			0.49			0.57	
Uniform Delay，d1		27.6			29.0			13.1			14.1	
Progression Factor		1.00			1.00			0.38			0.67	
Incremental Delay，d2		0.1			0.8			0.6			0.8	
Delay（s）		27.7			29.9			5.5			10.3	
Level of Service		C			C			A			B	
Approach Delay（s）		27.7			29.9			5.5			10.3	
Approach LOS		C			C			A			B	
Intersection Summary												
HCM Average Control Delay			9.0		CM Leve	of Service			A			
HCM Volume to Capacity ratio			0.44									
Actuated Cycle Length（s）			120.0		um of los	time（s）			8.0			
Intersection Capacity Utilization			59．6\％		CU Level	Service			B			
Analysis Period（min）			15									

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
6: Bennett St \& Peachtree Rd NE

Analysis Period (min) 15

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
7: Colonial Homes Dr \& Peachtree Rd NE

	ψ		4	\dagger		\pm	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	${ }^{1}$	「		*44	4性		
Volume (vph)	76	41	30	1179	1328	80	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	10	10	10	10	
Total Lost time (s)	4.0	4.0		4.0	4.0		
Lane Util. Factor	1.00	1.00		0.91	0.91		
Frt	1.00	0.85		1.00	0.99		
Flt Protected	0.95	1.00		1.00	1.00		
Satd. Flow (prot)	1770	1583		4702	4668		
Flt Permitted	0.95	1.00		0.84	1.00		
Satd. Flow (perm)	1770	1583		3966	4668		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	83	45	33	1282	1443	87	
RTOR Reduction (vph)	0	29	0	0	6	0	
Lane Group Flow (vph)	83	16	0	1315	1524	0	
Bus Blockages (\#/hr)	0	0	0	6	6	6	
Turn Type		Perm	Perm				
Protected Phases	4			2	6		
Permitted Phases		4	2				
Actuated Green, G (s)	40.0	40.0		72.0	72.0		
Effective Green, g (s)	40.0	40.0		72.0	72.0		
Actuated g/C Ratio	0.33	0.33		0.60	0.60		
Clearance Time (s)	4.0	4.0		4.0	4.0		
Lane Grp Cap (vph)	590	528		2380	2801		
v/s Ratio Prot	c0.05				0.33		
v/s Ratio Perm		0.01		c0.33			
v/c Ratio	0.14	0.03		0.55	0.54		
Uniform Delay, d1	28.0	26.9		14.4	14.3		
Progression Factor	1.00	1.00		0.14	0.19		
Incremental Delay, d2	0.5	0.1		0.8	0.6		
Delay (s)	28.5	27.1		2.8	3.3		
Level of Service	C	C		A	A		
Approach Delay (s)	28.0			2.8	3.3		
Approach LOS	C			A	A		
Intersection Summary							
HCM Average Control Delay			4.1		CM Lev	f Service	A
HCM Volume to Capacity ratio			0.41				
Actuated Cycle Length (s)			120.0		Sum of lo	me (s)	8.0
Intersection Capacity Utilization			55.2\%		CU Level	Service	B
Analysis Period (min)			15				

Analysis Period (min) 15
C Critical Lane Group

	*	\rightarrow	\checkmark	7		4	4	\dagger	7		\ddagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			¢ $\uparrow \uparrow$			¢ $\uparrow \uparrow$	
Volume (vph)	88	1	54	8	0	6	54	1204	12	28	1400	57
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			0.91			0.91	
Frt		0.95			0.94			1.00			0.99	
Flt Protected		0.97			0.97			1.00			1.00	
Satd. Flow (prot)		1715			1705			4692			4677	
Flt Permitted		0.82			0.89			0.75			0.87	
Satd. Flow (perm)		1442			1555			3527			4087	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	96	1	59	9	0	7	59	1309	13	30	1522	62
RTOR Reduction (vph)	0	18	0	0	5	0	0	1	0	0	4	0
Lane Group Flow (vph)	0	138	0	0	11	0	0	1380	0	0	1610	0
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type P	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		39.0			39.0			73.0			73.0	
Effective Green, g (s)		39.0			39.0			73.0			73.0	
Actuated g/C Ratio		0.32			0.32			0.61			0.61	
Clearance Time (s)		4.0			4.0			4.0			4.0	
Lane Grp Cap (vph)		469			505			2146			2486	
v/s Ratio Prot												
v/s Ratio Perm		c0.10			0.01			0.39			c0.39	
v/c Ratio		0.29			0.02			0.64			0.65	
Uniform Delay, d1		30.2			27.5			15.1			15.2	
Progression Factor		1.00			1.00			0.29			0.59	
Incremental Delay, d2		1.6			0.1			1.3			1.1	
Delay (s)		31.8			27.6			5.7			10.1	
Level of Service		C			C			A			B	
Approach Delay (s)		31.8			27.6			5.7			10.1	
Approach LOS		C			C			A			B	
Intersection Summary												
HCM Average Control Delay			9.3		HCM Leve	of Service			A			
HCM Volume to Capacity ratio			0.52									
Actuated Cycle Length (s)			120.0		Sum of los	time (s)			8.0			
Intersection Capacity Utilization			73.8\%		ICU Level	Service			D			
Analysis Period (min)			15									

Analysis Period (min)
C Critical Lane Group

	7				1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	${ }^{7}$	「	瑯			个44	
Volume（vph）	166	93	1254	44	62	1336	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	12	12	10	10	10	10	
Total Lost time（s）	4.0	4.0	4.0			4.0	
Lane Util．Factor	1.00	1.00	0.91			0.91	
Frt	1.00	0.85	0.99			1.00	
Flt Protected	0.95	1.00	1.00			1.00	
Satd．Flow（prot）	1770	1583	4684			4698	
Flt Permitted	0.95	1.00	1.00			0.76	
Satd．Flow（perm）	1770	1583	4684			3556	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj．Flow（vph）	180	101	1363	48	67	1452	
RTOR Reduction（vph）	0	74	3	0	0	0	
Lane Group Flow（vph）	180	27	1408	0	0	1519	
Bus Blockages（\＃／hr）	0	0	6	6	0	6	
Turn Type		Perm			pm＋pt		
Protected Phases	8		2		1	6	
Permitted Phases		8			6		
Actuated Green，G（s）	32.0	32.0	61.0			80.0	
Effective Green，g（s）	32.0	32.0	61.0			80.0	
Actuated g／C Ratio	0.27	0.27	0.51			0.67	
Clearance Time（s）	4.0	4.0	4.0			4.0	
Lane Grp Cap（vph）	472	422	2381			2513	
v／s Ratio Prot	c0．10		0.30			c0．08	
v／s Ratio Perm		0.02				c0．33	
v／c Ratio	0.38	0.06	0.59			0.60	
Uniform Delay，d1	35.9	32.8	20.7			11.2	
Progression Factor	1.00	1.00	0.71			1.00	
Incremental Delay，d2	2.3	0.3	0.9			1.1	
Delay（s）	38.3	33.1	15.5			12.3	
Level of Service	D	C	B			B	
Approach Delay（s）	36.4		15.5			12.3	
Approach LOS	D		B			B	
Intersection Summary							
HCM Average Control Delay			15.8		HCM Lev	f Service	B
HCM Volume to Capacity ratio			0.54				
Actuated Cycle Length（s）			120.0		Sum of lo	me（s）	8.0
Intersection Capacity Utilization			71．5\％	ICU Level of Service			C
Analysis Period（min）		15					

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
24：Biscayne Dr \＆Peachtree Rd NE
1／20／2009

	4	\rightarrow	\checkmark	7		4	4	\dagger	7		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\$$			\＄			介性			个中个	
Volume（vph）	25	5	19	36	5	47	21	1218	22	30	1387	29
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	10	10	10	10	10	10
Total Lost time（s）		4.0			4.0			4.0			4.0	
Lane Util．Factor		1.00			1.00			0.91			0.91	
Frt		0.95			0.93			1.00			1.00	
Flt Protected		0.98			0.98			1.00			1.00	
Satd．Flow（prot）		1719			1693			4692			4689	
Flt Permitted		0.86			0.88			0.88			0.86	
Satd．Flow（perm）		1517			1524			4120			4054	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	27	5	21	39	5	51	23	1324	24	33	1508	32
RTOR Reduction（vph）	0	15	0	0	35	0	0	1	0	0	2	0
Lane Group Flow（vph）	0	38	0	0	60	0	0	1370	0	0	1571	0
Bus Blockages（\＃／hr）	0	0	0	0	0	0	0	6	6	0	6	6
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）		36.0			36.0			76.0			76.0	
Effective Green，g（s）		36.0			36.0			76.0			76.0	
Actuated g／C Ratio		0.30			0.30			0.63			0.63	
Clearance Time（s）		4.0			4.0			4.0			4.0	
Lane Grp Cap（vph）		455			457			2609			2568	
v／s Ratio Prot												
v／s Ratio Perm		0.03			c0．04			0.33			c0．39	
v／c Ratio		0.08			0.13			0.52			0.61	
Uniform Delay，d1		30.2			30.6			12.1			13.2	
Progression Factor		1.00			1.00			0.41			0.49	
Incremental Delay，d2		0.4			0.6			0.7			0.8	
Delay（s）		30.5			31.2			5.6			7.3	
Level of Service		C			C			A			A	
Approach Delay（s）		30.5			31.2			5.6			7.3	
Approach LOS		C			C			A			A	
Intersection Summary												
HCM Average Control Delay			7.7		CM Leve	of Service			A			
HCM Volume to Capacity ratio			0.46									
Actuated Cycle Length（s）			120.0		um of los	time（s）			8.0			
Intersection Capacity Utilization			61．5\％		CU Level	Service			B			
Analysis Period（min）			15									

C Critical Lane Group

C Critical Lane Group

c Critical Lane Group

	$\stackrel{ }{*}$			7		4		4			\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	「		* $\hat{\square}$			$\uparrow \uparrow$	F
Volume (vph)	135	10	13		42	370	54	668	1	10	1236	364
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	11	11	11	11
Total Lost time (s)		4.0			4.0	4.0		4.0			4.0	4.0
Lane Util. Factor		1.00			1.00	1.00		0.95			0.95	1.00
Fit		0.99			1.00	0.85		1.00			1.00	0.85
Flt Protected		0.96			0.99	1.00		1.00			1.00	1.00
Satd. Flow (prot)		1767			1848	1583		3232			3231	1531
Flt Permitted		0.72			0.96	1.00		0.73			0.95	1.00
Satd. Flow (perm)		1324			1784	1583		2378			3065	1531
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	147	11	14	9	46	402	59	726	1	11	1343	396
RTOR Reduction (vph)	0	4	0	0	0	169	0	0	0	0	0	150
Lane Group Flow (vph)	0	168	0	0	55	233	0	786	0	0	1354	246
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	8\%	2\%	2\%	8\%	2\%
Turn Type	Perm			Perm		Perm	Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)		26.0			26.0	26.0		56.0			56.0	56.0
Effective Green, g (s)		26.0			26.0	26.0		56.0			56.0	56.0
Actuated g/C Ratio		0.29			0.29	0.29		0.62			0.62	0.62
Clearance Time (s)		4.0			4.0	4.0		4.0			4.0	4.0
Lane Grp Cap (vph)		382			515	457		1480			1907	953
v/s Ratio Prot												
v/s Ratio Perm		0.13			0.03	c0.15		0.33			c0.44	0.16
v/c Ratio		0.44			0.11	0.51		0.53			0.71	0.26
Uniform Delay, d1		26.1			23.5	26.7		9.6			11.5	7.7
Progression Factor		0.95			1.00	1.00		1.80			1.00	1.00
Incremental Delay, d2		3.2			0.4	4.0		1.2			2.3	0.7
Delay (s)		27.8			23.9	30.7		18.5			13.8	8.3
Level of Service		C			C	C		B			B	A
Approach Delay (s)		27.8			29.9			18.5			12.5	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			17.4		HCM Leve	of Service			B			
HCM Volume to Capacity ratio			0.65									
Actuated Cycle Length (s)			90.0		Sum of los	time (s)			8.0			
Intersection Capacity Utilization			80.0\%		CU Level	f Service			D			
Analysis Period (min)			15									

Analysis Period (min) 15
c Critical Lane Group

	\rangle	\rightarrow		7		4	4	\dagger	$>$		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}{ }^{1}$		${ }^{1+1}$	\uparrow				「	\%	个 ${ }^{\text {P }}$	
Volume (vph)	31	359	149	348	172	36	23	653	360	73	1151	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	12	12	12	12	12	12	11	11	11
Total Lost time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0	
Lane Utill. Factor		0.95		0.97	1.00			0.95	1.00	1.00	0.95	
Frt		0.96		1.00	0.97			1.00	0.85	1.00	1.00	
Flt Protected		1.00		0.95	1.00			1.00	1.00	0.95	1.00	
Satd. Flow (prot)		3270		3433	1815			3337	1495	1616	3225	
Flt Permitted		0.92		0.95	1.00			0.87	1.00	0.31	1.00	
Satd. Flow (perm)		3030		3433	1815			2909	1495	523	3225	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	34	390	162	378	187	39	25	710	391	79	1251	17
RTOR Reduction (vph)	0	29	0	0	8	0	0	0	191	0	1	0
Lane Group Flow (vph)	0	557	0	378	218	0	0	735	200	79	1267	0
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	8\%	8\%	8\%	8\%	8\%	8\%
Turn Type	Perm			Prot			Perm		Perm	Perm		
Protected Phases		4		3				2			6	
Permitted Phases	4				8		2		2	6		
Actuated Green, G (s)		20.0		12.0	36.0			46.0	46.0	46.0	46.0	
Effective Green, g (s)		20.0		12.0	36.0			46.0	46.0	46.0	46.0	
Actuated g/C Ratio		0.22		0.13	0.40			0.51	0.51	0.51	0.51	
Clearance Time (s)		4.0		4.0	4.0			4.0	4.0	4.0	4.0	
Lane Grp Cap (vph)		673		458	726			1487	764	267	1648	
v/s Ratio Prot				c0.11							c0.39	
v/s Ratio Perm		c0.18			0.12			0.25	0.13	0.15		
v/c Ratio		0.83		0.83	0.30			0.49	0.26	0.30	0.77	
Uniform Delay, d1		33.4		38.0	18.4			14.4	12.4	12.7	17.7	
Progression Factor		0.58		1.00	1.00			1.00	1.00	0.18	0.37	
Incremental Delay, d2		10.3		15.5	1.1			1.2	0.8	2.0	2.5	
Delay (s)		29.7		53.5	19.5			15.6	13.2	4.3	9.1	
Level of Service		C		D	B			B	B	A	A	
Approach Delay (s)		29.7			40.8			14.8			8.8	
Approach LOS		C			D			B			A	
Intersection Summary												
HCM Average Control Delay			19.2		HCM Level	of Service			B			
HCM Volume to Capacity ratio			0.79									
Actuated Cycle Length (s)			90.0		Sum of los	time (s)			12.0			
Intersection Capacity Utilization			91.2\%		CU Level	Service			F			
Analysis Period (min)			15									

c Critical Lane Group

	3	4	\rightarrow	\leftarrow	k	\checkmark			\pm
Movement	EBL2	EBL	EBT	WBT	WBR	SBL	SBR	SEL	SER
Lane Configurations			个个	\uparrow	F			\％	「
Volume（vph）	348	0	334	267	331	0	0	212	40
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	11	11	10	10	10	10
Total Lost time（s）			4.0	4.0	4.0			4.0	4.0
Lane Util．Factor			0.95	1.00	1.00			1.00	1.00
Fit			1.00	1.00	0.85			1.00	0.85
FIt Protected			0.98	1.00	1.00			0.95	1.00
Satd．Flow（prot）			3151	1701	1446			1560	1396
Flt Permitted			0.67	1.00	1.00			0.95	1.00
Satd．Flow（perm）			2164	1701	1446			1560	1396
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	378	0	363	290	360	0	0	230	43
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	29
Lane Group Flow（vph）	0	0	741	290	360	0	0	230	14
Heavy Vehicles（\％）	8\％	2\％	8\％	8\％	8\％	2\％	2\％	8\％	8\％
Turn Type	Perm				Perm				Perm
Protected Phases			4	8				6	
Permitted Phases	4				8				6
Actuated Green，G（s）			53.0	53.0	53.0			29.0	29.0
Effective Green， g （s）			53.0	53.0	53.0			29.0	29.0
Actuated g／C Ratio			0.59	0.59	0.59			0.32	0.32
Clearance Time（s）			4.0	4.0	4.0			4.0	4.0
Lane Grp Cap（vph）			1274	1002	852			503	450
v／s Ratio Prot				0.17				c0．15	
v／s Ratio Perm			c0．34		0.25				0.01
v／c Ratio			0.58	0.29	0.42			0.46	0.03
Uniform Delay，d1			11.6	9.2	10.1			24.2	20.9
Progression Factor			0.75	0.47	0.50			1.00	1.00
Incremental Delay，d2			1.6	0.7	1.4			3.0	0.1
Delay（s）			10.3	5.0	6.4			27.2	21.0
Level of Service			B	A	A			C	C
Approach Delay（s）			10.3	5.8		0.0		26.2	
Approach LOS			B	A		A		C	
Intersection Summary									
HCM Average Control Delay			11.2		CM Level	of Service			B
HCM Volume to Capacity ratio			0.54						
Actuated Cycle Length（s）			90.0		Sum of lost	time（s）			8.0
Intersection Capacity Utilization			55．1\％		CU Level	Service			B
Analysis Period（min）			15						

c Critical Lane Group

c Critical Lane Group

Existing Network \& Connectivity

Summary

- Based on simple connectivity ratios (number of road links divided by intersections) the study area performs below urban areas in Atlanta, such as Midtown.
- Selected areas such as the Peachtree Road / Collier Road area (centered on Piedmont Hospital) perform even worse in connectivity ratios as compared to a similar size area in Midtown.
- The figure ground diagrams for each area confirm visually the difference in block size, street connectivity, and density of street connections.

Area	Analysis 1*	Analysis 2**
BeltLine Study Area 7	1.5	.88
Midtown	1.6	1
Peachtree \& Collier Roads	1.2	.86

[^0]
Effective Network

Summary

- There are 55 miles of road network within the Study Area boundary.
- Of those 55 miles only 24 miles, or 44%, connect to more than one street to form a connected network.
- These "effective network" streets are the streets that provide real connectivity in the area, providing the multiple travel routes that move residents and regional trips.
- The area where lack of"effective network"becomes most apparent is in the area south of Peachtree Hills Avenue, between Peachtree Road and Piedmont Road.

East-West \& North-South

Connections

Summary

- Connectivity in the study area relies heavily on the north-south connections of Northside Drive, Peachtree Road, Piedmont Road and their regional connections to I-85 and I-75.
- There are only four east-west connections in the study area: Peachtree Battle, Collier Road, Lindbergh Drive and Peachtree Hills Avenue.
- There is building pressure on the east-west connections, particularly on Collier Road and Lindbergh Drive, due to their connection to major employment centers at Piedmont Hospital and the Lindbergh MARTA station.
- Peachtree Road's lack of access to I-75 has put increased pressure on Collier Road and Northside Drive as the primary l-75 route for traffic bound for the Piedmont Hospital area.
- Interstates 75 and 85 , Peachtree Creek, and the existing rail lines all serve as significant barriers to increased connections.

Existing Network

North-South \& East-West Network

Existing Connectivity Analysis

Utilizing a GIS-based tool developed by Professor John Peponis at Georgia Tech, the study area has been further analyzed for connectivity. This analysis produces a number of valuable measures that allows the connectivity of each link in the study area to be analyzed for connectivity and compared to other areas in Atlanta.

Summary
 Connectivity Measures:

- Street miles per square mile of land
- Mean distance between intersections
- Number of blocks per square mile
- Number of intersections per square mile
- Metric Reach (street miles accessible from the midpoint of each road for a given distance)
- DirectionalTurns (average number of turns needed to get to all the streets accessible within a mile of a given point)

Connectivity Diagrams

One of the great strengths of this analysis is the ability to pin-point specific connectivity weaknesses and illustrates graphically the connectivity analysis. The resulting connectivity diagrams highlight on a color spectrum from red to dark blue the range of connectivity.

Red = areas with high connectivity and straight access
Blue $=$ areas with low connectivity and access requiring multiple direction changes

- The general pattern that becomes obvious for the study area is presence of a "blue-hole" right in the middle, associated with the industrial peninsula around Armour Drive and the area around Piedmont Hospital. This contrasts with the more "connected" area of Buckhead to the north between Peachtree Road and Piedmont Road.

Conclusions \& Observations

- The challenge will be to find ways to add connections without adversely affecting the current qualities of the area's residential neighborhoods.
- The study area has fewer street miles than most of the comparison areas in the Atlanta region (even fewer than the example area from Dunwoody).
- The number of blocks per square mile is significantly lower than appropriate comparables such as Decatur, Virginia Highland, or Ansley Park.
- The number of intersections per square mile is lower than all of the comparable areas.
- The average metric reach (the number of miles accessible from a given point) is the lowest, excluding Dunwoody.
- Overall there is significant need to expand connectivity in the study area.

	Connectivity: Measures				
	Street Miles (per sq. mile)	Intersections (per sq. mile)	Blocks (per sq. mile)	Reach (miles in a mile radius)	Avg. Number of Turns (1 mile radius)
	26.7	234	151.5	52.5	3.2
Decatur	15.9	96.9	39.4	25.7	5.5
Ansley Park	15.5	93.9	40.1	26.9	4.2
Va.Highland	14.4	82.3	34.5	25.1	5.1
Dunwoody	14	67.1	20.6	13.9	8.5
Study Area	$\mathbf{1 0 . 6}$	$\mathbf{5 2 . 9}$	$\mathbf{2 9 . 7}$	$\mathbf{1 6 . 6}$	$\mathbf{4 . 7}$

Connectivity Diagram: The Study Area

Connectivity Diagram: Decatur, Georgia

Connectivity Diagram: Downtown Atlanta Connectivity Diagram: Dunwoody, Georgia
 enial Dagram. Decaiur,

Proposed Connectivity Analysis

Building upon the existing conditions connectivity analysis, the impact of the proposed street framework and new street connections was analyzed. This analysis produces a number of valuable measures that allows the connectivity of the proposed new streets to be compared to the study area's existing condition, and other areas in Atlanta.

Of note, this connectivity analysis includes "Peachtree Parkway", a proposed connection between Peachtree Road and Piedmont Road along Peachtree Creek and the CSX right-of-way. This connection was ultimately not included in the Subarea Master Plan but was eliminated after the connectivity analysis was conducted. Given its length and limited connectivity to it (only accessed from Peachtree Road and Piedmont Road), its inclusion only effects the analysis slightly. The overall purpose of this analysis and the comparisons to other areas is to illustrate the incremental benefit of adding to the street network and how this area compares to others in the Atlanta Region.

Connectivity Measures:

The following measures were used in the connectivity analysis:

- Street miles per square mile of land. Generally, the greater the length of streets in an area the better the internal and external connections of the area.
- Mean distance between intersections. Generally, longer distances between intersections imply less connectivity and discourage pedestrian walking.
- Number of intersections per square mile. Generally, more intersections indicate a denser network of connections throughout an area.
- Metric Reach:street miles accessible from the midpoint of each road for a given distance (average for the overall study area). This is essentially a measure of accessibility via streets to study area destinations.
- Directional Turns: average number of turns needed to get to all the streets accessible within a mile of a given point. Research shows that navigation in urban environments is determined by cognitive effort more than by physical effort and that cognitive effort is a function of directional distance. In other words, the more turns it takes to get to a destination, the more confusing it is, resulting in a less accessible place from a"cognitive point-of-view". A dense network allows for more direct routing to a destination with fewer required turns.

Results:

Street miles per square mile of land:

- The average was increased by 0.3 of a mile for the overall study area. This, while seeming small, represents the overall study area average and is significant given the relatively small areas where new streets are proposed.

Mean distance between intersections:

- The mean was decreased by 2 feet, representing smaller, more walkable blocks. Again, this measure is over a large area.

Number of intersections per square mile:

- The street framework added over 1 new intersection per square mile. Meaning that many new network connections and routing options are now available.

Metric Reach:

- The street framework added over 1.3 miles of average "reach" within the study area, resulting in a denser street network.

Directional Turns:

- The number of directional turns decreased by 0.3 , increasing the area's cognitive navigation and general ease of access.

	Connectivity Analysis				
	Street Miles (per sq. mile)	Intersections (per sq. mile)	Metric Reach (per 1 mile radius)	Directional Turns (per 1 mile radius)	Mean Distance between Intersections (feet)
Study Area (Existing Condition)	13.4	91.5	19.2	5.7	466
Study Area (Proposed Street Framework)	13.7	92.7	20.5	5.4	464
Downtown	26.7	234	52.5	3.2	550
Decatur	15.9	96.9	25.7	5.5	529
Ansley Park	15.5	93.9	26.9	4.2	561
Va. Highland	14.4	82.3	25.1	5.1	587
Buckhead	13.9	69.2	20.0	5.2	673
Dunwoody	14	67.1	13.9	8.5	667

Connectivity Analysis:

Existing and Proposed Study Area

Connectivity Diagrams

One of the great strengths of this analysis is the ability to pin-point specific connectivity weaknesses and illustrates graphically the connectivity analysis. The resulting connectivity diagrams highlight the ratio of Reach/ Directional Turns (correlating to higher connectivity) on a color spectrum (from red to green to light blue to dark blue) the range of connectivity. Red equals areas with the highest connectivity and blue equals areas with the lowest connectivity.

Existing Condition

The general pattern that becomes obvious for the study area is presence of a "blue-hole" right in the middle, associated with the industrial peninsula around Armour Drive and the area around Piedmont Hospital. This contrasts with the more "connected" area of Buckhead to the north between Peachtree Road and Piedmont Road.

Connectivity Analysis:

PEACHTREE ROAD FOCUS AREA-Increase connectivity is created by new streets and blocks with Peachtree Parkway creating a valuable link to this node's redevelopment.

PIEDMONT/GARSON AREA-
New access to Peachtree Parkway creates a valuable connection for Piedmont Road.

Connectivity Analysis:
Proposed Street Framework

The Peachtree Parkway

During the Subarea 7 Master Plan process, the concept of a new east-west street connection between Piedmont Road and Peachtree Road was explored. If possible, this connection would provide valuable connectivity in the area and increased access to the BeltLine. It was conceived as a possible multi-modal connection that would incorporate both the BeltLine transit alignment and a 2-lane street connection. The potential alignment along Peachtree Creek, adjacent (and partially within) the CSX rail right-of-way, presented numerous environmental, engineering, neighborhood impact, and cost issues and was ultimately not included in the Subarea 7 Master Plan. Provided here is a summary of the concept and its initial design development for the purpose of documentation and informing the future transit alignment design and engineering.

Peachtree Parkway is conceived as a new connection between Peachtree Road and Piedmont Road adjacent to Peachtree Creek. This potential connection serves as an important new east-west link in an area that currently lacks regular east-west connectivity. It creates a valuable connection for the Piedmont Hospital area to Piedmont Road and GA 400, and helps take traffic pressure off of residential streets such as Peachtree Hills Avenue and Lindbergh Drive. In addition, this new connection provides a potential alignment alternative for the BeltLine transit corridor.

Design Considerations and Assumptions

Project Length: 1.5 miles (from Peachtree Road to Piedmont Road)

Typical Section: 2-lane (section varies based on context)

Key Structures: (for cost estimation purposes)

- Bridge over Clear Creek (200 feet)
- Bridge along/over Peachtree Creek (2,100 feet)
- Retaining Wall along Peachtree Creek (misc. locations, 1,400 feet)
- Retaining Wall along CSX rail line (misc. locations, 500 feet)

Design Issues:

- The section from Clear Creek to the MARTA tracks is very constrained by Peachtree Creek, the adjacency of the Peachtree Hills Neighborhood, and the CSX rail line.
- The alignment intentionally stays on the south side of Peachtree Creek to minimize impact on the Peachtree Hills Neighborhood. The design of the parkway and bridge sections will need to consider the visual and sound impacts and develop design solutions that address these issues.
- The 25 -foot stream buffer along Peachtree Creek may be impacted in some locations, requiring EPD approval and mitigation.
- Much of the alignment is within the 100 -year floodplain. While, the bridge section along Peachtree Creek has been conceptually designed above the floodplain, there will need to be agency approvals and potential mitigation.
- The alignment between Peachtree Creek and the CSX rail line assumes the use of some CSX right-ofway on the north side requiring negotiations with CSX (same assumption as all previous BeltLine transit alignments).

Project Cost: (Planning level) \$26 million

- Not including right-of-way
- Not including utility relocation

Typical Bridge Section along Peachtree Creek

Design \& Typical Street Sections

This street connection is a unique type that will change based on its adjacent land use context, relationship to Peachtree Creek, and potential to include transit. The proposed design of Peachtree Parkway includes the following typical sections:

Thissectionoccurs inthe redeveloping areas on either side of Peachtree Road. It serves as the "address" for mixed use development with 10 -foot sidewalks, on-street parking, and buildings built to the street. This section also includes the BeltLine Trail which is incorporated as a 12-foot trail on one side of the street between the planting strip and the sidewalk. Depending on which transit alignment is selected, this section could also include transit in the travel lanes connecting across Peachtree Road to the proposed transit plaza.

Example of a trail thru a mixed use development in Davis, California

Number of Lanes	2
Width of Lanes	14^{\prime}
Trail	12^{\prime}
Sidewalk	10^{\prime}
Planting Strip/ Amenity Zone	6^{\prime}
On-street Parking (from face of curb)	8^{\prime}
Median	No
Width of Median	Varies
Right-of-Way	

Utility: To be located underground or in easement behind buildings.

This section occurs where the Parkway runs through future open spaces. It serves as the access to these green spaces with potential onstreet parking and adjacent BeltLine Trail running parallel to the street separated by a wide green strip.

Number of Lanes	2
Width of Lanes	11
Trail	12^{\prime}
Planting Strip/ Amenity Zone	Varies
On-street Parking (from face of curb)	8^{\prime}
Median	No
Width of Median	
Right-of-Way	Varies

Utility: To be located underground

Peachtree Parkway: Bridge Section

This section occurs when the Parkway is between Peachtree Creek and the CSX rail line. The street will need to be on a bridge structure to keep it above the 100-year floodplain elevation and minimize impact along Peachtree Creek. The street can include two travel lanes and transit either in the travel lanes or in their own lanes.

Number of Lanes	3
Width of Lanes	12^{\prime}
Bike Lanes	
Sidewalk	5^{\prime}
Planting Strip/ Amenity Zone	
On-street Parking (from face of curb)	
Median	Yes
Width of Median	12^{\prime}
Right-of-Way	48^{\prime}

The Peachtree Parkway Transit Alternative

The Peachtree Parkway Alternative is conceived as an option that is north of the CSX rail line and is both street and transit. This alternative runs:

- On the south side of the CSX rail line under I-75.
- Continues to Piedmont Hospital , crossing over the CSX rail line by running adjacent to Spalding Drive and crossing a "transit plaza" at Peachtree Road.
- From the transit plaza, crosses Peachtree Road at-grade and continues within the right-of-way of Peachtree Parkway running east between Peachtree Creek and the CSX rail line.
- Crosses over Peachtree Creek with several options to get to the Lindbergh MARTA Station and to Armour Drive:

Lindbergh/Armour Option 1: Runs along the same alignment as the LPA to the Lindbergh MARTA Station, then down to Garson Drive, to Piedmont Road and then west to Armour Drive.

Lindbergh/Armour Option 2: Stays within Peachtree Parkway to Garson Drive north to the Lindbergh MARTA Station, from there follows Option 1 to Armour Drive.

Lindbergh/Armour Option 3: Using either Option 1 or Option 2, continue south along Piedmont Road under I-85 to Monroe Drive, run west along Monroe Drive connecting to BeltLine right-of-way just south of I-85.

Purpose \& Potential

The Peachtree Parkway Transit Alternative is conceived as a way to provide a multi-modal connection between Peachtree Road and Piedmont Road that is both transit and vehicular. By running on the north side of the CSX rail line from Peachtree Road, the transit alignment can utilize the same alignment as the Peachtree Parkway, potentially running in the travel lanes or with dedicated transit lanes. This alternative presents a number of potential advantages:

- Provides several ways to connect to the Lindbergh MARTA Station. This connection to Lindbergh is complicated and constrained and will require evaluation of several options.
- Could be phased as an initial project that connects the Lindbergh MARTA Station to Piedmont Hospital without having to cross over the CSX Rail line. A Lindbergh to Piedmont transit connection would be a valuable first phase transit project given the ridership potential of Piedmont Hospital (the largest employment concentration on the BeltLine).
- Provides routing options that could be planned to serve redevelopment on Piedmont Road and/or Monroe Drive with additional station alternatives. The LPA alignment goes directly to Armour Drive where there is limited redevelopment potential.
- Serves both a transit and street connectivity purpose. Funding could come from both "road" and "transit" sources.
- Places the potential right-of-way and/or physical impact on the north side of the CSX rail line away from the Brookwood Hills neighborhood. Both alternatives will require use of the CSX right-ofway, however the north alternative may have less impact on adjacent neighborhoods.

APPENDIX B

Market Study

Update of Market Forecasts for Atlanta Beltline Study Area; Atlanta, Georgia

Atlanta Beltline, Inc | January 15, 2008

BACKGROUND AND OBJECTIVES

Report	Sarah Kirsch, Senior Principal
Preparation	Beth Fore, Senior Associate
	David Pierce, Associate
	Atlanta, GA (404) 365-9501

Background In 2004, RCLCO conducted a macro-level market analysis for the Beltine Study Area as part of the due diligence for the creation of the Beltline TAD. Now that the Beltline TAD has been established, the promise of the Beltline has influenced the market in several areas, opening up areas for development that had previously been overlooked. Atlanta Beltine, Inc. now requires an update of the market forecasts, taking into consideration the changes that have affected the Beltline since the original study and the more clearly defined size and scope of the Beltline plan.

Objectives Uupdate RCLCO market forecasts for residential, commercial, and industrial developments within the Beltline Study Area overall -Allocate the overall growth potential to the 10 sub areas based on a combination of statistical and judgmental methods
-Translate the forecasts into a number of households, population employment, and jobs-to-housing ratios for the two sub areas in a format suitable for use as part of an LCI.

METHODOLOGY

Study Area Analysis

Toured study area and determined site characteristics in relation to current and future growth \& development, assessed changes over the last 3 years, and conducted interviews with key intown developers to gain additional insights into development trends and opportunities.

Economic \& Demographic Analysis

Compiled latest data and projected forecasts with respect to demographic trends, households, and employment growth trends for the City of Atlanta and larger 5-county core areas. Compared various forecasts to historic market trends (home sales, apartment absorption) and anticipated future market demand.

Commercial Analysis

Forecasts and Demand Analysis

Compiled historic information for office and industrial space and absorptions to identify regional market trends and competitive positioning of intown cores.

Analyzed all of the above, utilizing statistical and judgmental methodologies, to estimate 25 -year residential household forecasts and demands for office, retail, and industrial space.

UPDATE OF MARKET FORECASTS FOR ATLANTA BELTLINE STUDY AREA: CONCLUSIONS

- Household growth projections are strong relative to other regional forecasts, and growth will be distributed according to the unique characteristics of each Beltline subarea.

Local-serving office will be demanded throughout the Study Area with regional-serving office focused in key cores.

- Retail demand is primarily that which will serve household growth, with opportunities for larger-scale, regional-serving retail in select high visibility nodes.
- Industrial demand analyses reveal limited opportunities for warehouse space, pruning of flex and distribution space in the Study Area overall absent policy intervention.

UPDATE OF MARKET FORECASTS FOR ATLANTA BELTLINE STUDY AREA: CONCLUSIONS

Household growth projections are strong relative to other regional forecasts, and growth will be distributed according to the unique characteristics of each Beltline subarea.
, Local-serving office will be demanded throughout the Study Area with regional-serving office focused in key cores.
> Retail demand is primarily that which will serve household growth, with opportunities for larger-scale, regional-serving retail in select high visibility nodes.

- Industrial demand anallyses reveall limited opportunities for warehouse space, pruning of flex and distribution space in the Study Area overall absent policy intervention.

PREVIOUS STUDY AREA WAS USED TO DETERMINE FEASIBILITY OF THE BELTLINE TAD, IN GENERAL TERMS

The study area used in the first round of projections included 72 Census block groups

THE NEW STUDY AREA INCLUDES A LARGER GEOGRAPHICAL AREA AND IS ALSO OBTAINING HIGHER GROWTH RATES

SOURCE: Claritas

- New study area has 30 more block groups
- Includes many higher growth block groups (particularly in the NE)
- Overall growth is up due to strong market in '05'07

HISTORIC AND PROJECTED HOME SALES AND APARTMENT ABSORPTION SUGGEST A HIGHER-THAN-ANTICIPATED GROWTH

CITY OF ATLANTA NEW HOME SALES AND NEW APT STARTS 2001-2006

$2001 \quad 2002 \quad 2003 \quad 2004 \quad 2005 \quad 2006$

- This data indicates an average of 6,600+ new households every year from 2001-2006

Note: New home sales adjusted downward in '04-'06 due to investor activity, and apartment starts adjusted to include vacancy

SOURCE: SmartNumbers; Dale Henson Associates

KNOWN CITY OF ATLANTA HOUSEHOLD GROWTH IS COMPARABLE TO THE MOST AGGRESSIVE OF REGIONAL FORECASTS

2000-2005 AVERAGE ANNUAL HOUSEHOLD GROWTH

 Various Population Forecasts

THE RCLCO FORECAST COMBINES ADJUSTED BASE 5-YEAR DEMAND FORECASTS WITH FUTURE ADA AND ARC HOUSEHOLD GROWTH RATES

CITY OF ATLANTA POPULATION 1990-2030

Various Population Forecasts

THIS FORECAST IDENTIFIED THE BASELINE OF EXISTING HOUSEHOLDS IN 2005 FOR BELTLINE STUDY AREA

MANY FACTORS CONTRIBUTE TO THE CALCULATED ANNUAL NEW HOUSEHOLD GROWTH FOR THE STUDY AREA OVER EACH FIVE-YEAR PERIOD THROUGH 2030
IIIIIIIIIIIIIIIIII

SEEK WALKABLE ENVIRONMENT

BELTLINE CAPTURE RATE ${ }^{1}$

REPEAT FOR EACH FIVE YEAR PERIOD ADJUSTING FOR CHANGING ATTITUDES AND CAPTURES

INCREASES OVER TIME AS PREFERENCES SHIFT

CAPTURES INCREASE OVER TIME AS BELTLINE MATURES

WALKABLE ENVIRONMENTS ARE BECOMING MORE DESIRABLE AND ARE ATTRACTING THE "RIGHT" AUDIENCE

OF THOSE WHO SAID LIVING IN A WALKABLE ENVIRONMENT WAS "VITAL" IN

 THE RCLCO GEN X I GEN Y SURVEY...- 26-29 year olds made up the largest age cohort, with GEN Y outnumbering GEN X 2:1
- 27% had household incomes of $\$ 100,000$ or greater
- 82% had at least a 4-year degree
- 64% were singles or couples, 77% women
- Even split between renters and owners
- 83% lived in the city or inner-ring suburb

- 40% expected to move within the same metro area in the next five years
- 12% of likely southern US movers in the next 5 years identified Atlanta as their choice
- 78\% felt it was NOT necessary to move to the suburbs once they had children
 SUBAREA LEVEL
- Share of existing households
- Share of historic household growth
- Recent and planned development activity
- Concentration of major proposed projects
- Timing of Beltline parks, trails, and transit
- Adjacency to existing cores
- Build out of subareas over time
- Land availability per land use and redevelopment plans SUBAREA LEVEL

BELTLINE SUBAREA COMPARISON OF GROWTH

\% of Study Area Existing Households
\% of Study Area Household Growth 2000-2005
\% of Study Area Potential Projects
\% of Study Area Total Household Growth 2005-2030
32%
$\square \%$ of Existing Households
$\square \%$ of Household Growth
$\square \%$ of Potential Residential Projects 1
$\square \%$ of Growth 2005-2030 (RCLCO)

27\%

Area 1 Area 2 Area 3 Area 4 Area 5 \quad Area 6 Area 7 Area 8 Area 9 Area 10 1 Per RCLCO research and Beltline Inc. redevelopment and land use plans

ATLANTA BELTLINE, INC.

Exhibit 1

household growth by beltuine subarea
ATLANTA, GA
2005-2030

	$\begin{gathered} 2005 \\ \% \text { of SA } \\ \hline \end{gathered}$	$\begin{aligned} & 2005 \\ & \text { Existing HH } \end{aligned}$	$\begin{aligned} & \text { 2005-2010 } \\ & \% \text { of Growth } \end{aligned}$	$\begin{gathered} \text { 2005-2010 } \\ \text { Growth } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2010-2015 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2010-2015 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2015-2020 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2015-2020 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2020-2025 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2020-2025 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2025-2030 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2025-2030 } \\ & \text { Growth } \end{aligned}$
Area 1	13\%	7,980	4\%	417	4\%	476	8\%	802	8\%	875	8\%	911
Area 2	11\%	6,649	4\%	413	4\%	460	8\%	791	14\%	1,475	18\%	1,996
Area 3	7\%	4,515	9\%	906	9\%	903	11\%	1,049	13\%	1,357	8\%	894
Area 4	6\%	3,909	7\%	705	7\%	707	7\%	676	7\%	742	8\%	892
Area 5	10\%	6,500	14\%	1,408	14\%	1,398	12\%	1,157	11\%	1,169	7\%	795
Area 6	18\%	11,337	18\%	1,817	18\%	1,835	14\%	1,381	8\%	901	4\%	490
Area 7	15\%	9,186	20\%	2,011	20\%	1,997	17\%	1,639	15\%	1,596	18\%	2,008
Area 8	8\%	5,019	15\%	1,504	15\%	1,474	12\%	1,145	11\%	1,157	12\%	1,333
Area 9	4\%	2,569	5\%	503	5\%	503	6\%	573	8\%	833	11\%	1,213
Area 10	8\%	5,320	4\%	410	4\%	443	5\%	504	5\%	550	6\%	680
TOTAL	100\%	62,985	100\%	10,095	100\%	10,196	100\%	9,715	100\%	10,654	100\%	11,211

2005-2030 TOTAL HOUSEHOLDS BY SUBAREA

	$\begin{gathered} 2005 \\ \text { Existing HH } \end{gathered}$	2010 Forecast	2015 Forecast	$\begin{gathered} 2020 \\ \text { Forecast } \end{gathered}$	2025 Forecast	$\begin{gathered} 2030 \\ \text { Forecast } \end{gathered}$	$\begin{aligned} & \text { 2005-2030 } \\ & \text { Total Growth } \end{aligned}$	$\begin{aligned} & 2005-2030 \\ & \% \text { of Growth } \end{aligned}$	$\begin{gathered} 2005-2030 \\ \text { Growth } \end{gathered}$
Area 1	7,980	8,397	8,873	9,674	10,549	11,460	3,480	7\%	44\%
Area 2	6,649	7,063	7,522	8,313	9,787	11,784	5,134	10\%	77\%
Area 3	4,515	5,421	6,324	7,373	8,729	9,624	5,109	10\%	113\%
Area 4	3,909	4,615	5,322	5,998	6,740	7,631	3,722	7\%	95\%
Area 5	6,500	7,908	9,307	10,464	11,632	12,427	5,927	11\%	91\%
Area 6	11,337	13,154	14,989	16,370	17,272	17,761	6,424	12\%	57\%
Area 7	9,186	11,197	13,193	14,832	16,428	18,436	9,251	18\%	101\%
Area 8	5,019	6,523	7,997	9,142	10,299	11,633	6,613	13\%	132\%
Area 9	2,569	3,073	3,575	4,148	4,981	6,194	3,625	7\%	141\%
Area 10	5,320	5,731	6,174	6,677	7,227	7,907	2,586	5\%	49\%
TOTAL	62,985	73,080	83,276	92,991	103,645	114,856	51,871		

UPDATE OF MARKET FORECASTS FOR ATLANTA BELTLINE STUDY AREA: ATLANTA, GEORGIA

```
* Household growth projections are strong relative to other regional
forecasts, and growth will be distributed according to the unique
characteristics of each Beltline subarea.
```

Local-serving office will be demanded throughout the Study Area with regional-serving office focused in key cores.

- Retail demand is primarily that which will serve household growth, with opportunities for larger-scale, regional-serving retail in select high visibility nodes.
- Industrial demand analyses reveal limited opportunities for warehouse space, pruning of flex and distribution space in the Study Area overall absent policy intervention.

LOCAL OFFICE MODEL USES HOUSEHOLD GROWTH PROJECTIONS AT THE SUBAREA LEVEL TO PROJECT SUBAREA LOCAL OFFICE DEMAND FORECASTS

BELTLINE SUBAREA	$\begin{gathered} 2005-2030 \\ \text { TOTAL NET NEW } \\ \text { HH } \end{gathered}$		RESIDENTIAL-- SERVING OFFICE SF
1	3,196	ASSUME	47,937
2	4,897	HOUSEHOLD SIZE = 2	73,462
3	4,947		74,207
4	3,583	ASSUME RATIO OF	53,739
5	5,694	LOCAL-SERVING	85,408
6	6,019	POPULATION $=.03$ *	90,286
7	8,922		133,826
8	6,433	ASSUME OFFICE SF /	96,498
9	3,533	PERSON = 250 *	52,994
10	2,397		35,951
TOTAL	49,621		744,310

[^1] STRONG GROWTH

Source: Economy.com

COMPARISON OF INTOWN OFFICE ABSORPTION TO TOTAL METRO ATLANTA ABSORPTION IDENTIFIES LIKELY FUTURE CAPTURE FOR REGIONAL OFFICE

Source: Georgia State Economic Forecasting Center; CoStar BELTLINE SUBAREAS

TOTAL OFFICE DEMAND COMBINES LOCAL AND REGIONAL COMPONENTS, ALLOCATED TO EACH SUBAREA

Local-Serving Office

Regional-Serving Office

Total Office Demand

Qualitative and Quantitative Criteria:

- Share of existing office space
- Share of historic growth
- Recent and planned development activity
- Concentration of major proposed projects
- Timing of Beltline parks, trails, and transit
- Adjacency to existing cores
- Build out of subareas over time
- Land availability per land use and redevelopment plans

SEVERAL FACTORS ARE DRIVING OFFICE DEVELOPMENT

- Since the 2004 study, a more significant household growth projection indicates increased support for local-serving office.
- Rent escalation in top-tier cores, such as Buckhead, creates opportunities for businesses seeking a more affordable alternative as primary cores become increasingly expensive and built-out.
- The Beltline opens up areas for office development that otherwise would have been overlooked.
- Creation of Transit Oriented Developments (TODs), creating a "place" for office, of varying scales, when it otherwise may have located in more established cores.
- Impact for Beltline Subareas:
- Concentration of local-serving office across all subareas, with higher concentrations in areas with greater household density.
- Area 2 (University): The Beltine crosses the connector ($1-75 / 85$) and provided that the downtown office market continues to solidify, this represents an opportunity for specific users who seek proximity to downtown and/or airport as well as businesses who may be seeking a value alternative.
- Area 4 (Memorial): This area has potential to increase in office space due to good regional interstate access (I20), the growth of high-end housing, and the potential to be tied to a MARTA TOD.
- Area 7 (Lindbergh): This emerging office core will continue to experience office growth over the life of the Beltline due to its proximity to affluent households, good interstate and MARTA access, and location between the Buckhead and Midtown office cores.
- Area 8 (Northside): This area is tied to Atlantic Station; will increase more significantly when Atlantic Station has a critical mass and/or build-out of office.

ATLANTA BELTLINE, INC.

Exhibit 2

OFFICE SPACE GROWTH BY BELTLINE SUBAREA
ATLANTA, GA
2005-2030

	$\begin{gathered} 2005 \\ \% \text { of SA } \end{gathered}$	$\begin{gathered} 2005 \\ \text { Exist. Space } \end{gathered}$	$\begin{gathered} \text { 2005-2010 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2005-2010 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2010-2015 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2010-2015 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2015-2020 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2015-2020 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2020-2025 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2020-2025 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2025-2030 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2025-2030 } \\ & \text { Growth } \end{aligned}$
Area 1	3\%	163,529	1\%	5,963	1\%	5,645	1\%	11,031	1\%	12,198	10\%	98,836
Area 2	6\%	338,930	1\%	5,963	1\%	5,645	1\%	11,031	19\%	183,354	20\%	200,947
Area 3	4\%	195,988	2\%	13,416	2\%	12,701	2\%	15,167	6\%	60,324	5\%	55,968
Area 4	2\%	128,522	2\%	10,435	1\%	9,879	1\%	9,652	10\%	91,677	10\%	98,836
Area 5	16\%	859,284	18\%	98,881	11\%	84,815	10\%	86,155	2\%	16,773	1\%	11,463
Area 6	19\%	1,014,369	16\%	85,341	11\%	90,460	11\%	88,913	1\%	12,198	1\%	6,550
Area 7	29\%	1,596,854	42\%	224,843	53\%	418,572	36\%	301,877	28\%	265,882	20\%	200,947
Area 8	15\%	794,620	15\%	80,869	19\%	151,285	35\%	294,983	31\%	300,285	23\%	233,989
Area 9	5\%	264,549	1\%	7,453	1\%	7,056	1\%	8,273	1\%	12,198	10\%	103,749
Area 10	2\%	96,737	1\%	5,963	1\%	5,645	1\%	6,894	1\%	7,624	1\%	9,825
TOTAL	100\%	5,453,382	100\%	539,124	100\%	791,704	100\%	833,975	100\%	962,514	100\%	1,021,110

	$\begin{aligned} & 2005 \\ & \text { Existing } \end{aligned}$	2010 Forecast	2015 Forecast	$\begin{gathered} 2020 \\ \text { Forecast } \end{gathered}$	2025 Forecast	2030 Forecast	BELTLINE STUDY AREA TOTAL OFFICE SPACE (SF)					
Area 1	163,529	169,491	175,136	186,167	198,365	297,201	10,000,000					
Area 2	338,930	344,892	350,537	361,568	544,922	745,869	9,000,000					
Area 3	195,988	209,404	222,105	237,272	297,596	353,565						
Area 4	128,522	138,957	148,836	158,487	250,164	349,000	8,000,000					
Area 5	859,284	958,165	1,042,980	1,129,136	1,145,908	1,157,371						
Area 6	1,014,369	1,099,710	1,190,170	1,279,083	1,291,281	1,297,831	7,000,000					
Area 7	1,596,854	1,821,697	2,240,269	2,542,146	2,808,028	3,008,975						
Area 8	794,620	875,489	1,026,773	1,321,756	1,622,041	1,856,030	6,000,00					
Area 9	264,549	272,002	279,059	287,332	299,530	403,279	5,000,000					
Area 10	96,737	102,699	108,344	115,238	122,862	132,688	2005	2010	2015	2020	2025	2030

UPDATE OF MARKET FORECASTS FOR ATLANTA BELTLINE STUDY AREA: ATLANTA, GEORGIA

> - Household growth projections are strong relative to other regional forecasts, and growth will be distributed according to the unique characteristics of each Beltline subarea.
> - Local-serving office will be demanded throughout the Study Area with regional-serving office focused in key cores.

Retail demand is primarily that which will serve household growth, with opportunities for larger-scale, regional-serving retail in select high visibility nodes.

- Industrial demand analyses reveal limited opportunities for warehouse space, pruning of flex and distribution space in the Study Area overall absent policy intervention. SUBAREA LEVEL TO PROJECT SUBAREA RETAIL FORECASTS, INCLUDING HIGHER DEMAND FOR UNDERSERVED AREAS

BELTLINE SUBAREA	2005 - 2030 TOTAL NET NEW HH	RETAIL SF PERSON	RESIDENTIAL- SERVING RETALL SF
1	3,196	25	159,791
2	4,897	25	244,873
3	4,947	25	247,357
4	3,583	25	179,131
5	5,694	20	227,756
6	6,019	20	240,764
7	8,922	20	356,871
8	6,433	20	257,328
9	3,533	25	176,647
10	2,397	25	119,837
TOTAL	$\mathbf{4 9 , 6 2 1}$		$\mathbf{2 , 2 1 0 , 3 5 5}$

Assumptions:

- 2-person HH
- 20 s.f. retail per HH for adequately served areas
- 25 s.f. retail per HH for under-served areas

IN ADDITION TO LOCAL-SERVING RETAIL, SEVERAL SUBAREAS HAVE SIGNIFICANT AMOUNTS OF POTENTIAL REGIONAL RETAIL

Represents areas with high visibility, strong access, and large parcels

TOTAL RETAIL DEMAND COMBINES LOCAL AND REGIONAL COMPONENTS, ALLOCATED TO EACH SUBAREA

Local-Serving Retail

$+$

Regional-Serving Retail

Total Retail
 Demand

Qualitative and Quantitative Criteria:

- Share of existing retail space
- Recent and planned development activity
- Concentration of major proposed projects
- Timing of Beltine parks, trails, and transit
- Adjacency to existing cores
- Build out of subareas over time
- Land availability per land use and redevelopment plans

SEVERAL FACTORS ARE DRIVING RETAIL DEVELOPMENT

- Since the 2004 study:

- A more significant household growth projection indicates increased support for retail, both local and regional-serving;
- The Study Area boundaries have been established and include sites that adhere to the "rules of retail" - high visibility, frontage on major arterials, proximate to large and growing population bases, and appropriate distance from other large concentrations of regional retail.
- Planning efforts reveal parcels large enough to accommodate regional retail development.
- Higher than projected growth in the City of Atlanta will support more regional retail.

RCLCO estimates that just less than 20% of net new regional retail in the City will be captured in the Beltine Study Area.

- Impact for Regional Retail in Beltline Subareas:
- Area 2 (University): Good interstate access, high visibility, an increase in local households, and ability to draw from a large trade area will create an opportunity for regional retail.
- Area 5 (City Hall East): City Hall East's redevelopment as a prominent mixed-use development will likely act as a catalyst for this area's retail development.
- Area 7 (Lindbergh): Recently redeveloped into an increasingly regional retail area, Lindbergh will benefit from this momentum over the life of the Beltine and attract more regional retail, albeit slightly less than planning efforts indicate.
- Area 8 (Northside): The Northside area will likely see an increase of regional retail by leveraging the recent success of Atlantic Station's retail as well as the advantageous site characteristics.
- Area 10 (Maddox Park): Redevelopment of industrial land into mixed-use developments can create a critical mass of retail in a currently under-served area.

ATLANTA BELTLINE, INC.

Exhibit 3

RETAIL SPACE GROWTH BY BELTLINE SUBAREA
ATLANTA, GA
2005-2030

	$\begin{gathered} 2005 \\ \% \text { of SA } \end{gathered}$	$\begin{gathered} 2005 \\ \text { Exist. Space } \end{gathered}$	$\begin{gathered} \text { 2005-2010 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2005-2010 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2010-2015 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2010-2015 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2015-2020 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2015-2020 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2020-2025 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2020-2025 } \\ & \text { Growth } \end{aligned}$	$\begin{gathered} \text { 2025-2030 } \\ \% \text { of Growth } \end{gathered}$	$\begin{aligned} & \text { 2025-2030 } \\ & \text { Growth } \end{aligned}$
Area 1	5\%	230,059	2\%	19,875	3\%	18,817	5\%	36,769	4\%	40,661	9\%	43,669
Area 2	2\%	85,441	2\%	19,875	3\%	18,817	5\%	36,769	32\%	296,157	20\%	98,255
Area 3	3\%	106,738	4\%	44,719	7\%	42,338	6\%	50,557	7\%	66,074	9\%	43,669
Area 4	18\%	760,432	3\%	34,782	5\%	32,929	4\%	32,173	4\%	35,579	9\%	43,669
Area 5	13\%	567,148	5\%	55,651	9\%	57,687	6\%	44,123	5\%	44,727	6\%	30,568
Area 6	28\%	1,203,135	6\%	71,551	10\%	67,740	6\%	51,476	4\%	32,529	3\%	17,468
Area 7	17\%	724,025	43\%	516,437	27\%	175,267	21\%	162,507	17\%	160,992	16\%	78,604
Area 8	9\%	398,783	32\%	388,144	29\%	189,450	22\%	177,123	19\%	178,727	10\%	52,403
Area 9	3\%	130,236	2\%	24,844	4\%	23,521	3\%	27,577	4\%	40,661	12\%	60,045
Area 10	1\%	26,080	2\%	19,875	3\%	18,817	22\%	172,981	3\%	25,413	7\%	32,752
TOTAL	100\%	4,232,075	100\%	1,195,753	100\%	645,381	100\%	792,053	100\%	921,521	100\%	501,099

2005-2030 TOTAL NEW RETAIL SPACE (SF) BY SUBAREA							
	2005 Existing	2010 Forecast	2015 Forecast	2020 Forecast	2025 Forecast	2030 Forecast	
							BELTLINE STUDY AREA TOTAL RETAIL SPACE GROWTH (SF)

Exhibit 3

UPDATE OF MARKET FORECASTS FOR ATLANTA BELTLINE STUDY AREA: ATLANTA, GEORGIA

> - Household growth projections are strong relative to other regional forecasts, and growth will be distributed according to the unique characteristics of each Beltline subarea.
> - Local-serving office will be demanded throughout the Study Area with regional-serving office focused in key cores.

> Retail demand is primarily that which will serve household growth, with opportunities for larger-scale, regional-serving retail in select high visibility nodes.

Industrial demand analyses reveal limited opportunities for warehouse space, pruning of flex and distribution space in the Study Area overall absent policy intervention.

INDUSTRIAL DEMAND MODEL IS BASED ON LONGTERM EMPLOYMENT PROJECTIONS

ANNUAL EMPLOYMENT PROJECTIONS
 2008-2030

S.F. OF INDUSTRIAL PER NEW EMPLOYEE (VARIES BY LAND USE)

INTOWN ATLANTA'S SHARE OF INDUSTRIAL SPACE HAS DECLINED OR HELD STEADY ACROSS INDUSTRIAL SECTORS

HISTORIC INTOWN SHARE OF METRO INDUSTRIAL SPACE
Flex, Warehousing, and Distribution Space

HISTORIC ABSORPTION OF INTOWN FLEX SPACE IS GENERALLY FLAT, INDICATING A DECLINING LAND USE

\square Chattahoochee and Central Atlanta Absorption

HISTORIC ABSORPTION OF INTOWN DISTRIBUTION SPACE SHOWS A STRONGER NEGATIVE TREND, ALSO INDICATING A DECLINING LAND USE

Chattahoochee and Central Atlanta Absorption

HISTORIC ABSORPTION OF INTOWN WAREHOUSE SPACE SHOWS THE ONLY POSITIVE TRENDS OF THE THREE INDUSTRIAL USES

Chattahoochee and Central Atlanta Absorption

ATLANTA BELTLINE, INC.

Exhibit 4

INDUSTRIAL SPACE GROWTH BY BELTLINE SUBAREA
ATLANTA, GA
2005-2030

YEARS	PROJECTED FLEX SPACE DEMAND MARKET-DRIVEN	PROJECTED FLEX SPACE DEMAND POLICY INTERVENTION	PROJECTED DISTRIBUTION SPACE DEMAND	PROJECTED WAREHOUSE SPACE DEMAND	TOTAL INDUSTRIAL DEMAND MARKET-DRIVEN	TOTAL INDUSTRIAL DEMAND POLICY INTERVENTION
2008	$(50,066)$	$(50,066)$	$(70,673)$	84,101	$(36,637)$	$(36,637)$
2009	$(58,966)$	$(53,756)$	$(83,237)$	99,053	$(43,150)$	$(37,939)$
2010	$(70,125)$	$(57,732)$	$(98,989)$	117,798	$(51,316)$	$(38,923)$
2011	$(68,734)$	$(50,514)$	$(97,026)$	115,462	$(50,298)$	$(32,077)$
2012	$(69,602)$	$(45,001)$	$(98,251)$	116,920	$(50,933)$	$(26,332)$
2013	$(35,147)$	$(19,619)$	$(49,614)$	59,041	$(25,720)$	$(10,191)$
2014	$(77,562)$	$(36,440)$	$(109,486)$	130,290	$(56,758)$	$(15,636)$
2015	$(66,813)$	$(25,486)$	$(94,313)$	112,234	$(48,892)$	$(7,565)$
2016	$(46,129)$	$(13,520)$	$(65,116)$	77,489	$(33,756)$	$(1,147)$
2017	$(35,444)$	$(7,257)$	$(50,033)$	59,541	$(25,937)$	2,251
2018	$(48,996)$	$(5,701)$	$(69,163)$	82,305	$(35,854)$	7,441
2019	$(73,460)$	$(2,057)$	$(103,696)$	123,401	$(53,756)$	17,647
2020	$(68,740)$	4,149	$(97,033)$	115,471	$(50,302)$	22,587
2021	$(69,600)$	10,351	$(98,248)$	116,916	$(50,931)$	29,020
2022	$(71,799)$	17,023	$(101,351)$	120,609	$(52,540)$	36,281
2023	$(64,673)$	21,048	$(91,293)$	108,640	$(47,326)$	38,395
2024	$(61,716)$	25,539	$(87,119)$	103,673	$(45,162)$	42,093
2025	$(65,062)$	32,673	$(91,841)$	109,293	$(47,611)$	50,124
2026	$(65,256)$	38,536	$(92,115)$	109,619	$(47,752)$	56,040
2027	$(62,638)$	42,525	$(88,420)$	105,221	$(45,837)$	59,326
2028	$(60,490)$	46,412	$(85,388)$	101,613	$(44,265)$	62,637
2029	$(62,052)$	53,094	$(87,593)$	104,237	$(45,408)$	69,738
2030	$(61,716)$	58,260	$(87,118)$	103,672	$(45,162)$	74,814
$\begin{aligned} & \text { TOTAL } \\ & \text { 2008-2030 } \end{aligned}$	$(1,414,788)$	$(17,537)$	$(1,997,115)$	2,376,600	$(1,035,303)$	361,948

INDUSTRIAL DEMAND BY 5 YEAR INCREMENTS

YEARS	FLEX SPACE DEMAND MARKET-DRIVEN	FLEX SPACE DEMAND POLICY INTERVENTION	DISTRIBUTION SPACE DEMAND	WAREHOUSE SPACE DEMAND	INDUSTRIAL DEMAND MARKET-DRIVEN	INDUSTRIAL DEMAND POLICY INTERVENTION
2005-2010	$(272,579)$	$(259,553)$	$(384,773)$	457,886	$(199,466)$	$(186,440)$
2010-2015	$(321,171)$	$(209,305)$	$(453,364)$	539,511	$(235,024)$	$(123,159)$
2015-2020	$(270,843)$	$(54,021)$	$(382,322)$	454,970	$(198,196)$	18,626
2020-2025	$(336,528)$	78,110	$(475,043)$	565,309	$(246,262)$	168,376
2025-2030	$(315,499)$	213,241	$(445,358)$	529,983	$(230,873)$	297,866

INDUSTRIAL DISCUSSION

- Market suggests best-case scenario, including policy intervention for flex space, is flat growth.
- Industrial is not typically transit supportive.
- More likely and still conservative scenario is pruning some industrial land as this model doesn't likely fully account for:
-Escalating land values
- Conversion of industrial to retail, which is not represented in absorption.
- Areas 8 and 9 likely are appropriate for pockets of industrial space, given connection to Chattachoochee Industrial core. However, current trends with land values, coupled with the impact Westide Park will have on land values, will place heighten pressure for properties to convert to higher intensity uses and likely preclude the development of any new industrial, even if there is market demand.
- Given land use patterns and interstate access, Area 2 may represent an opportunity for some form of industrial/ business park development but will require policy intervention.

TOTAL FORECASTS FOR ALL CATEGORIES

	2005 EXISTING	$2005-2010$	$2010-2015$	$2015-2020$	$2020-2025$	$2025-2030$
HOUSEHOLD GROWTH	62,985	10,095	10,196	9,715	10,654	11,211
OFFICE GROWTH (SF)	$5,548,630$	539,124	791,704	833,975	962,514	$1,021,110$
RETAIL GROWTH (SF)	$4,232,075$	$1,175,878$	645,381	792,053	921,521	501,099
INDUSTRIAL GROWTH (SF) (market-driven)	$15,180,223$	$(199,466)$	$(235,024)$	$(198,196)$	$(246,262)$	$(230,873)$

	2005 EXISTING	2010	2015	2020	2025	2030
TOTAL HOUSEHOLD	62,985	73,080	83,276	92,991	103,645	114,856
TOTAL OFFICE (SF)	$5,543,382$	$5,992,506$	$6,784,210$	$7,618,185$	$8,580,698$	$9,601,808$
TOTAL RETAIL(SF)	$4,232,075$	$5,407,954$	$6,053,335$	$6,845,388$	$7,766,910$	$8,268,009$
TOTAL INDUST. (SF) (market-driven)	$15,180,223$	$14,980,757$	$14,745,733$	$14,547,538$	$14,301,275$	$14,070,402$

ATLANTA BELTLINE, INC.

Exhibit 5

SUMMARY OF LAND USE PROJECTIONS BY BELTLINE SUBAREA
ATLANTA, GA
2005 \& 2020

	SUBAREA 1		SUBAREA 2		SUBAREA 3		SUBAREA 4		SUBAREA 5	
	2005	2020	2005	2020	2005	2020	2005	2020	2005	2020
Households										
Owners	3,957	4,933	3,297	4,256	2,239	3,889	1,938	3,145	3,223	5,515
Renters	4,023	4,741	3,352	4,057	2,276	3,484	1,971	2,853	3,277	4,949
Total	7,980	9,674	6,649	8,313	4,515	7,373	3,909	5,998	6,500	10,464
Office (SF)										
Local ${ }^{1}$	163,529	186,167	338,930	361,568	195,988	237,272	128,522	158,487	723,228	780,401
Regional ${ }^{2}$	0	0	0	0	0	0	0	0	136,056	348,735
Total	163,529	186,167	338,930	361,568	195,988	237,272	128,522	158,487	859,284	1,129,136
Retail (SF)										
Local ${ }^{3}$	75,515	150,975	85,441	160,901	106,738	244,352	226,558	326,442	567,148	719,608
Regional ${ }^{4}$	154,544	154,544	0	0	0	0	533,874	533,874	0	5,000
Total	230,059	305,519	85,441	160,901	106,738	244,352	760,432	860,316	567,148	724,608
Industrial (SF)										
Total	529,944	529,944	1,200,533	1,201,836	561,403	558,128	807,491	804,216	2,175,394	2,168,843

	SUBAREA 6		SUBAREA 7		SUBAREA 8		SUBAREA 9		SUBAREA 10	
	2005	2020	2005	2020	2005	2020	2005	2020	2005	2020
Households										
Owners	5,621	8,532	4,555	7,819	2,489	4,873	1,274	2,186	2,638	3,421
Renters	5,716	7,838	4,631	7,013	2,531	4,269	1,295	1,962	2,682	3,256
Total	11,337	16,370	9,186	14,832	5,019	9,142	2,569	4,148	5,320	6,677
Office (SF)										
Local	856,544	928,082	132,044	213,522	143,877	203,951	254,549	277,332	96,737	115,238
Regional	157,825	351,001	1,464,810	2,328,624	650,743	1,117,804	10,000	10,000	0	0
Total	1,014,369	1,279,083	1,596,854	2,542,146	794,620	1,321,756	264,549	287,332	96,737	115,238
Retail (SF)										
Local	819,539	1,010,306	635,017	852,292	398,783	558,981	130,236	206,177	26,080	87,752
Regional	383,596	383,596	89,008	725,944	0	594,518	0	0	0	150,000
Total	1,203,135	1,393,902	724,025	1,578,236	398,783	1,153,499	130,236	206,177	26,080	237,752
Industrial (SF)										
Total	1,769,438	1,762,886	2,999,054	2,990,865	4,120,680	4,117,926	810,189	809,333	206,098	206,098

[^2]Appendix

DEFINITIONS

- Home Sales include all new for-sale multi-family and single family homes.
- Local-serving office includes community-serving office space typically located in smaller mixed-use developments, retail centers, and office condominium developments.
- Regional-serving office is defined as mid- and high-rise office space typically found in major office cores.
- Local-serving retail is defined as grocery-anchored centers (at the high end of the size range), neighborhood centers, community centers, and unanchored retail.
- Regional-serving retail is defined as big-box retail centers, power centers, and regional malls.
- Flex industrial space typically includes up to 20% office space, with the remainder of the space used for manufacturing, distribution, or other.
- Distribution industrial space typically includes approximately 10% office space, with the remainder of the space used for short-term storage and subsequent distribution of goods.
- Warehouse industrial space typically includes approximately 5% office space, with the remainder of the space used for long-term storage of goods.

BELTLINE PLANNING AREA 1 ATLANTA, GA - JANUARY 2008

BELTLINE PLANNING AREA 2
ATLANTA, GA - JANUARY 2008

			1	1.5	2^{2}

BELTLINE PLANNING AREA 3 ATLANTA, GA - JANUARY 2008

RCLCO

BELTLINE PLANNING AREA 4 ATLANTA, GA - JANUARY 2008

RCLCO

BELTLINE PLANNING AREA 5 ATLANTA, GA - JANUARY 2008

BELTLINE PLANNING AREA 6 ATLANTA, GA - JANUARY 2008

BELTLINE PLANNING AREA 7 ATLANTA, GA - JANUARY 2008

BELTLINE PLANNING AREA 8 ATLANTA, GA - JANUARY 2008

BELTLINE PLANNING AREA 9 ATLANTA, GA - JANUARY 2008

BELTLINE PLANNING AREA 10 ATLANTA, GA - JANUARY 2008

ATLANTA BELTLINE, INC.

Appendix 12

POPULATION AND EMPLOYMENT PROJECTIONS UNIVERSITY AVENUE STUDY AREA ${ }^{1}$
 2005-2030

UNIVERSITY AVENUE STUDY AREA						
		2005	2010	2015	2020	2025

${ }^{1}$ The study area is comprised within 2000 Census Fulton County block groups 5501.4, 5502.1, 5502.2, $5600.1,5700.2,5800.1,6300.1$, $6300.3,6500.1,6500.2,6500.4,6500.6,6601.1$, and 6700.7
${ }^{2}$ Based on new households averaging 2 persons per household
${ }^{3}$ RCLCO projections assume Beltine and are based on ARC, City of Atlanta, and secondary data sources
${ }^{4}$ Based on ARC 2005 proportional census tract employment and RCLCO projected increases in office, industrial, and retail space

ATLANTA BELTLINE, INC.

Appendix 13

POPULATION AND EMPLOYMENT PROJECTIONS BROOKWOOD-LINDBERGH STUDY AREA ${ }^{1}$

2005-2030

BROOKWOOD-LINDBERGH STUDY AREA						
	2005	2010	2015	2020	2025	2030
Population 2	18,463	21,983	25,477	28,345	31,138	34,652
Households 3	9,186	11,197	13,193	14,832	16,428	18,436
Avg HH Size $^{\text {Employment }}{ }^{4}$	1.94	1.89	1.86	1.84	1.83	1.81
Job/HH Ratio 14,518	16,222	18,237	19,757	21,128	22,156	

${ }^{1}$ The study area is comprised within 2000 Census Fulton County block groups $9000.1,9000.3,9100.1,9100.2,9100.4,9300.1,9300.2$, 9402.1, $9402.5,9402.8$
${ }^{2}$ Based on new households averaging 1.75 persons per household
${ }^{3}$ RCLCO projections assume Beltline and are based on ARC, City of Atlanta, and secondary data sources
${ }^{4}$ Based on ARC 2005 proportional census tract employment and RCLCO projected increases in office, industrial, and retail space

CRITICAL ASSUMPTIONS

The conclusions and recommendations presented in this report are based on our analysis of the information available to us from our own sources and from the client as of the date of this report. We assume that the information is correct, complete, and reliable.
Our conclusions and recommendations are based on certain assumptions about the future performance of the global, national, and/or local economy and real estate market, and on other factors similarly outside either our control or that of the client. We analyzed trends and the information available to us in drawing conclusions and making the appropriate recommendations. However, given the fluid and dynamic nature of the economy and real estate markets, it is critical to monitor the economy and markets continuously and to revisit the aforementioned conclusions and recommendations periodically to ensure that they stand the test of time.
We assume that, in the future, the economy and real estate markets will grow at a stable and moderate rate. However, history tells us that stable and moderate growth patterns are not sustainable over extended periods of time. Indeed, we find that the economy is cyclical and that the real estate markets are typically highly sensitive to business cycles. Our analysis does not necessarily take into account the potential impact of major economic "shocks" on the national and/or local economy and does not necessarily account for the potential benefits from a major "boom." Similarly, the analysis does not necessarily reflect the residual impact on the real estate market and the competitive environment of such a shock or boom. The future is always difficult to predict, particularly given changing consumer and market psychology. Therefore, we recommend the close monitoring of the economy and the marketplace. The project and investment economics should be "stress tested" to ensure that potential fluctuations in the economy and real estate market conditions will not cause failure.
In addition, we assume that economic, employment, and household growth will occur more or less in accordance with current expectations, along with other forecasts of trends and demographic and economic patterns. Along these lines, we are not taking into account any major shifts in the level of consumer confidence; in the cost of development and construction; in tax laws (i.e., property and income tax rates, deductibility of mortgage interest, and so forth); or in the availability and/or cost of capital and mortgage financing for real estate developers, owners, and buyers. Should any of the above change, this analysis should probably be updated, with the conclusions and recommendations summarized herein reviewed accordingly (and possibly revised).
We also assume that competitive projects will be developed as planned (active and future) and that a reasonable stream of supply offerings will satisfy real estate demand. Finally, we assume that major public works projects occur and are completed as planned.

GENERAL LIMITING CONDITIONS

Reasonable efforts have been made to ensure that the data contained in this study reflect accurate and timely information and are believed to be reliable. This study is based on estimates, assumptions, and other information developed by RCLCO from its independent research effort, general knowledge of the industry, and consultations with the client and its representatives. No responsibility is assumed for inaccuracies in reporting by the client, its agent, and representatives or in any other data source used in preparing or presenting this study. This report is based on information that to our knowledge was current as of the date of this report, and RCLCO has not undertaken any update of its research effort since such date.
Our report may contain prospective financial information, estimates, or opinions that represent our view of reasonable expectations at a particular time, but such information, estimates, or opinions are not offered as predictions or assurances that a particular level of income or profit will be achieved, that particular events will occur, or that a particular price will be offered or accepted. Actual results achieved during the period covered by our prospective financial analysis may vary from those described in our report, and the variations may be material. Therefore, no warranty or representation is made by RCLCO that any of the projected values or results contained in this study will be achieved.

Possession of this study does not carry with it the right of publication thereof or to use the name of "Robert Charles Lesser \& Co." or "RCLCO" in any manner without first obtaining the prior written consent of RCLCO. No abstracting, excerpting, or summarization of this study may be made without first obtaining the prior written consent of RCLCO. This report is not to be used in conjunction with any public or private offering of securities or other similar purpose where it may be relied upon to any degree by any person other than the client without first obtaining the prior written consent of RCLCO. This study may not be used for any purpose other than that for which it is prepared or for which prior written consent has first been obtained from RCLCO.

Update of Market Forecasts for Atlanta Beltline Study Area; Atlanta, Georgia

Atlanta Beltuine, Inc | January 10, 2008

Agenda
BeltLine Master Plan
Peachtree/Collier/Armour Study Area Steering Committee
July 10, 2007; 6:00-7:30 pm
Peachtree Hills Recreation Center

1. Welcome - Tina Arbes
2. Beltline Overview/Update - John Skach
3. Master Planning Process - Nate Conable
4. Steering Committee Issues Discussion/Identification - Ed McKinney to facilitate

Study Area 7 Steering Committee Kick-off Meeting July 10, 2007
 Peachtree Hills Recreation Center

Tina Arbes began the meeting by welcoming everyone and thanking them for their participation on the Steering Committee.

John Skach, consultant to Atlanta BeltLine, Inc and employee of Urban Collage, provided the Steering Committee with an overview of past studies, focusing on the BeltLine Redevelopment Plan, the City's Future Land Use Plan, and the Street Framework Plan.

Nate Conable, Senior Project Manager with Atlanta BeltLine, Inc, introduced the master planning process, including expectations from the steering committee, general timeline, and scope of the master plan.

Ed McKinney, project manager for the consulting firm assisting ABI, led the group through a series of questions. The following includes the questions and responses:

WHAT IS THE CRITICAL ISSUE? (number of times mentioned)

- Opportunity to raise activity
- Crime
- Maintain neighborhoods
- Ability to implement the plan/vision (3)
- Greenspace/trails (2)
- Connectivity (6)
- Density and how it is implemented (3)
- What is the impact (economic) on existing development (2)
- Smart growth
- Adequately addressing transportation (2)
- How we handle convergence of transit and development opportunities (the timing of development and transit, which comes first?)
- Workforce housing
- Environmental impact - prevention
- Preservation of natural beauty/character of neighborhood
- Traffic (2)
- Keeping Atlanta unique and not cookie cutter

WHAT ARE YOU EXCITED ABOUT?

- Creating a connected, accessible City where you can get around easily on foot or bike - you don't need a car.
- Excited about incorporating the outcomes of this process into ongoing redevelopment projects - balanced by economics.
- Excited about connectivity opportunity to connect Amtrak, I-85, Peachtree Streetcar, Piedmont, BeltLine, MARTA.
- Excited to improve aesthetics of the area. Not nice now.
- Excited about the opportunity to redevelop property \rightarrow how can this process help shape Colonial Homes.
- Excited about opportunities to create development node and increased density.
- Excited about innovative design and art integrated at the right time into the BeltLine.
- Excited about potential to capitalize on existing arts facilities like Bennett Street galleries.

WHAT ARE SOME POTENTIAL NAMES FOR OUR STUDY AREA?

- Northside-Peachtree-Piedmont Study Area
- Uptown Study Area
- Northside Study Area

ATLANTA BELTLINE PROJECT

Steering Committee Kick-off Meeting

Master Planning Overview

July 10, 2007

Master Planning will provide detailed land use, transportation and open space plans for BeltLine

- BeltLine project area sub-divided into $\mathbf{1 0}$ study Areas for Master Planning
- Provide an opportunity for comprehensive community engagement
- Complete detailed technical analysis for transportation, land use and parks
- Deliver additional implementation tools

Master Planning:
Study Areas

Provides an opportunity for comprehensive community engagement

- Steering Committee will meet 8 times
- 4 meetings will be public (Study Group) meetings
- Stakeholder meetings and interviews as needed

Master Planning:

Technical Analysis
Detailed technical analysis of transportation, land use and parks

- Transportation connectivity and infrastructure needs including
- Circulation planning
- Streetscapes
- Detailed traffic analysis
- New roads, pedestrian and bicycle facilities
- Confirmation of land use - based on BeltLine Redevelopment Plan and small area plans - including
- Parks opportunities
- Land Use Plan Updates
- Survey of existing buildings
- Potential historical and cultural features
- Public and cultural arts opportunities
- Zoning recommendations

Delivers additional implementation tools

- Atlanta Strategic Action Plan (formerly Comprehensive Development Plan) will be updated to Include BeltLine Supportive Land Uses
- Establish an ideal street grid to support the BeltLine, so that it can be constructed by both the public and private sectors
- Detail and prioritize the pedestrian, roadway and bicycle projects needed to provide access to the BeltLine and maintain mobility (\$21 M in TAD funding available next 5 yrs)

Master Planning:
Resources

Resources from Previous BeltLine Studies:
Peachtree/Collier/Armour Study Area

Agenda
 Northside Study Group Meeting August 28, 2007

Welcome

Update on Happenings around the BeltLine
Study Group Confirmation of Coordinators
Master Planning Overview and Schedule
NE Trail Alignment Guiding Principles and Schedule

Master Planning Update

- Northside Study Group Vision
- Overview of Existing Conditions
- Draft Study Goals

Next Steps

- September 25 (6:30 to 8:30): Study Group Meeting to finalize goals, review detailed existing conditions information, and discuss several keys areas within the Study Area.
- October 30 (6:30 to 8:30): Review conceptual plans for Study Area.
- Tentative - January 22 (6:30 to 8:30): Review recommended master plan for Study Area.

Each of the above Study Group meetings is planned for the gymnasium of the Peachtree Hills Rec. Center.

Northside Study Group
 August 28, 2007
 Peachtree Hills Recreation Center

BeltLine Update

- Jonathan Lewis provided updates on the current status of the BeltLine master plan as it pertains to the Peachtree/Collier Area
o Master plan will emphasize Traffic Connectivity, and Streetscapes
o Land use will be parcel specific and will feed recommendations into the ASAP
- Tina Arbes provided a BeltLine wide events update (Favorable response to the to the TAD court challenge, NE Corridor).

Confirmation of Study Group Coordinators

- Roland Young led the group in the confirmation of Study Group Coordinators. Steven Hart and Tony Casadonte were confirmed as the Northside Study Group Coordinators.

NE Trail Alignment Guiding Principles and Schedule

- Tina Arbes introduced the Atlanta BeltLine, Inc (ABI) trail guiding principles and a schedule for settling the trail alignment questions within Tanyard Creek Park.

Master Planning Update

- Jonathan Lewis walked through a PowerPoint presentation introducing the Subarea Master Plan scope, process, and schedule.
- Common Study Group Concerns/Ideas:
o Transportation Issues
o Development Impacts
o Tanyard Creek Park Trail
o How do we involve developers and the industrial community that operates in the subarea?
- Common Transportation Concerns:
o One of the main transportation concerns about the planning effort is the congestion at the Peachtree/Collier Rd. intersection. Jonathan Lewis and Ed McKinney both stated that connectivity will be one of the focal points of this effort, and this area is particular is one of acute importance.
o The consultants and residents agreed that the linking of the area greenspaces should be a key component of the area plan.
o Ed McKinney stated that while the consultants were only obligated to plan within the subarea, their efforts would take areas around the subarea into consideration.
- Concerns on the Impact of Development:
o The community's main concern was the impact future development would have on single-family neighborhoods. It was quickly pointed out that one
of the main tenants of the BeltLine planning process was to protect single-family neighborhoods. The group was also notified that singlefamily neighborhoods were excluded from the TAD for that very reason.
o There was concern that the overlay district was an excuse to make changes to zoning and future land use. The overlay was described as a set of urban design standards, and as only an addition to the already existing underlying zoning. The BeltLine overlay actually has no effect on land use or density.
o Many community members questioned the coordination between the BeltLine plans and other city planning efforts (CTP, ASAP). The study group was notified that there are bi-monthly coordination meetings within the Bureau regarding this exact issue.
- Tanyard Creek Trail Concerns:
o Concern was raised over the trails use of an impervious surface, as well as alignment. It was noted to the group that nothing is final, and that their input will have a large outcome on the final trail plan.
- Concerns over the input from the industrial sector in the area:
o There was some concern from the group relating to the amount of input the industrial sector would be providing into the plans. The industrial sector is actually represented on the steering committee for the area, so their concerns will not go unresolved.
- Consultant's Efforts. Glatting's Project Manager Ed McKinney vowed his group would:
o Maximize Accessibility
o Program appropriate uses throughout the subarea
o Maximize quality and design throughout the process
o Take all the concerns of the neighborhood in consideration, even offering to have a park walk through with the residents

NORTHSIDE BELTLINE STUDY AREA VISION STATEMENT

The Northside Study Area is a largely residential segment of the Beltline. Several single-family residential neighborhoods occur with relatively fewer multi-family, high-rise buildings than in other Beltline segments. This segment of the Beltline is crossed by the Peachtree Corridor and its existing retail and residential amenities, as well as the other significant commercial corridors of Piedmont Road, Northside Drive and Howell Mill Road. However, the Northside Study Area cherishes its existing greenspace such as Tanyard Creek Park and Bobby Jones Golf Course, as well as planned parks such as Waterworks.

We want to preserve what makes our community unique - the historic landmarks, vital greenspace and single-family neighborhoods; enhance underdeveloped areas, while minimizing encroachment on current residential property and improving environmental quality; and provide safe and convenient access to our community assets through existing and potential transportation mobility options. As we effectuate our vision, we must maintain open and regular public communication and input with all stakeholders in the community, including current residents, and we must represent and implement their best interests.

COMMUNITY BENEFITS PRINCIPALS

- Preservation of Greenspace
- Create New Greenspace and Maximize New Greenspace Opportunities
- Linkage of Greenspaces
- Preservation of Historic Assets
- Preservation of Existing Neighborhood Communities
- Minimize Impact on Single-Family Homes
- Development Consistent with Scale and Architecture of Surrounding Neighborhoods and Zoning
- Provide Transitional Zoning and Density to Existing Single-Family Residential Neighborhoods
- Minimize Impact of Trails on Established Neighborhoods
- Location of Trail Access Points to Minimize On-Street Parking
- Well Thought-Out Parks and Greenspace Along the BeltLine
- Right-Of-Way Wide Enough to Accommodate Large Shade Trees Along BeltLine
- Improve Environmental Quality
- Take Care to Protect Sensitive Environmental Areas
- Offer Significant Stormwater Management That Mitigates Flooding
- Public Safety
- Safe, Integrated \& Convenient Pedestrian Access
- Safe, Integrated \& Convenient Recreation - More Bikes, Fewer Cars
- Comprehensive Traffic Planning That Is Integrated With Existing or Future Transit
- Well-Connected Street Grid
- Implement Traffic Calming Measures and Streetscape Improvements on Existing Residential Streets That Currently Provide Mobility for Cut-Through Traffic
- Initiate "No Commercial Traffic" Legislation and Enforcement on Residential Streets
- BeltLine Easy to Navigate
- Creation of Opportunities for Innovative Public Art
- Opportunities for Convenient Retailing
- Internships and Apprenticeships to Train Resident for BeltLine Jobs
- Mixed-Use Development Nodes at Stations That Includes Affordable Housing
- Have Incentives to Encourage Community Involvement
- Physical Completion and Continuity of BeltLine Project
- Long-Term Maintenance \& Expansion of Project
- Emphasis on Design Quality
- Encourage and Implement Quality Development That Is Unique and Complementary to Existing/Surrounding Development
- Inclusive and On-Going Planning Process
- Green Design With Regard to Recycling, Carbon Usage, Ground Cover and Water Quality

Atlanta Beltline

Northside Study Group Meeting Overview Presentation

August 28, 2007

KEY ELEMENTS OF THE BELTLINE

BeltLine

Workforce Housing
\$240M ~5,600 units

Historic Preservation

Streetscapes and Transportation Infrastructure

Environmental Clean-up

MASTER PLANNING

Overview

BeltLine

Detailed interdisciplinary planning for focused study area

- Builds on previous plans and studies
- Provides an opportunity for comprehensive community engagement
- Technical analysis for transportation, land use and parks
- Interdisciplinary consulting team support

MASTER PLANNING

Community Involvement

BeltLine

Provides an opportunity for comprehensive community engagement

- Steering Committee will meet 8 times
- Study Group 4 times
- NPU Involvement Through Study Group and Steering Committee and Traditional Review Roles

MASTER PLANNING

Technical Analysis 1

BeltLine

Transportation connectivity and infrastructure needs including

- Circulation planning
- Streetscapes
- Detailed traffic analysis
- New roads, pedestrian and bicycle facilities

MASTER PLANNING

Technical Analysis 2

Confirmation of land use - based on BeltLine Redevelopment Plan and small area plans

- Land Use Plan Updates
- Potential historical and cultural features
- Public and cultural arts opportunities
- Zoning recommendations

MASTER PLANNING
 Implementation Tools

BeltLine

Delivers additional implementation tools

- Atlanta Strategic Action Plan (formerly Comprehensive Development Plan) and Comprehensive Transportation Plan
- Street grid to support the BeltLine
- Identify and prioritize for funding roadway and bicycle projects needed
- Park master planning in other subareas

MASTER PLANNING Schedule

Study Group Meetings (6:30 to 8:30)

- September 25
- October 30 (tentative)
- January 22, 2008 (tentative)

Study Area - Process \& Key Dates

Northside BeItLine Study Area Vision Statement

$\&$

Community Benefits Principals

Northside BeltLine Study Area - Community Benefits Principals

- Preservation of Greenspace
- Create New Greenspace and Maximize New Greenspace Opportunities
- Linkage of Greenspaces
- Preservation of Historic Assets
- Preservation of Existing Neighborhood Communities
- Minimize Impact on Single-Family Homes
- Development Consistent with Scale and Architecture of Surrounding Neighborhoods and Zoning
- Provide Transitional Zoning and Density to Existing Single-Family Residential Neighborhoods

Northside BeltLine Study Area - Community Benefits Principals

- Minimize Impact of Trails on Established Neighborhoods
- Location of Trail Access Points to Minimize On-Street Parking
- Well Thought-Out Parks and Greenspace Along the BeltLine
- Right-Of-Way Wide Enough to Accommodate Large Shade Trees Along BeltLine

Northside BeltLine Study Area - Community Benefits Principals

- Improve Environmental Quality
- Take Care to Protect Sensitive Environmental Areas
- Offer Significant Stormwater Management That Mitigates Flooding

Northside BeltLine Study Area - Community Benefits Principals

- Public Safety
- Safe, Integrated \& Convenient Pedestrian Access
- Safe, Integrated \& Convenient Recreation - More Bikes, Fewer Cars

Northside BeltLine Study Area - Community Benefits Principals

- Comprehensive Traffic Planning That Is Integrated With Existing or Future Transit
- Well-Connected Street Grid
- Implement Traffic Calming Measures and Streetscape Improvements on Existing Residential Streets That Currently Provide Mobility for CutThrough Traffic
- Initiate "No Commercial Traffic" Legislation and Enforcement on Residential Streets
- BeltLine Easy to Navigate

Northside BeltLine Study Area - Community Benefits Principals

- Creation of Opportunities for Innovative Public Art
- Opportunities for Convenient Retailing
- Internships and Apprenticeships to Train Resident for BeltLine Jobs
- Mixed-Use Development Nodes at Stations That Includes Affordable Housing
- Have Incentives to Encourage Community Involvement

Northside BeltLine Study Area - Community Benefits Principals

- Physical Completion and Continuity of BeltLine Project
- Long-Term Maintenance \& Expansion of Project
- Emphasis on Design Quality
- Encourage and Implement Quality Development that is unique and complementary to existing/surrounding development
- Inclusive and on-going process
- Green Design with regard to recycling, carbon usage, ground cover and water quality

The Study Area (TAD)

Neighborhoods

Open Space \& Parks

Legend
\square Parks \& Open Space
Floodplain

- Streams
\square Beltline Corridor

Redevelopment Opportunities

Legend

\square Ready for Redev.
[8] Redev. Underway
\square Long-term Redev.
\Rightarrow Rail Lines

- Streams
\square Beltline Corridor

Northside /Peachtree/Piedmont Study Area

Draft Goals

Study Area - Draft Goals

Open Space

- Preservation of Greenspace
- Create New Greenspace and Maximize New Greenspace Opportunities
- Maximize Accessibility
- Linkage of Greenspaces
- Preservation of Historic Assets
- Well Thought-Out Parks and Greenspace Along the BeltLine
- Program appropriate use (adjacent to neighborhoods, for security, etc.)
- Maximize Quality \& Design
- Improve Environmental Quality
- Take Care to Protect Sensitive Environmental Areas
- Offer Significant Stormwater Management That Mitigates Flooding

Study Area - Draft Goals

Trail/Greenway

- Minimize Impact of Trails on Established Neighborhoods
- Location of Trail Access Points to Minimize On-Street Parking
- Right-Of-Way Wide Enough to Accommodate Large Shade Trees Along BeltLine
- Connect key resources (parks) and destinations (hospital/MARTA)
- Maximize Accessibility \& Visibility - extensions (on \& off street)
- Provide for both recreational and commuter use
- Public Safety
- Safe, Integrated \& Convenient Pedestrian Access
- Safe, Integrated \& Convenient Recreation - More Bikes, Fewer Cars

Study Area - Draft Goals

Transit

- Physical Completion and Continuity of BeltLine Project
- Comprehensive Traffic Planning That Is Integrated With Existing or Future Transit
- Long-Term Maintenance \& Expansion of Project
- Emphasis on Design Quality
- Creation of Opportunities for Innovative Public Art
- Connect BeltLine Transit to MARA (Lindbergh and/or new infill station)
- Connect BetlLine Transit to Piedmont Hospital
- Maximize transit access to existing development - origins (neighborhoods) \& destinations (commercial/institutional)
- Maximize access to serve redevelopment opportunities
- Maximize employment opportunities
- Determine/evaluate appropriate station spacing \& transit technology

Study Area - Draft Goals

Neighborhoods

- Preservation of Existing Neighborhood Communities
- Minimize Impact on Single-Family Homes
- Development Consistent with Scale and Architecture of Surrounding Neighborhoods and Zoning
- Provide Transitional Zoning and Density to Existing Single-Family Residential Neighborhoods
- Improve access to open space
- Improve access to trails
- Improve access to transit
- Have Incentives to Encourage Community Involvement
- Inclusive and on-going process

Study Area - Draft Goals

Redevelopment

- Development Consistent with Scale and Architecture of Surrounding Neighborhoods and Zoning
- Provide Transitional Zoning and Density to Existing Single-Family Residential Neighborhoods
- Leverage to accomplish community goals (open space, trail, transit)
- Structure to promote connectivity
- Balance use/intensity with access
- Maximize (where appropriate) development opportunities, density \& employment
- Opportunities for Convenient Retailing
- Internships and Apprenticeships to Train Resident for BeltLine Jobs
- Mixed-Use Development Nodes at Stations That Includes Affordable Housing
- Encourage and Implement Quality Development that is unique and complementary to existing/surrounding development
- Green Design with regard to recycling, carbon usage, ground cover and water quality

Study Area - Draft Goals

Connectivity

- Well-Connected Street Grid
- Implement Traffic Calming Measures and Streetscape Improvements on Existing Residential Streets That Currently Provide Mobility for CutThrough Traffic
- Initiate "No Commercial Traffic" Legislation and Enforcement on Residential Streets
- BeltLine Easy to Navigate
- Encourage connections to reduce impact on existing streets (neighborhoods)
- Structure redevelopment to promote connectivity
- Clarify access and connectivity to regional roads (Buford Hwy/85)
- Improve connectivity and access to existing development (all modes)

BeltLine Master Plan
Northside-Peachtree-Piedmont Subarea
Northside Study Group Meeting
September 25, 2007; 6:30-8:30 pm
Peachtree Hills Recreation Center

1. Welcome
2. Confirmation of Goals Framework
3. Review of Existing Conditions
4. Small Group Exercise
5. Next Steps

Northside Study Group Meeting
September 25, 2007
Peachtree Hills Recreation Center
6:30 to 8:30

Master Planning Focus

1. Focus on areas immediately surrounding the BeltLine
2. Transportation
3. Parks and Trails
4. Land Use throughout Subarea

Jonathan - Opening Statements

1. Throughout the BeltLine's planning process one of the main goals has been to maintain a high level of public interest and public involvement in the project. This objective led to Jonathan Lewis' request for the meeting's attendees to help publicize the next round of meetings.
2. Jonathan then followed up his request with a basic presentation of what is being focused on in the master planning effort. He briefly touched on topics such as transportation, land use and parks.
3. Following his brief opening Jonathan introduced Ed McKinney of Glatting, Jackson, Kercher, Anglin. Ed McKinney is working as the project manager on the Peachtree-Collier Subarea.

Ed McKinney - Glatting - Here are our goals, how do we get there? What are the alternatives?

1. Kickoff of the actual planning starts this week. We will be working all week to create concepts as well as alternatives, which we present to the steering committee for comments on Sept. $27^{\text {th }}$. After taking the steering committee's comments into account we will go work on developing a plan, and present that back to the study group on Oct. $30^{\text {th }}$.
2. McKinney then went into detail about the five specific areas of focus he and his team would be working on. McKinney stated that his team would focus on plans for open space, trails, transportation, neighborhood preservation, and redevelopment opportunities.
3. The early part of McKinney's presentation was focused on what his team found during two recently completed area reviews. One of the reviews focused on the neighborhoods and included neighborhood boundaries, historic districts and historic resources. The other review included many
of the physical constraints Glatting found along the BeltLine rail alignment (active CSX line), as well as the trail constraints (Tanyard Creek, CSX trestle).
4. Some of the more notable physical constraints that were presented included:
a. Rear of Piedmont Hospital near the substation
b. Peachtree Creek at Brookwood Hills
c. I-85 to Piedmont near the active industrial yards.
5. Ed McKinney proposed three different alignments for trail connections through Tanyard Creek Park.
a. Eastern Edge
b. Through the meadow
c. Western Edge

Residents continued to voice their concerns over the use of Tanyard Creek Park. In response McKinney illustrated how the physical constraints have led to the concentration on Tanyard Creek Park for the trail. McKinney also told the group that the use of the public facilities are looked at in terms for the greater good of the city, although he would like to be as sensitive as possible to the neighborhood issues as his team develops their plan.
6. Transportation Issues
a. McKinney and his team presented a series of maps that highlighted how limited the East-West connectivity was throughout the subarea.
b. McKinney also spoke about the possible interest from MARTA in an infill station between Arts Center and Lindbergh
c. McKinney also demonstrated using a transportation model that Dunwoody had a higher connectivity rate than subarea 7. He also used Paris for an urban model which had a score of 78, while downtown Atlanta had a score of 47. The subarea lagged well behind with a meager score of 10.6.

Shortly after McKinney's presentation the groups broke into smaller groups where they were charged with the task of developing a consensus on the alignment of the trail, as well as address any other issues they have with the BeltLine alignment or trail alignment. There was also a portion of the assignment that had residents of the neighborhoods evaluate possible street developments

Northside /Peachtree/Piedmont Study Area

Draft Goals / Evaluation Framework

(white = Study Group Principles)

Study Area - Draft Goals

Open Space

- Preservation of Greenspace
- Create New Greenspace and Maximize New Greenspace Opportunities
- Maximize Accessibility
- Linkage of Greenspaces
- Preservation of Historic Assets
- Well Thought-Out Parks and Greenspace Along the BeltLine
- Program appropriate use (adjacent to neighborhoods, for security, etc.)
- Maximize Quality \& Design
- Build upon City's Greenspace Plan
- Improve Environmental Quality
- Take Care to Protect Sensitive Environmental Areas
- Offer Significant Stormwater Management That Mitigates Flooding
(white = Study Group Principles)

Study Area - Draft Goals

Trail/Greenway

- Minimize Impact of Trails on Established Neighborhoods
- Location of Trail Access Points to Minimize On-Street Parking
- Right-Of-Way Wide Enough to Accommodate Large Shade Trees Along BeltLine
- Connect key resources (parks) and destinations (hospital/MARTA)
- Maximize Accessibility \& Visibility - extensions (on \& off street)
- Provide for both recreational and commuter use
- Public Safety
- Safe, Integrated \& Convenient Pedestrian Access
- Safe, Integrated \& Convenient Recreation - More Bikes, Fewer Cars
(white = Study Group Principles)

Study Area - Draft Goals

Transit

- Physical Completion and Continuity of BeltLine Project
- Comprehensive Traffic Planning That Is Integrated With Existing or Future Transit
- Long-Term Maintenance \& Expansion of Project
- Emphasis on Design Quality
- Creation of Opportunities for Innovative Public Art
- Connect BeltLine Transit to MARTA (Lindbergh and/or new infill station) \& Piedmont Hospital, Peachtree Streetcar
- Maximize transit access to existing development - origins (neighborhoods) \& destinations (commercial/institutional)
- Maximize access to serve redevelopment opportunities
- Maximize employment opportunities
- Explore potential transit alignment, station spacing \& transit technology options
(white = Study Group Principles)

Study Area - Draft Goals

Neighborhoods

- Preservation of Existing Neighborhood Communities
- Minimize Impact on Single-Family Homes
- Development Consistent with Scale and Architecture of Surrounding Neighborhoods and Zoning
- Provide Transitional Zoning and Density to Existing Single-Family Residential Neighborhoods
- Improve access to open space
- Improve access to trails
- Improve access to transit
- Have Incentives to Encourage Community Involvement
- Inclusive and on-going process
(white = Study Group Principles)

Study Area - Draft Goals

Redevelopment

- Development Consistent with Scale and Architecture of Surrounding Neighborhoods and Zoning
- Provide Transitional Zoning and Density to Existing Single-Family Residential Neighborhoods
- Leverage to accomplish community goals (open space, trail, transit)
- Structure to promote connectivity
- Balance use/intensity with access
- Maximize (where appropriate) development opportunities, density \& employment
- Opportunities for Convenient Retailing
- Internships and Apprenticeships to Train Resident for BeltLine Jobs
- Mixed-Use Development Nodes at Stations That Includes Affordable Housing
- Encourage and Implement Quality Development that is unique and complementary to existing/surrounding development
- Green Design with regard to recycling, carbon usage, ground cover and water quality
(white = Study Group Principles)

Study Area - Draft Goals

Connectivity

- Well-Connected Street Grid
- Implement Traffic Calming Measures and Streetscape Improvements on Existing Residential Streets That Currently Provide Mobility for CutThrough Traffic
- Initiate "No Commercial Traffic" Legislation and Enforcement on Residential Streets
- BeltLine Easy to Navigate
- Encourage connections to reduce impact on existing streets (neighborhoods)
- Structure redevelopment to promote connectivity
- Clarify access and connectivity to regional roads (Buford Hwy/85)
- Improve connectivity and access to existing development (all modes)

BeltLine

AtlantaConnected

BeltLine Sub Area Master Planning
Northside/Peachtree/Piedmo nt

Study Group Meeting

Study Area - Process \& Key Dates

The Study Area

Legend

- Subarea 7 TAD Boundary
\square Beltline
- Corridor Streams

Existing Conditions Framework

Neighborhoods \& Historic Resources

(white = Study Group Principles)

Study Area - Draft Goals

Neighborhoods

- Preservation of Existing Neighborhood Communities
- Minimize Impact on Single-Family Homes
- Development Consistent with Scale and Architecture of Surrounding Neighborhoods and Zoning
- Provide Transitional Zoning and Density to Existing Single-Family Residential Neighborhoods
- Improve access to open space
- Improve access to trails
- Improve access to transit
- Have Incentives to Encourage Community Involvement
- Inclusive and on-going process

Neighborhoods

Historic Resources: Neighborhoods \& Structures

Historic Resources: Battle of Peachtree Creek

Parks \& Open Space
(white = Study Group Principles)

Study Area - Draft Goals

Open Space

- Preservation of Greenspace
- Create New Greenspace and Maximize New Greenspace Opportunities
- Maximize Accessibility
- Linkage of Greenspaces
- Preservation of Historic Assets
- Well Thought-Out Parks and Greenspace Along the BeltLine
- Program appropriate use (adjacent to neighborhoods, for security, etc.)
- Maximize Quality \& Design
- Build upon City's Greenspace Plan
- Improve Environmental Quality
- Take Care to Protect Sensitive Environmental Areas
- Offer Significant Stormwater Management That Mitigates Flooding

Topography

Open Space \& Parks

Trails \& Greenway

(white = Study Group Principles)

Study Area - Draft Goals

Trail/Greenway

- Minimize Impact of Trails on Established Neighborhoods
- Location of Trail Access Points to Minimize On-Street Parking
- Right-Of-Way Wide Enough to Accommodate Large Shade Trees Along BeltLine
- Connect key resources (parks) and destinations (hospital/MARTA)
- Maximize Accessibility \& Visibility - extensions (on \& off street)
- Provide for both recreational and commuter use
- Public Safety
- Safe, Integrated \& Convenient Pedestrian Access
- Safe, Integrated \& Convenient Recreation - More Bikes, Fewer Cars

Trails

Issues:

-Lots of past study -Identifying an alignment -Additional connections to surrounding neighborhoods \& destinations -"bridging" barriers (rail, creeks, freeways)

Legend

Parks \& Open
Space
Destinations

- 2004 TPL Study
- 2005 Redev. Plan
-2007 Current Study
- Rail Lines
\square Streams
Beltline Corridor

Transit
(white = Study Group Principles)

Study Area - Draft Goals

Transit

- Physical Completion and Continuity of BeltLine Project
- Comprehensive Traffic Planning That Is Integrated With Existing or Future Transit
- Long-Term Maintenance \& Expansion of Project
- Emphasis on Design Quality
- Creation of Opportunities for Innovative Public Art
- Connect BeltLine Transit to MARTA (Lindbergh and/or new infill station) \& Piedmont Hospital, Peachtree Streetcar
- Maximize transit access to existing development - origins (neighborhoods) \& destinations (commercial/institutional)
- Maximize access to serve redevelopment opportunities
- Maximize employment opportunities
- Explore potential transit alignment, station spacing \& transit technology options

Transit

Issues:

-Identifying appropriate and buildable alignments -Connecting to existing MARTA \& future Ptree Streetcar ""bridging" barriers (rail, creeks, freeways)
-Max. accessibility (neighborhood, existing dev. \& future redevelopment)

Legend

- Peachtree
- Streetcar
- CSX
- Norfolk Southern

MARTA

- Destinations
\square Streams
Beltline Corridor

Transit Accessibility

Street Connectivity

(white = Study Group Principles)

Study Area - Draft Goals

Connectivity

- Well-Connected Street Grid
- Implement Traffic Calming Measures and Streetscape Improvements on Existing Residential Streets That Currently Provide Mobility for CutThrough Traffic
- Initiate "No Commercial Traffic" Legislation and Enforcement on Residential Streets
- BeltLine Easy to Navigate
- Encourage connections to reduce impact on existing streets (neighborhoods)
- Structure redevelopment to promote connectivity
- Clarify access and connectivity to regional roads (Buford Hwy/85)
- Improve connectivity and access to existing development (all modes)

Connectivity

Connectivity: East-West \& North-South

						A									

reach:
how much street length is available within a metric radius?

"Reach"

Between Beltline \& 285:
21.9 miles

Beltline TAD:

 33.5 milesInside Beltline:
47.3 miles

Comparables

Atlanta Inside l-285:
26.5 miles

Central Paris:

77.8 miles

Downtown Atlanta:
56.7 miles

Crabapple (Fulton Co.): 10.2 miles

Connectivity: Measures

	Street miles (per sq. mile)	Intersectio ns (per sq. mile)	Block s (per sq. mile)	"Reach" (miles in a 1 mile radius)	Ave. number of turns (1 mile radius)
Downtown	26.7	234	151.5	52.5	3.2
Decatur	15.9	96.9	39.4	25.7	5.5
Ansley	15.5	93.9	40.1	26.9	4.2
Va	14.4	82.3	34.5	25.1	5.1
Dunwoody	14.0	67.1	20.6	13.9	8.5
Study	10.6	52.9	29.7	16.6	4.7

Midtown Atlanta

Peachtree \& Piedmont Hospital

Benefits of Network

Benefits of Network

Land Use \& Redevelopment
(white = Study Group Principles)

Study Area - Draft Goals

Redevelopment

- Development Consistent with Scale and Architecture of Surrounding Neighborhoods and Zoning
- Provide Transitional Zoning and Density to Existing Single-Family Residential Neighborhoods
- Leverage to accomplish community goals (open space, trail, transit)
- Structure to promote connectivity
- Balance use/intensity with access
- Maximize (where appropriate) development opportunities, density \& employment
- Opportunities for Convenient Retailing
- Internships and Apprenticeships to Train Resident for BeltLine Jobs
- Mixed-Use Development Nodes at Stations That Includes Affordable Housing
- Encourage and Implement Quality Development that is unique and complementary to existing/surrounding development
- Green Design with regard to recycling, carbon usage, ground cover and water quality

Future Land Use

Related Studies

Related Studies: Connectivity

Redevelopment Opportunities

Issues:
-Lots of studies (Lindbergh, Ptree streetcar, BeltLine, Piedmont Corridor, Piedmont Heights, etc.)
-Short-term \& long term opportunities
-Max.
opportunities that are sensitive to neighborhoods

Legend
\square Ready for Redev.
© Redev. Underway
\square Long-term Redev.
$=-$ Rail Lines

- Streams
\square Beltline Corridor

What Does All this Mean?

Transit

- How Best to serve development opportunities?
- Station Lonocation and Accessibility

Mis ficelcl

Proposed Trail Alignment

- Need to Define the most appropriate alignment
- Lots of constraints
- Each option has impacts

```
85
```


Proposed Connections and Redevelopment

- Establish connectivity
- Integrate transit and trail
- Define appropriate redevelopment

Long-Term Potential
Proposed Streetscape

Tonight's Table Sessions

Transit:

-Other alignment options to consider?
-Where should stations go?
Trail:
-Define goals \& specific issues with alternatives
-Layout other options...
Connectivity \& Redevelopment:
-Evaluate street connections
-Are there others to be considered?

77 Undergoing Redevelopm \square Ready for Redevelopment Long-Term Potential

77 Undergoing Redevelopm
Ready for Redevelopment Long-Term Potential

Discussion on Draft Goals/Evaluation Framework

Next Meeting: September 25th
-Review \& Refine Goals/Evaluation Framework
-Review refined Existing Conditions Analysis
-Design Worksession

Network
Sparse Hierarchy

Peachtree/Collier Sub-Area Master Plan
 Steering Committee Meeting
 September 27, 2007

Ed McKinney, Glatting, opened the meeting:

- Introductions
- Review of Tuesday's meeting
o Summary of content from meeting
o Trying to make key decisions to move forward
- Tanyard Creek Park
o Trail options
o Building consensus
Tonight's Meeting Outline/Goals:

1. Redevelopment Plan and Street Connectivity
a. Establish a framework for redevelopment
b. Evaluate need for land use changes
2. Transit
a. Establish alignment alternatives
b. Set evaluation measures for future EIS
c. Identify opportunities to move this section of transit forward more quickly
3. Trails and Greenways
a. Nail down a Master Plan
b. Define short and long segments

Review of development opportunities

- Reflective of the Piedmont Heights Plan
- Piedmont Hospital
- Current development

Important part is the street connectivity. Must set the right connectivity framework.
Access and connectivity related to Buford Highway:

- Explanation of existing conditions
- Weaving conditions are at play

One Alternative: Piedmont Heights

- Build a street grid in the neighborhood
- Move the functionality of access ramps into one ramp without a loop
- Connect Monroe parallel across
- Connect ramp to Cheshire Bridge

Question: Is this area currently industrial warehouses and is the new grid trying to push toward residential uses?

Response: Yes. This area is currently industrial. This gives you the grid to develop a different land use. Currently cannot exit onto Piedmont. The new location will support what is already happening. The current exit is more of a suburban type configuration.

The alternative is consistent with the Piedmont Heights Plan.
The Piedmont Corridor Study did not make any specific recommendations about the I-85 interchange.

Question: What about a ramp to I-85 from Monroe?
Response: I-85 weaves over where this would take place. Would also need left hand turn into ramp.

There are no easy connections to the Armour Industrial area. The cost of any connection is so high that it exceeds gains by development.

It might be possible to bring a connection under I-85.
Discussion about proposed Peachtree Parkway.
Discussion about transit options: several alignments are presented.
Discussion about trails, focused on Tanyard Creek Park:

- Recently walked the alignment through Tanyard Creek Park
- Did a quick evaluation of the west and east side of the creek alignments.
- Presented a comparison of impacts

DRAFT 10/1/07

Redevelopment Concept
mase

DRAFT 10/1/07

Proposed Redevelopment

Legend	
ह1	Open Space
變	Proposed Beltline Station Location
[Existing Buildings
4is	Proposed Buildings

Street Network

Legend

- Existing Streets
- - New Streets
— New Buford Highway Access

Proposed Redevelopment

Legend	
RY	Open Space
a	Existing Buildings
78	Proposed Buildings

Street Network
Legend
— Existing Streets

- - New Streets
- New Buford Highway Access

DRAFT 10/1/07

 Transit Alignment Options

DRAFT 10/1/07

Proposed Peachtree Creek "Parkway" masmex

DRAFT 10/1/07
 Beltine Subarea 7:
NORTHSIDE/PEACHTRE: Tanyard Creek: Westside of Creek Option

Agenda
BeltLine Master Plan
Northside Study Group Meeting
October 30, 2007; 6:30-8:30 pm
Peachtree Hills Recreation Center

1. Welcome - 15 minutes
2. Presentation -45 minutes
3. Q \& A Session - 15 minutes
4. Plan Review Session - 30-45 minutes
```
Atlanta Beltline Inc.
```


BeltLine

Sub Area Master Planning
Northside/Peachtree/Piedmont Study Area

Study Group Meeting October 30, 2007

Study Area - Process \& Key Dates

The Study Area

Transit

Transit

Issues:

- Identifying appropriate and buildable alignments
- Connecting to existing MARTA \& future Ptree Streetcar
- "bridging" barriers (rail, creeks, freeways)
- Max. accessibility (neighborhood, existing dev. \& future redevelopment)

Legend

- Peachtree Streetcar
- CSX
- Norfolk Southern
- MARTA
© Destinations
- Streams
\square Beltline Corridor

Barriers

雷 BeltLine
Atlanta Connected

CSX Rail R-O-W - With Transit

CSX Rail R-O-W with Transit \& Station

Transit Alignment Options

Transit Alignment Option \#1

- In CSX (southside)
- Connects to Armour Infill Station

< 末he south under I-85 to Beltline ROW

\qquad

Transit Alignment Option \#2

- Comes out of CSX at Transit Plaza
- Runs within/along Parkway
\&-Connects to Lindbergh (in street)
- Runs along Piedmont Rd. to Arnour Limmbin
- Then south under $1-85$ to Beltline ROW

Transit Alignment Option \# 3

- Same as \#2 to l-85
- Then runs down to Monroe (in street)
* Konnects back to Beltline ROW \uparrow

t)

Redevelopment

Redevelopment Opportunities

Issues:

- Lots of studies (Lindbergh, Ptree streetcar, BeltLine, Piedmont Corridor, Piedmont Heights, etc.)
- Short-term \& long term opportunities
- Max.
opportunities that are sensitive to neighborhoods

Legend
Ready for Redev.
Redev. Underway
\square Long-term Redev.
н Rail Lines
Streams
\square Beltline Corridor

Related Studies

Related Studies: Connectivity

Overall Redevelopment Plan

Peachtree Focus Area

Peachtree Focus Area

Undergoing Redevelopment
Ready for Redevelopment
Long-Term Potential

Peachtree Focus Area: PM Intersection Level of Service

Peachtree Focus Area

Peachtree Focus Area- Future Land Use

Peachtree Focus Area-Proposed Future Land Use

Armour Drive Focus Area

Armour Drive Focus Area

Armour Drive Focus Area: PM Intersection Level of Service

Armour Drive Focus Area

Existing

Armour Drive Focus Area

Armour Drive Focus Area

Armour Drive Focus Area-Future Land Use

Armour Drive Focus Area-Proposed Future Land Use

Transportation

Street Hierarchy

Network

Effective Network

Connectivity:East-West \& North-South

Proposed Street Network

"Peachtree Creek Parkway"

"Peachtree Creek Parkway"

Urban Street with Transit \& Trail

Parkway Section with Transit

Parkway Section without Transit

The Trail

Trail Proposals

Legend
\checkmark Parks \& Open Space
\otimes Destinations 2004 TPL Study

- 2005 Redev. Plan
- 2007 Current Study
\Rightarrow Rail Lines
- Streams
\square Beltline Corridor

Current Proposal

Proposed 8.2 miles of trails

Trail would link to the Peachtree Hills Community Center

Trail would link to the Lindbergh area

The trail will go under rail
bridge to the Clear Creek
The trail will go under rail
bridge to the Clear Creek property

Trail Proposals

Sidewalks

Proposed Bicycle Facilities

Missing links

Trails-General Comments

- Trails should be a priority
- Trails should have a different scale depending on location
- Connection to Memorial Park
- Connection to and around Bobby Jones
- Provide a variety of trees along the Beltline
- Concern about impact of trails on neighborhoods

Trails-Tanyard Creek

- Majority support "westside" alternative
- Some support for "eastside" alternative
- Some support for no trail at all
- Protect meadow
- Preserve natural vista
- Preserve trees
- Preserve history
- Concern about the type of material used
- Respect creek buffers, floodplains, erosion
- Concern about parking for park \& trail
- Sanitation of Creek
- Accessibility
- Concern about safety along the trail and tot-lots

Westside Alternative

Impacts currently being evaluated:

- Tree Impact (cost \& relative impact)
- Stream buffer of $25^{\prime}-0^{\prime \prime}$ impact
- trail materials, boardwalk, pervious concrete
- Security at the tot-lots

Discussion

Agenda

BeltLine Master Plan Northside-Peachtree-Piedmont Subarea Steering Committee

November 27, 2007; 6:00-7:30 pm Piedmont Hospital

1. Welcome and News
2. Historic Resources in the Subarea
3. Land Use Options and Recommendations
4. Transportation Recommendations
5. Public Art Ideas and Conversation

Meeting Agenda

o Welcome and News
o Historic Resources in the Subarea
o Land Use Options and recommendations
o Transportation Recommendations
o Public Art Ideas and Conversation

Jonathan Lewis - Introduction

1. Woodruff Foundation Grant - The Woodruff Foundation donated $\$ 8$ million towards the BeltLine Partnerships Capital Campaign. The focus of the gift is on making the North Avenue Park vision a reality, and this is a huge step in the right direction. The long term plan is to develop a park of over 30 acres.
2. Joint Venture - Atlanta BeltLine Inc. has formed a joint venture with Barry Realty that aided in the purchase of the NE Corridor from the Masons.
3. New Subarea Master Plan - Atlanta BeltLine Inc. is set to begin the master planning process for the Subarea 6. The area ranges from Ponce De Leon up to $1-85$, with a half mile buffer on both sides of the trail. EDAW will lead the consultant team and it will kickoff December $12^{\text {th }}$. The master planning for subarea 8 is also coming soon, as master planning for subarea 8 is anticipated to begin around early February.
4. The Tanyard Creek Park Trail Study is ongoing, as many of the technical aspects of the proposed trail are being reviewed. Studies focusing on hydrology, tree recompense cost, and stream bank stabilization among other issues are currently being reviewed. A committee member stated that the community is willing to fundraise in support of their preferred alignment.

Ed McKinney - Glatting

1. Cultural and Public Art Opportunities

I. Ed McKinney reviewed a map of the prospects for public and cultural arts in the area, stating that they had moved beyond the illustrative work to a more technical level, with the help of Danielle Roney of CR1 Studios.
II. A few years ago, Ms. Roney completed a macro study of BeltLine public art opportunities. She is currently with the Glatting team on subarea 7 for a more detailed product, focusing only this specific subarea.
III. The Peachtree-BeltLine intersection stood out immediately as an area of focus for Public and Cultural Art, especially with the relocation of the Georgia Museum for Contemporary Arts to the Tullah Arts Center on Bennett St.
IV. This intersection could include a large public plaza at the intersection of the BeltLine and the planned Peachtree Trolley. The plaza could be designed using national and international examples of similar multi-modal transit plazas. There could be varying forms of art inside the plaza. There would be permanent art, as well as temporary exhibits, that would make the plaza more of a destination.
V. The streetscapes and station design would also lend itself to the input of artist.
VI. In the final draft of the subarea plan, the Glatting team will include a map of art opportunities.

2. Concerns and Questions from Committee

I. Q: What is the timeline for all of these improvements?

A: These improvements will happen as the BeltLine vision moves forward and becomes a reality. None of these are currently included in the BeltLine's five year work plan, so it will be beyond 2010 before any of this actually occurs.
II. Q: If the Peachtree Streetcar does not happen, does the concept as a whole make sense?
A: The concept makes sense regardless, which is why we developed two options for the BeltLine 1) at grade 2) below grade with elevators and escalators that could have art influences.
III. One committee member warned: Be careful how you characterize Peachtree Rd, because its character changes drastically as you move from Midtown to Buckhead.
IV. Q: Is there parking available for the people that will use the path/plaza?
A: Parking has not been fully considered at this point in the plan, but it will be taken into account as ABI moves forward with a future parking study. A committee member responded that the BeltLine should not have to cater to parking, if the idea is to create an urban environment centered on transit; parking should not be the focus of this plan.
V. There was an overall concern about the level of artist inclusion in the process. Concerns ranged from: 1) When do you say enough is enough? 2) Will it all look contrived? Disneyworld-like? (ABI has included a representative from MPAC [Metropolitan Public Art Coalition] on each of the current steering committees, has formed a design committee to ensure proper attention will be paid to public art and design throughout the BeltLine planning process, and is working to hire a Director of Design).
VI. Peachtree Streetcar Chairman was present and presented the following facts about the plans surrounding the project:

1. They are working to release public information about Phase I implementation of the Peachtree Streetcar.
2. Phase I will run from Downtown up to $15^{\text {th }}$ Street and ideally would occur over the next 7 years.
3. Phase II would be from $15^{\text {th }}$ Street up to the BeltLine, but no timetable has been set forward.
4. The Streetcar will not run on an exclusive right of way.
VII. Q: How will the Streetcar be financed? Taxation?

A: The taxation model proposed will tax all non-single family properties a $1 / 4$ mile off Peachtree on both sides. It will be designed to tax the people who receive the greatest benefit from the project. It will also not require a public referendum as city council has the authority to vote on such a project.
VIII. Q: How has the project focused on Historic buildings, properties, etc.?
A: Atlanta BeltLine is working with Urban Design Commission at the city to formulate as Historic Preservation Strategy.

3. Connectivity Recommendations

I. Three Key Public Infrastructure Improvements:
1.) Peachtree Creek Parkway
2.) I-85 Interchange Relocation along Piedmont
3.) Spalding Realignment behind Piedmont Hospital
II. Extension along the South edge of Bobby Jones Golf Course:
1.) The connection makes sense, but due to previous neighborhood response to that idea, it was not considered as part of this study.
2.) The extension would also require a complete reworking of the golf course.

General Concerns:

I. Brookwood Hills would like for the trail to run away from Clear Creek and closer to the industrial areas to the south.
II. The neighborhoods (Brookwood Hills, Piedmont Heights and Peachtree Hills) all voiced their displeasure about the industrial area illustrated on the map north of the interstate. The committee members felt the area has already transitioned away from industrial and that it should be reflected in the plan.
III. Heather Alhadeff briefly introduced the committee to the city's Industrial Preservation Policy. Ms. Alhadeff told the committee the Mayor's office requested that the city devise a plan to preserve viable
industrial areas throughout the city, due to the lack of available land for such uses in the future.

2. Overview of Subarea Cultural Assets

a. Crossroads of Peachtree Street and the Beltline

Standing at this significant Atlanta address at the most significant transportation intersection in the Beltine Project, the northern interchange with the Peachtree Corridor Streetcar Project provides critical connectivity for associated workforce and community transportation, as well as increased tourism accessibility.

With a residential population that is expected to increase by more than 60% by 2030 , investment in transportation and open space at this northern hub will contribute to the region's economic growth and improve quality of life for the future of Atlanta's families.

b. Importance of Cultural Anchor

The Northside Subarea has the unique opportunity to create a similar destination relationship with the new (2008) Bennett Street resident, the Museum of Contemporary Art of Georgia, at the Tula Arts Center. This dynamic provides a first opportunity between development, transit, open space and trails to facilitate a culturally integrated destination between all assets.

THE IMPORTANCE OF MOCA | GA
Open for almost six years, the museum is among the first organizations to specifically feature the work of Georgians -- those born and raised here as well as artists who have created much of their work in the state. The museum, serving as both an exhibition home and an educational facility will enable artists and visitors to enjoy the impressive collection of artwork and to learn about its roots.

MOCA GA's collection features more than 500 works by Georgia artists and includes a variety of mediums -- paintings, prints, sculpture, photography, and installation pieces. The museum will continue to collect, document and archive significant works of contemporary visual art by Georgia artists.

The Museum's move takes place in two phases as follows:

Phase I provides over 5,000 square feet of space for the Education/Resource Center to house the permanent collection, the historical archives, and a budding library.

Phase I will open to the public late Fall 2007.

Phase Il provides over 10,000 square feet for exhibition galleries and exhibition preparation.

Phase II will open to the public late Spring 2008.
2. Overview of Subarea Cultural Assets
c. Bennett Street Galleries

With the existing cultural assets including a range of galleries, studios and creative industries along this Beltline segment, strong programming options can contribute to community, business and tourism development

Off the 2100 block of Peachtree, at the Beltline intersection, Bennett Street Arts and Antiques have provided shopping and exhibition programming through the evolution of the warehouse district in the mid-1970's. With over fifty businesses on this street, the Tula Art Center, with the new MOCA-GA anchor also houses ten galleries, two fashion studios and the non-profit organizations, the Atlanta Photography Group, with seven studios housing twenty-five artists.

APG Collector Print Series 2007-2008

Pall heacobin

Q2007 Atlanta Photography Group

The following tenants provide internationally diverse works in design, painting, printmaking, sculpture and photography ranging from traditional masters and modern contemporary.

Atlanta Art gallery
Anne Hathaway Watercolors
Ariel Gallery
Arts Bee Lo
Dalton Cowan Gallerie
Galleria San Marco
Gallery B Ltd
Gallery Sklo
Gallery Zebu
Golden Gecko Gallery
Momus Gallery
Naomi Silva Gallery
Opus One Gallery
Raymond Lawrence Gallery
Reed Gallery
Robert Matre Gallery
Thomas Deans \& Company Fine Art
Smith Gallery
Studio L-1

[^3]
2. Overview of Subarea Cultural Assets

d. Civil War History of Peachtree Battle

Emphasizing the local cultural landscape, an important historical and natural environmental relationship surrounds the Tanyard Creek Park and the Peachtree Creek.

The significant history of the Battle of Peachtree Creek, July 20, 1864, is commemorated at the Tanyard Creek Park, a tributary of Peachtree Creek. This historic battle marked the beginning of the American Civil War's Atlanta Campaign and is addressed by Union Major General JD Cox as such,
"Few battlefields of the war have been strewn so thickly with dead and wounded as they lay that evening around Collier's Mill."

With the support of the Friends of Tanyard Park and neighborhood associations, as well as Atlanta civil war historians, this location has noted national significance in the preservation of American history in the urban and built environment.

e. Natural and Environmental History of Peachtree Creek

Feeding the Tanyard Creek, the Peachtree Creek is one of three major streams flowing through Atlanta. A river gauge has been present on this site since 1912, with water quality and daily flow records reaching back as far as 1959. This creek provides a natural barrier and significant watershed contribution to the urban environment.
 Trails and greenspace tie the creek history throughout the east-west axis of the subarea and provide an integration opportunity for surrounding neighborhoods to Atlanta's signature thoroughfare, Peachtree Street.

3. Cultural Enhancement Opportunities

Cultural enhancements bridge the built and natural environments, with opportunities for civic leadership and cultural activities to continually engage residents and visitors alike. Artist designed spaces reinvent the cultural landscape, bringing new ways to interact in public space. The following impact elements have been identified

a. Peachtree Plaza

Transportation Plazo
In today's urban experience, the plaza still remains historically at the center of community engagement. Transportation infrastructure offers ways to unify neighborhoods, provide landmarks, and incorporate unique distinctions through artist-designed elements.

As an anchor for the Beltline Project, this crossroad for new mobility mechanisms requires a substantial street-level transportation plaza in order to provide adequate pedestrian access between transits along the Peachtree axis.

In addition to offering open space partnerships, this destination supplies significant civic engagement with a dynamic identification strategy for the Beltine Project, the Cultural Community and the City of Atlanta.

Portland, Oregon

Lisbon, Portugal

cr1

Subarea 7 Northside/Peachtree/Piedmont

Cultural Planning Analysis
3. Cultural Enhancement Opportunities
a. Peachtree Plaza

Plaza Destination Strategy: Public Art
Element A. Transportation Station Hub,
connecting Marta, the Streetcar and the Light Rail line
Station Designs as Architectural/Artist Team opportunity
connecting Marta, the Streetcar and the Light Rail line
Station Designs as Architectural/Artist Team opportunity;

- budgets ranging from 10-25k for modular design models,
- architectural projects within building construction expenses to include 1.5% public art line items

\qquad

Redevelopment Concep
Collaborations between Architects and Artists are standard practice in best in class destination projects. Whether a modular design strategy for smaller scale transportation shelters or a unique hub design for major intersections, these elements of consideration add to the value of the surrounding properties and the quality of the pedestrian experience.

Subarea 7 Northside/Peachtree/Piedmont
Cultural Planning Analysis
3. Cultural Enhancement Opportunities

Plaza Destination Strategy: Public Art

Element B. Integrating Façade, Gateway and Lighting

- Design competition by invitation or open call; jurored by professional and community member panel
- Public art and artist selection as part of the design team strategy; including 1.5\% allocation in construction expenses

International Design competitions in lighting design have been utilized by Tokyo and New York in plaza and streetscape visual identity projects, while redevelopment plans like the Highline have implemented design idea competitions into new civic space; activating the community in design phase visioning sessions.

These elements have then been integrated into design phase public art commissions of plaza infrastructures and facades, giving a cohesive and community relational aesthetic plan for construction phase implementation.

[^4]3. Cultural Enhancement Opportunities

Temporary Exhibitions
Existing works by internationally established artists and temporary commissions by emerging national artists compliment daily life in public plazas and parks. These exhibitions activate civic space and provide new discoveries for inspiration and education. Additional performance initiatives provide music and small theater opportunities in an unplugged and intimate setting sensitive to the surrounding medical facilities.

In addition to models including leasing and loan programs, such as the Public Art Fund and Creative Time in New York City, established international projects are exemplified by Christo and Jean-Claude's, The Gates, February 2005 where the $\$ 18 \mathrm{M}$ project generated $\$ 254$ million in Economic Activity in 18 days with no public funds

Local public art organizations, as well as municipal and civic interest groups are available to consult and administrate these exhibition options.

[^5]
b. Beltline Streetscape and Trail Visual Identity

This Visual Identity Plan provides a dynamic opportunity to weave the historic and natural assets of the subarea into the urban intersection through a balance of commissioned responses to the Trail Segments of Tanyard Creek and Peachtree Creek.

Trail markers and tiles are two ways to provide an educational context to the rich history and important ecosystem along the path structure

Linking the cultural support anchor of MOCA-GA into the educational experience, creative community projects merge the urban and natural elements
to promote a respect for the history, conservation and cultural values of the community throughout new civic spaces.

[^6]
3. Cultural Enhancement Opportunities

b. Beltline Streetscape and Trail Visual Identity

Parking Façade
Lighting
Way Finding
Receptacle and Furniture

With several new transportation solutions to include new city streets for more effective connectivity, new development, businesses and residents alike benefit from an integrated Streetscape and Trail Visual Identity Plan.

Parking structures for new offices and residences, sidewalk design elements, lighting and wayfinding are approached through artist design teams; creatively utilizing existing construction/purchase allocations to provide a unique and community based visual experience.

3. Cultural Enhancement Opportunities

c. Public Parks and Greenspaces

New greenspace opportunities in the Redevelopment Concept have been identified at Colonial Homes as well as several locations along the "Peachtree Creek Parkway" to mitigate environmental impact.

Conservationist strategies can include landscape artist impact to promote enviromentally sustainable design and critical transitions between forrested and open spaces.

Artist Residencies also provide a mechanism for stream reclamation projects to respond and enhance to the ecological challenges alongside the scientific community.

Mary Miss

Projects like Mary Miss' commission for the North Carolina Museum of Art exemplify the role of the artist in the balance of design, culture and the natural environment

Additional projects by Mary Miss include the waterfront design of Battery Park in New York.

The Colonial Homes Park site in relationship to MOCA-GA provides a similar opportunity in visual and natural integration.

[^7]Cultural Planning Analysis
3. Cultural Enhancement Opportunities

d. Infrastructure

Infrastructure requirements in this project section provide impact areas within

1. Peachtree Road Bridge (rebuild)

2. Peachtree Creek Parkway: bridges, retaining walls
3. Curb and pavement designs 4. Transit Bridges and tunnels
which are integral to the overall Visual and Environmental integration to Transit Redevelopment.

DRAFT ${ }_{10 / 1 / 07}$

Subarea 7 Northside/Peachtree/Piedmont
Cultural Planning Analysis
3. Cultural Enhancement Opportunities
e. Districts: Armour Drive/Ottley Circle Area

As redevelopment increases. stabilization strategies must address displacement of cultural assets serving the community including theaters, galleries and artist studios.

Opportunities

With zoning initiatives, an arts district designation of the Armour Drive/Ottley Circle area can provide a new culturally dense destination to the unique industrial built environment. Amenities can enhance the surrounding communities, expanding the pedestrian emphasized experience.

Mechanisms to support creative communities include
Live/Work Zoning with maximum height restrictions for artist subsidized studios in existing industrial structures

Creative Empowerment Zone creation encouraging capital investments through tax incentives for new sales and employment opportunities

District Grant and Development Partnership Strategies include LINC grant federal funding opportunities and non-profit real estate development groups, such as Artspace, Minnesota and models including ArtBarn, Toronto

This approach envisions a unique district of sidewalk cafes, closed street piazzas, antique and gallery retail and small to mid-sized theaters, integrated with live/work creative classified residents, providing a new vibrant pocket of cultural assets and services otherwise extinguished from the existing community.

Mason Murer Gallery

 exemplifies the current cultural feasibility of the area, providing ongoing exhibitions, event venue opportunities, including the ArtPapers Magazine Art Auction, with over 1500-2000 attendees annually.

1 MOCA-GA
2 Bennett Street Galleries
3 Antique Retai
4 Tanyard Creek Trail
5 Peachtree Creek Parkway
6 Colonial Homes Park
7 Peachtree Plaza
8 Transportation Station
9 Temporary Programming

Amenities
10 Gateways
11 Historic Markers/Tiles
12 Lighting
13 Curb/Pavement Designs
14 Parking Facades
Commissions
15 Public Art
16 Landscape Art/
Environmental Design

Infrastructure
17 Peachtree Street Bridge (rebuild)
18 Pedestrian Bridge
19 Transit Bridge
20 Transit Tunnel
21 Retaining Wall
22 Stream Restoration
Art Districting
23 Cultural Trust
24 Armour/Ottley Arts District

BeltLine

Agenda
Northside Study Group
September 8, 2008; 6:30 pm
Piedmont Hospital. 1984 Peachtree Road NW. Atlanta, Ga. 30309

1. Open House - 45 mins
2. Introduction \& BeltLine Update - 5 mins
3. Project Manager Update -5 mins
4. Presentation and Discussion on Subarea 7 Draft Plan Recommendations -

30 mins
5. Wrap-Up - 10 mins

Rukiya Eaddy
Community Engagement Advocate readdy@atlbeltline.org
404.614.8285

BeltLine

AtlantaConnected

Northside Study Group Meeting
Sept. 8, 2008-6:30 p.m.
Agenda Items Covered:

1. Open House - 45 mins
2. Introduction \& BeltLine Update - 5 mins
3. Project Manager Update - 5 mins
4. Presentation and Discussion on Subarea 7 Draft Plan Recommendations 30 mins
5. Wrap-Up - 10 mins

The meeting began with a few opening remarks by Rukiya Eaddy. Eaddy welcomed those in attendance and reviewed the agenda for the evening.

Eaddy then discussed the EIS (Environmental Impact Study) handout. One member of the group asked who handled the EIS public information. Eaddy responded that MARTA and Atlanta BeltLine Inc. had taken care of it in the form of e-mail blasts, newletter articles, newspaper ads, and television advertising. Eaddy stated that MARTA and ABI are accepting comments until Sept. 22nd for the EIS scoping. (If you would like to receive BeltLine updates, you can sign up at www.beltline.org.) The scoping meetings will determine the alignment options that are studied as part of the EIS, as well as the environmental, social, and economic impacts that are studied during the EIS.

Eaddy then presented the BAHAB recommendations flyer that was handed out during the meeting. She also stated that the full-length BAHAB report is available at the BeltLine.org website.

Q: Does the BeltLine have any connection to the Comprehensive Transportation Plan (CTP)?
A: Yes, Nate Conable of ABI works with the CTP on their technical advisory board.
Lastly, Eaddy stated that the Northside Study Group coordinator position has been vacated. Eaddy explained that the position is a 1-year term and that she and Tony

Casadonte will be happy to answer questions about the position and its requirements.

Shortly after Eaddy wrapped up, Jonathan Lewis who is the project manager for the Subarea 7 Master Plan Study took over. Lewis then invited everyone to go around in an open house format and review the boards that were on display. The open house portion of the meeting was to last 45 mins.

Following the Open House portion Lewis welcomed the group back to their seats. He then stated remainder of the meeting would be centered on the PowerPoint presentation that had been prepared. Lewis then went into detail about what exactly the Subarea Master Plan entailed. He stated the master plan includes planning for land use, circulation, greenspaces, public art, historic preservation, and urban design. It was also clarified that the master plan is not slated to handle planning for the transit portion of the Atlanta BeltLine. The MARTA/BeltLine EIS (Environmental Impact Statement) would focus on the transit planning due to the depth of work required for such a study. Lewis also affirmed that the Subarea 7 would have two meetings to review the final draft plan due to the lengthy postponement of the planning effort. After the two meetings regarding the final draft plan, Lewis stated that Atlanta BeltLine Inc. will host office hours at the ABI offices. He stated that these are by appointment, and it would provide neighborhood groups with an opportunity to come down and provide more input. After the office hours, Lewis stated that NPU presentations would follow. He stated that there would be two meetings with the NPU, one to give a presentation, and then another the following month for a vote.

Q: Can office hours be moved? December is a very busy month for people. A: Yes they can, however, if we were to hold them during December we would try and make it very early in the month.

Q: Does the NPU vote on these?
A: Yes, just like any other Master Plan done by the City.
Q: Is City Council involved?
A: Yes, there is CDHR Public Hearing for the future land use changes to the ASAP, and the adoption of the area plan.

Q: So what is being shown has to go back to City Council?
A: Yes, it is a closer more refined look that the Redevelopment Plan of 2005.

PowerPoint Presentation
The last meeting for the Subarea related to the Master Plan was in November of 2007. Since then a number of issues have held up the planning process. Those issues included the City's Industrial Retention Policy, Tanyard Creek Trail, and the Peachtree Parkway.

Q: What is the status of Tanyard Creek Trail?
A: 95\% drawing are being approved.
Following Lewis' brief presentation he handed it over to Ed McKinney of Glatting for a more thorough presentation on the Subarea. McKinney began by illustrating that there were two focus areas within the Subarea. The two focus areas are the area around Piedmont Hospital and the Lindbergh Marta Station area.

McKinney stated that while Glatting was not scoped to review transit they wanted take a cursory glance at it. Glatting used the Marta Locally Preferred Alternative (LPA) as the starting point in their review. Glatting used possible redevelopment sites to guide their alternative ways to get the BeltLine transit south from Lindbergh.

Q: What is the LPA?
A: Marta looked at the route and did a preliminary analysis. Next up is the EIS, which includes some engineering and requires a much more in depth analysis.

McKinney then stated that trails in this Subarea required a fair amount of attention. McKinney discussed three options for the trail alignment. The first option has the trails running along side Peachtree Creek, and BeltLine has already discussed a connection to Peachtree Hills Place. The second option has the trail running over Clear Creek and up through the batch plant. The last option has the trail running along the edge of the Clear Creek Conservation area. Most of the trail would run in City ROW, but the trail would encroach on the easement.

Statement: The Brookwood Hills neighborhood would prefer it if you took that option off the board.

Statement: Option 2 is a bad option, it runs through industrial land uses and it would be very isolated. It is also the most invasive environmentally.

Q: Why not run the trail along Monroe? Bring the trail to the where the people are, its no more out of the way than the current options.
A: We will take a look at that.
Q: I thought the trail and the transit were supposed to run together.
A: The trail and transit will be somewhat disconnected due to right-of-way issues. They will come back together at the transit stations.

Statement: I like the connection to Rivers Elementary School. It could provide a lot of congestion relief at 8am. I also think we should revisit a trial running behind the Hospitals. Those campuses should be pedestrian friendly.

Q: Has there been any redevelopment discussion with Rollins?
A: No, this is long-term speculation, but there is nothing being discussed for the short-term.

After the questions McKinney then moved along to the interchange improvements on the south side of I-85. McKinney talked about the current weaving condition that makes it difficult to enter and exit the interstate. He also stated that an improvement to the current condition would allow for then interchange to happen on the otherside of Piedmont on an extension of Monroe.

McKinney stated that all of the land uses they are proposing are allowable today under the current zoning along Peachtree. He stated they were merely adjusting for the type of uses and activities that are needed for transit. McKinney also reiterated that the needed transitions are there for the neighborhoods.

The meeting was adjourned at $8: 35 \mathrm{pm}$.

Sub Area Master Planning

Northside/Peachtree/Piedmont Study Area

DRAFT MASTER PLAN OVERVIEW

Study Group Meeting

 September 8th, 2008
Process \& Key Dates

DISCOYERY \sim DESIGN AND DISCUSSION ~DOCUMMENTATION

ISSUES AND AND Concepts OPPORTUNITIES			
July 2007: Planning Committee	Sept 2007: Study Group Sept 2007:	Oct 2007: Study Group	Jan 2009: NPUs, then
August 2007: Study Group	Planning Committee	Nov 2007: Planning Committee	City Council (tentative)
- Review previous studies - Review vision statement and goals - Analyze existing conditions		- Prepare concept plans - Draft plan recommendations - Refine master plan	Master Plan to and City Council tion

- Overview of milestones (past year)
- Industrial land use issue
- Tanyard Creek Trail (process/update)
- Peachtree "Parkway"
- Next Steps including the E.I.S. process

Draft Master Plan Overview

The Study Area

Legend

- Subarea 7

TAD Boundary
Beltline Corridor
Stream s

Illustrative Urban Design Plan

Street Framework Plan

Transit Alternatives

Overall Trail Plan

Proposed Projects

Piedmont Road

Focus Area

Piedmont Road Context

Redevelopment Approach

Street Framework \& BeltLine Trail

Buford Highway Interchange Concept

Buford Highway Interchange Concept

The LPA alternative will pull out of the CSX right-of-way and pass between ADAC and Post Lindbergh Apartments

Option 1 will continue transit along Peachtree Creek and along the proposed new street connection

Option 2 will continue transit along the proposed street connection and up Garson Drive to Lindbergh

Land Use Recommendations

Peachtree Focus Area

Peachtree Focus Area Context

Street Framework \& BeltLine Trail

Potential spur trail for the

Proposed Cross Sections

Avenue/Mixed-Use (AV/MU-90)

Number of Lanes	2
Width of Lanes	11
Bike Lanes	5
Sidewalk	10
Planting Strip/ Amenity Zone	5
On-street Parking (from face of curb)	75
Median	Yes
Width of Median	12
Right-of-Way	90

Station Location

Land Use Recommendations

Redevelopment Program

Peachtree

Transit Plaza

Potential Cultural Art Projects

Sub Area Cultural Assets

- Crossroads of Peachtree Street \& BeltLine
- Bennett Street Gallery \& MOCA-GA
- Peachtree Battle Civil War History
- Natural \& environmental history of Peachtree Creek

2 Bennett Street Galleries 3 Antique Retail
4 Atlanta Memorial Trail 5 Peachtree Creek Parkway 6 Colonial Homes Park

7 Peachtree Plaza
8 Transportation Station
9 Temporary Programming

Amenities

10 Gateways
11 Historic Markers/Tiles
12 Lighting
13 Curb/Pavement Designs
14 Parking Facades

Commissions
15 Public Art
16 Landscape Art/
Environmental Design

Infrastructure

17 Peachtree Street Bridge (rebuild)
18 Pedestrian Bridge
19 Transit Bridge
20 Transit Tunnel
21 Retaining Wall
22 Stream Restoration
Art Districting
23 Cultural Trust
24 Armour/Ottley Arts District

Examples of Cultural Art Projects

The Peachtree Transit Plaza

Transit Plaza-Existing

Transit Plaza-Proposed

BeltLine

AtlantaConnected

Northside Study Group Meeting
Oct. 6, 2008-6:30 p.m.
Agenda Items Covered:

1. Open House
2. Introduction \& BeltLine Update - 5 mins
3. Project Manager Update -5 mins
4. Presentation and Discussion on Subarea 7 Final Draft Plan

Recommendations - 30 mins
5. Wrap-Up - 10 mins

For the first half hour of the meeting, attendees were invited to review and discuss plan recommendations in an Open House format. Consultants and staff were present to answer questions.

The formal meeting began with a few opening remarks by Rukiya Eaddy. Eaddy welcomed those in attendance and reviewed the agenda for the evening.

Eaddy then discussed the purpose of the meeting. Eaddy stated that the meeting was the final draft plan meeting and that comments were still being taken from the community in regards to the plans. Eaddy also provided an update on the BAHAB (BeltLine Affordable Housing Advisory Board) recommendations, stating that City Council unanimously favored the legislation 13-0. Eaddy also stated that the next BeltLine Quarterly Briefing will be held on October $16^{\text {th }}$ at the Atlanta Public Schools Auditorium in Downtown Atlanta, which is located at 130 Trinity Ave SW, Atlanta, GA 30303.

At this point in the meeting Jonathan Lewis, Senior Project Manager for the Atlanta BeltLine took over. He provided a review of the planning effort and the adoption process for those in attendance. Speaking about the adoption process, Lewis stated that ABI/City of Atlanta would visit the NPUs for plan adoption twice. The first visit would consist of a presentation on the Subarea 7 plan, while the second visit would seek a vote of approval to adopt the master plan. Lewis also stated that the land use changes for the ASAP (Atlanta Strategic Action Plan) would be pulled out and taken to
the NPU on a case-by-case basis for adoption. Lewis also reviewed the 2-tier adoption process of the plan. Stating that the first adoption would be of the plan without the project lists, and that ABI, once all the master planning is done, would evaluate the projects from all the subareas, and move forward with adoption of a comprehensive BeltLine project list.

Q: When the plan is adopted will the trail and transit still be shown as alternatives? A: Yes, the EIS (Environmental Impact Study) is reviewing these options, and will not conclude by the time this plan moves forward with adoption.

Q: Will we be regularly involved with the EIS?
A: Yes, the EIS will have community involvement in the form of study groups. There will also be smaller stakeholder meetings. All of the information about the EIS is available at MARTA's webpage and Atlanta BeltLine's webpage. You may also access the webpage by clicking the following link: MARTA/ABI EIS

Next, Ed McKinney of Glatting Jackson took over the meeting and walked those in attendance through a presentation of the final draft plan for the subarea. He focused on the area around Piedmont Hospital at the intersection of Peachtree Road and the BeltLine, and a stretch along Piedmont Road that sits just north of the Interstate.

McKinney illustrated some of the challenges and options that face transit and trail planning within the area. McKinney also said that they will handoff the alternatives developed within the subarea 7 master plan to the EIS group, so that they may take a closer look at them.

Q: Will the EIS look at all of these with equal weight?
A: I don't want to speak for them due to the amount of issues that the EIS has to take into account. MARTA will outline the criteria they use to evaluate findings at their meetings.

EIS Information

The list of issues MARTA will account for includes the effects on air quality; noise and vibration; land and water resources; visual resources; energy, geology and soils; hazardous materials; land use and zoning; environmental justice; displacements and relocations; public services and utilities; historical and archaeological resources; parklands; and construction impacts.

Q: Why is the green line (MARTA LPA Alignment) on the transit map being shown? We said that we were opposed to that.
A: The green line is the MARTA LPA Alignment that is the result of a federally funded process and has to be shown. It is the starting point from which MARTA will conduct the EIS.

McKinney then went into a review of the trail alignment alternatives within the Subarea. The plan includes three options to route the trail through the Subarea.

They included an alignment along Piedmont Rd. to run along south of the MARTA rail yards. The second trail alignment option would run through the Armour Circle area and along the eastern side of the Brookwood Hills Conservation Easement. The third and final trail alignment option would run along the southern edge of the Brookwood Hills Conservation Easement down around the SW edge of the Ottley Drive area.

Comment: Brookwood Hills does not support option 2 or 3.
Q: What is the timeline on the spur trail along Peachtree Creek? That line is shown through the pool and a building.
A: This is only if the area redevelops. It is on an 'if and when' basis, and is a very long term option.

There is also a trail option along Piedmont Road that would connect to a redeveloped Monroe Dr. in Subarea 6.

Q: What about the spur trail connection to Northside Drive?
A: That connection was not included in the Atlanta Memorial Trail
design/construction project. It is still the plan to make that connection, but it is not part of the forthcoming construction project. We want to show we would still like to make that connection, but if that effort is restarted, we will bring it back to you all for community input.

Q: When and where is the construction on the Atlanta Memorial Trail project going to start in the park?
A: In about one month, in regards to where it is going to start, that has not been determined yet.

Q: What about the street intersecting Biscayne? Will it come before redevelopment? A: No. It will be privately funded when redevelopment occurs. We are using the streets as a framework to help guide redevelopment when it occurs.

Q: Are the plans part of the Comprehensive Transportation Plan?
A: Yes, all BeltLine projects are being fed into the CTP.
Q: How does the density of this plan reflect that of the Peachtree Task Force?
A: It closely resembles it because we tried to stay consistent with previous planning efforts.

Comment: I do not see much of a traffic improvement as a result of this plan. Response: The BeltLine plan is trying to help. With or without the BeltLine these projects will be built because of the existing entitlement on each of these properties. There is also the demand for this location as the market study illustrates. The BeltLine will offer another mobility option for people in the area, especially the people getting to and from the hospital.

Comment: We want to keep this portion of Peachtree low-rise.

Q: Can we limit development to 8 stories?
A: I don't think the city is looking to do that. That would result in a legal battle, because it would be taking away someone's development rights.
Q: Are there any streetscape improvements planned for Peachtree Road?
A: Yes, there are streetscape improvements that are consistent with the Peachtree Streetcar Proposal.

Q: Will the BeltLine and the Streetcar be built at the same time?
A: Not sure as the timing is undetermined for both of the projects.
Comment: Peachtree Hills would like for them to be built at the same time to limit disturbance.

Q: Did I hear correctly that this planning effort is not focused on transit?
A: Transit remains a very high priority for the BeltLine project. This planning effort has centered on land use, transportation, greenspace, public art, and historic preservation. The transit and trail piece are being studied within the EIS. We took a preliminary look at some of the transit and trail options that we have since passed on to them.

The Meeting was adjourned at 8:40 pm.

Comment Card Notes

- Brookwood Hills opposes any use of the Clear Creek Nature Preserve for options \#2 and \#3.
- Two comments from the Manor House Residents stated opposition to the proposed road from Colonial Homes Dr. to Biscayne Drive. The two residents felt that it causes more problems than it solves. They also stated that the traffic from the proposed roadway would cause some congestion that is not currently there. The majority of the residents of Manor House strongly oppose this option. Residents also stated that would like to limit the Colonial Homes Site to 4-6 stories.

Sub Area Master Planning

Northside/Peachtree/Piedmont Study Area

DRAFT MASTER PLAN OVERVIEW

Study Group Meeting

 September 8th, 2008
Process \& Key Dates

DISCOYERY \sim DESIGN AND DISCUSSION ~DOCUMMENTATION

ISSUES AND AND Concepts OPPORTUNITIES			
July 2007: Planning Committee	Sept 2007: Study Group Sept 2007:	Oct 2007: Study Group	Jan 2009: NPUs, then
August 2007: Study Group	Planning Committee	Nov 2007: Planning Committee	City Council (tentative)
- Review previous studies - Review vision statement and goals - Analyze existing conditions		- Prepare concept plans - Draft plan recommendations - Refine master plan	Master Plan to and City Council tion

- Overview of milestones (past year)
- Industrial land use issue
- Tanyard Creek Trail (process/update)
- Peachtree "Parkway"
- Next Steps including the E.I.S. process

Draft Master Plan Overview

The Study Area

Legend

- Subarea 7

TAD Boundary
Beltline Corridor
Stream s

Illustrative Urban Design Plan

Street Framework Plan

Transit Alternatives

Overall Trail Plan

Proposed Projects

Piedmont Road

Focus Area

Piedmont Road Context

Redevelopment Approach

Street Framework \& BeltLine Trail

Buford Highway Interchange Concept

Buford Highway Interchange Concept

The LPA alternative will pull out of the CSX right-of-way and pass between ADAC and Post Lindbergh Apartments

Option 1 will continue transit along Peachtree Creek and along the proposed new street connection

Option 2 will continue transit along the proposed street connection and up Garson Drive to Lindbergh

Land Use Recommendations

Peachtree Focus Area

Peachtree Focus Area Context

Street Framework \& BeltLine Trail

Potential spur trail for the

Proposed Cross Sections

Avenue/Mixed-Use (AV/MU-90)

Number of Lanes	2
Width of Lanes	11
Bike Lanes	5
Sidewalk	10
Planting Strip/ Amenity Zone	5
On-street Parking (from face of curb)	75
Median	Yes
Width of Median	12
Right-of-Way	90

Station Location

Land Use Recommendations

Redevelopment Program

Peachtree

Transit Plaza

Potential Cultural Art Projects

Sub Area Cultural Assets

- Crossroads of Peachtree Street \& BeltLine
- Bennett Street Gallery \& MOCA-GA
- Peachtree Battle Civil War History
- Natural \& environmental history of Peachtree Creek

2 Bennett Street Galleries 3 Antique Retail
4 Atlanta Memorial Trail 5 Peachtree Creek Parkway 6 Colonial Homes Park

7 Peachtree Plaza
8 Transportation Station
9 Temporary Programming

Amenities

10 Gateways
11 Historic Markers/Tiles
12 Lighting
13 Curb/Pavement Designs
14 Parking Facades

Commissions
15 Public Art
16 Landscape Art/
Environmental Design

Infrastructure

17 Peachtree Street Bridge (rebuild)
18 Pedestrian Bridge
19 Transit Bridge
20 Transit Tunnel
21 Retaining Wall
22 Stream Restoration
Art Districting
23 Cultural Trust
24 Armour/Ottley Arts District

Examples of Cultural Art Projects

The Peachtree Transit Plaza

Transit Plaza-Existing

Transit Plaza-Proposed

From: Lee Morris [mailto: elmorris@sw-sn.com]
Sent: Wednesday, August 19, 2009 10:27 AM
To: Alhadeff, Heather
Cc: RODCOOKCO@aol.com; alexsummers@comcast.net; jgardner@gsstj.com; Shook, Howard; Muller, Clair Subject: Draft of corrections to Sub Area 7 Master Plan

Heather-

As we discussed, below is Brookwood Hills' attempt to set forth language for the Sub Area 7 Master Plan, to accurately articulate the neighborhood's concerns about trail options. Rod Cook, who has been very involved on behalf of the neighborhood from the beginning, is the principal author.

BWH appreciates the willingness of the ABI and City to incorporate the concerns of the neighborhood into the Plan. We do not feel the most recent draft describes those concerns very well. We hope that something like the language below can be incorporated.

Please note that this info only addresses BWH's issues on the trail option. We are not speaking for any other group and have not tried to comment on any other neighborhood's reactions to other issues.

Let me know what your thoughts are on moving forward from here.
Glad you are there. We appreciate all you do for the City. Thanks.
Lee

E. Lee Morris, I I I, CPA, J D

100 Peachtree Street NW, Suite 2500
Atlanta, GA 30303
T 404.521.6319
F 404.221-9453
E elmorris@sw-sn.com

The information contained in this electronic mail message is confidential, may be privileged and is intended for the use of the individual or entity above. Only the addressee, or person(s) authorized by the addressee, has permission to disseminate, distribute, or copy this message. If you have received this message in error, please notify the sender immediately. Thank you.

Note corrections needed throughout the Sub-Area 7 Master Plan:

1. The Clear Creek Nature Preserve (CCNP) is incorrectly described as the Clear Creek Conservation Area or the CCRA throughout the Sub-Area 7 Master Plan.
2. The Brookwood Hills Community Club (Brookwood Hills) is incorrectly described as the Brookwood Hills Civic Association throughout the Sub-Area 7 Master Plan.

The correct description should read as follows:

The Clear Creek Nature Preserve (CCNP) owned by The Brookwood Hills Community Club.

Changes to the Sub-Area 7 Master Plan requested by the Brookwood Hills Community Club:

The current the Sub-Area 7 Master Plan incorrectly states the concerns consistently expressed by representatives of The Brookwood Hills Community Club (Brookwood Hills)

The following are the concerns consistently communicated by representatives of The Brookwood Hills Community Club (Brookwood Hills).
o Overall site impact. The Brookwood Hills Community Club entered into the Conservation Easement with the City to protect the Clear Creek Nature Preserve in perpetuity The purpose of the Conservation Easement covering the Clear Creek Nature Preserve (CCNP) is to assure that the property will be retained forever in its natural and/or restored condition and to prevent any use of the property that will impair or interfere with the Conservation values of the property. While it is true that the conservation easement allows up to 10% of the area covered by the easement to be used for passive recreational purposes, the easement agreement expressly prohibits hardscape development such as buildings, structures, fences or other improvements of any kind. Trail Route Option \#2 would require construction of retaining walls, bridge abutments, the installation of a bridge and a 12 ft . concrete trail through protected wetlands. Trail Route Option \#3 would require multiple retaining walls, guardrails, and the construction of a 12 ft . wide concrete trail almost the entire length of the CCNP along Armour Drive.
o Tree Impacts. The pruning, cutting down, and other destruction or removal of trees or other vegetation is expressly prohibited by the terms of the Conservation Easement. Trail Route Option \#3 would result in the removal of dozens of mature trees within the Clear Creek Nature Preserve (CCNP) in addition to the 45 recompense trees recently planted by the City along Armour Drive. Trail Route Option \#2 would result in the destruction and/or removal of hundreds of mature trees in the Clear Creek Nature Preserve (CCNP).
o Visual Impact. Trail Route Option \#3 would also require the construction of a 400-500 ft. concrete ramp along Clayton Road, on the property owned by The Brookwood Hills Community Club, to elevate the proposed trail to a height of approximately 25 ft . in order to cross the railroad right-of-way.
o Erosion. The Clear Creek Nature Preserve (CCNP) drops off precipitously as one moves north from Armour Drive and west from Clayton Road. Any structural development in these areas will severely exacerbate the existing erosion problems.
o Trespassing and Illegal Dumping. The Clear Creek Nature Preserve (CCNP) is private property owned by The Brookwood Hills Community Club. The Conservation Easement agreement conveys no right of public access by the general public to any portion of the Clear Creek Nature Preserve (CCNP). The construction of Trail Route Option \#3 would invite an increase in illegal dumping over the slopes along Armour Drive and Clayton Road.

Changes to the Chart titled: Trail Alignment Options Removed from Consideration

Bullet Point \#3 under Removed Option \#1 should read as follows:

The Brookwood Hills Community Club, owner of the Clear Creek Nature Preserve (CCNP), opposes the route.

Changes to the Chart titled: Recommended Trail Route Options

Bullet Point \#1 under Recommended Option \#2 should read as follows:

The Brookwood Hills Community Club, owner of the Clear Creek Nature Preserve (CCNP), which is protected by a Conservation Easement, opposes the route because it must traverse and run along the edge of the Clear Creek Nature Preserve.

Bullet Point \#4 under Recommended Option \#2 (red line) should read as follows:
Passes through the Clear Creek Nature Preserve forest and wetlands.

Bullet Point \#1 under Recommended Option \#3 (blue line) should read as follows:

The Brookwood Hills Community Club, owner of the Clear Creek Nature Preserve (CCNP), which is protected by a Conservation Easement, opposes the route because it must traverse and run along the edge of the Clear Creek Nature Preserve.

Bullet Point \#3 under Recommended Option \#3 (blue line) should read as follows:

This route would involve construction in the Clear Creek Nature Preserve, which is expressly prohibited by the Conservation Easement.

Atlanta BeltLine Master Plan

SUBAREA 7

 NORTHSIDE/PEACHTREE/PIEDMONT INVENTORY \& ASSESSMENTPrepared for
Atlanta BeltLine, Inc.
by Glatting Jackson
March 2008

The Honorable Mayor Shirley Franklin

ATLANTA CITY COUNCIL

Lisa Borders, President

Carla Smith, District 1

Kwanza Hall, District 2
Ivory Lee Young, Jr., District 3
Cleta Winslow, District 4

Natalyn Mosby Archibong, District 5
Anne Fauver, District 6
Howard Shook, District 7

Clair Muller, District 8

Felicia A. Moore, District 9
C.T. Martin, District 10

Jim Maddox, District 11

Joyce Sheperd, District 12
Ceasar C. Mitchell, Post 1 at Large
Mary Norwood, Post 2 at Large
H. Lamar Willis, Post 3 at Large

ATLANTA BELTLINE BOARD

A. Ray Weeks, Jr, Chairman, BeltLine Partnership

Clara Hayley Axam, Project Director, The Enterprise Foundation, Board of Directors, MARTA

Kim F. Brown, Partner, Huntley Partners
Dr. Gerald Durley, Senior Pastor, Providence Missionary Baptist Church of Atlanta

Ralph G. Edwards, Jr., Managing Director, EBS Real Estate Investments; Chairman, Georgia Advisory Council for Trust for Public Land

Samuel G. Friedman, Chairman AFCO Realty; Chairman Emeritus, the PATH Foundation

Henry D. "Greg" Gregory, Vice Chairman \& CEO, IDI; member Georgia Advisory Council for Trust for Public Land

Helen Davis Hatch, Principal and Vice President of Client Relations, Thompson, Ventulett, Stainbeck \& Associates, Inc.

Archibald B. Hill, III, Director, Atlanta Community Business Center, Fannie Mae

Richard L. Holmes, Senior Vice President, Metro Atlanta Region and Diversity and Corporate Relations, Georgia Power

David Anderson Hooker, Vice President for Community Building, The Center for Working Families, Inc.

Philip I. Kent, Chairman and Chief Executive Officer, Turner Broadcasting System, Inc.

Joerg G. Matthiessen, Senior Vice President and Managing Officer, Boston Consulting Group

Christopher Glenn Sawyer, Partner, Alston \& Bird
TImothy C. Tuff, Chairman, President and Chief Executive Officer, John H. Harland Company

Mtamanika Youngblood, President and CEO, Center for Working Families, Inc.

SUBAREA 7 STEERING COMMITTEE

Steve Hart, Collier Hills Civic Association
Bill Eisenhauer, Nancy Creek Tech. Advisory Council
Chris Moorman, Brookwood Hills
Tony Casadonte, Pres. Collier Hills North/NPU C
Harold Solomon, Brookwood Hills \& Brookwood Alliance
Jeff Shell, NPU B
Michael Rothman, NPUE
Baron Jordan, Piedmont Heights, NPU F
Patti Pearlberg, VP, Coro Realty Advisors, LLC
Holly Snow, Piedmont Hospital
Drew Spears, Pope and Land
Freddy Bensch, Sweetwater Brewery
Patti Neal, Carter
Ray Christman, PTF
Val Porter, MPAC
Becky Winkler, Resident
Ben Darmer, Ardmore Park
Jim Wright, Ardmore Park
Karen O'Brien, Arbor Gate/Friends of Tanyard Creek

ATLANTA BELTLINE INC. STAFF

Terri Montaque, President \& Chief Executive Officer
Tina Arbes, Chief Operating Officer
Nate Conable, Project Manager
James Alexander, Project Manager

CITY OF ATLANTA STAFF

Jonathan Lewis, Project Manager
Shawn Kendrick, Planner

CONSULTANT TEAM
Glatting Jackson Kercher Anglin, Inc.
Market + Main
Ryan Gravel

CR1
McGee Partners

ACKNOWLEDGEMENTS

INVENTORY \& ASSESSMENT REPORT	
Introduction	
Study Area	1
Existing Conditions Summary	
Land Use \& Design	3
Mobility	5
Parks \& Greenspace	7
1.0 Land Use \& Design	9
1.1 Existing Land Use Survey	10
1.2 Future Land Use	12
1.3 Current Zoning	14
1.4 Population \& Employment	16
1.5 Related Studies: Land Use	18
1.6 Related Studies: Transportation	20
1.7 Potential Redevelopment	22
1.8 Neighborhood \& Historic Resources	24
1.9 The Battle of Peachtree Creek	26
1.10 The Urban Design Character	28
2.0 Mobility	31
2.1 Existing Street Network \& Connectivity	32
2.2 Effective Network	33
2.3 North-South \& East-West Connections	33
2.4 Connectivity Analysis	34
2.5 Historic \& Projected Traffic Counts	36

Introduction

The Study Area

The BeltLine Study Area 7 extends from Northside Drive on the west, Georgia 400 on the east, $l-85$ and $I-75$ on the south and the Lindbergh Drive/Lindbergh Station Area to the north. The Tax Allocation District (TAD) is the focus of this study, covering a smaller area that specifically includes key corridors, parks and opens spaces, the BeltLine corridor and potential redevelopment areas.

The Existing Conditions Analysis is organized into three categories:
1.0 Land Use \& Design - identifying existing and future land use patterns, related land use studies, potential redevelopment opportunities, and neighborhood and historic resources.
2.0 Mobility - identifying multi-modal opportunities including potential trail alternatives, existing rail infrastructure, transit routes, sidewalk and bicycle network, and vehicular connectivity.
3.0 Parks \& Open Space - identifying existing parks, natural features, creeks and floodplain, and topography.

Existing Conditions Summary

BeltLine Existing Conditions Summary
The following is a summary of key observations and conclusions from the Existing Conditions Analysis.

1.0 Land Use \& Design

- The key redevelopment opportunities in the study area are focused at the Peachtree Road and Armour Drive BeltLine station areas.
- There is a significant amount of redevelopment potential at the Peachtree Road area (over 20 acres in just the Colonial Homes and Brookwood Square properties which are in the planning for redevelopment).
- The floodplain along Peachtree Creek restricts redevelopment along the creek, particularly in the Peachtree Road area. This limitation will preclude development from occurring without City involvement.
- In the Peachtree Road area significant land use entitlements already exist, land use adjustments should be focused to promote mixed-use development.
- In the Armour Drive area redevelopment will require a land use change from industrial to mixeduse.

Existing Conditions Summary

2.0 Mobility

- The study area lacks redundant east-west and north-south connectivity, putting traffic pressure on just a few roads.
- Limited access to I-75 (only at Northside Drive) puts pressure on Northside Drive and Collier Road for access to Piedmont Hospital and Peachtree Road.
- Peachtree Creek, the existing rail lines and established neighborhoods restrict and limit opportunities for new connectivity.
- There is a potential for a new east-west connection between Peachtree Road and Piedmont Road parallel to Peachtree Creek (an idea that came out of the BeltLine Redevelopment Plan, the BeltLine Street Framework Plan, and the Piedmont Heights Blueprint).

Existing Conditions Summary

3.0 Parks \& Greenspace

- Due to the active rail use of the CSX rail line, the BeltLine Trail will need to be planned and located outside of the rail right-of-way.
- There have been several BeltLine Trail planning studies to identify likely alignments.
- Due to the lack of a dedicated right-of way for the BeltLine Trail, implementation will require the incremental building of segments as opportunities arise and redevelopment occurs .
- Peachtree Creek and the rail lines are significant barriers to trail and greenway connectivity.
- The floodplain presents a long-term opportunity to expand greenspace and trail connections along Peachtree Creek.

INVENTORY \&
ASSESSMENT REPORT
1.0

Land Use \& Design

The existing land use within the TAD district was surveyed utilizing standardized categories of land use via a "windshield survey" on a parcel-by-parcel basis. The categories are consistent with Atlanta's BeltLine land use and include:

Open Space: This category pertains to any piece of property that is intentionally being used for any open space uses.
Low-Density Residential: This category pertains to situations in which multiple housing units are contained within a single lot, but at a low density (i.e., approximately less than 12 units per acre).

Medium-Density Residential: This category pertains to situations in which multiple housing units are contained within a single lot, but at a medium density (i.e., approximately 12-36 units per acre).
High-Density Residential: This category pertains to situations in which multiple housing units are contained within a single lot, but at a high density (i.e., approximately 36-72 units per acre).

Low-Density Commercial: This category pertains to parcels that contain a commercial business typically a business that sells goods and/or services (that is not manufacturing or industrial) at a low density (i.e., approximately 3 stories or less).
Industrial: This category pertains to parcels that contain a manufacturing, production or processing use. In general, this would include anything that requires the use of heavy machinery and typically involves loading and unloading of heavy trucks.
Office/Institutional: This category pertains to parcels that are used exclusively for civic use, or service-provider institutional uses. Institutional uses generally include any civic or service-related facility even if not publicly owned or operated.
Mixed-Use 5-9 Levels: This category pertains to parcels that contain a mix of residential and nonresidential uses, as long as the residential uses are approximately 20% or more of the development and the building height is between $5-9$ levels.
Mixed-Use 10+ Levels: This category pertains to parcels that contain a mix of residential and nonresidential uses, as long as the residential uses are approximately 20% or more of the development and the building height is above 10 levels.

Parking: This category is confined to parcels that are solely used for parking.
Vacant Land: This category pertains to parcels that do not contain a primary structure.

Summary:

- Along the Peachtree and Piedmont corridors is a range of commercial, higher-intensity residential and mixed use development.
- The Lindbergh City Center Area has become a hub of mixed use development that includes significant office, residential and commercial uses.
- The Armour Drive area is predominantly industrial based on its historic access to the adjacent rail corridors and today includes MARTA's new yard and shop facilities.
- A significant amount of the TAD is open space including Bobby Jones Golf Course, Tanyard Creek Park, Ardmore Park, and the Brookwood Hills Neighborhood Clear Creek Property.

Land Use	Acres	Percentage
Residential	104.9	17.8%
Industrial	33	5.6%
Low-Density Commercial	100.2	17.1%
Mixed Use	52	8.8%
Office/Institutional	47.2	8.1%
Open Space	229	38.9%
Parking/Utility	12.6	2.1%
Vacant	9.4	1.6%
Total	$\mathbf{5 8 8 . 3 3}$	

1.2 Future Land Use

The Atlanta Strategic Action Plan (ASAP) has established future land use classifications for all land in the City. The ASAP's Future Land Use Map reflects long-term land use goals and is not always consistent with the existing land use or current zoning. Any parcel rezoning must be consistent with the Future Land Use Plan.

Summary

- The Peachtree Corridor includes higher-intensity residential and commercial uses adjacent to existing residential neighborhoods.
- The Lindbergh Station Area has the highest concentration of mixed-use and high-intensity residential in the study area.
- The Armour Area along the CSX and Norfolk Southern Rail lines is predominately industrial.

Land Use Designation	Compatible Zoning Districts	Allowed Units per Acre	F.A.R. Limits
OPEN SPACE	Varies	--	--
SINGLE-FAMILY RESIDENTIAL	$\begin{aligned} & \text { R-1 to R-4, } \\ & \text { PD-H } \end{aligned}$	N/A	N/A
LOW-DENSITY RESIDENTIAL	$\begin{aligned} & \text { R-1 to R-4, } \\ & \text { RG-1 \& RG-2, MR-1 \& MR-2 } \\ & \text { PD-H } \end{aligned}$	$\begin{gathered} 0-8 \\ 0-16 \\ 0-32 \end{gathered}$	0.0-0.348
MEDIUM-DENSITY RESIDENTIAL	$\begin{aligned} & \text { R-1 to R-5 } \\ & \text { RG-1 to RG-2, MR-1 \& MR-2 } \\ & \text { RG-3, MR-3, PD-H } \\ & \hline \end{aligned}$	$\begin{aligned} & 0-16 \\ & 0-29 \\ & 0-64 \end{aligned}$	0.0-0.696
$\begin{aligned} & \hline \text { HIGH-DENSITY } \\ & \text { RESIDENTIAL } \end{aligned}$	$\begin{aligned} & \text { R-1 to R-5 } \\ & \text { RG-1 to RG-4, MR-1 to MR-4, } \\ & \text { PD-H } \end{aligned}$	N/A	0.0 to 1.49
VERY-HIGH DENSITY RESIDENTIAL	$\begin{aligned} & \text { R-1 to R-5 } \\ & \text { RG-1 to RG-6, MR-1 to MR-6 } \\ & \text { PD-H } \end{aligned}$	N/A	0.0-6.40
$\begin{aligned} & \text { LOW-DENSITY } \\ & \text { COMMERCIAL } \end{aligned}$	R-1 to R-5, RG-1 to RG-3, R-LC, MR-1 to MR-4, O-I, LW, NC, C-1 \& C-2, MRC-1 \& MRC-2, PD-H, PD-OC	N/A	Established by Zoning District Regulations
$\begin{aligned} & \text { HIGH-DENSITY } \\ & \text { COMMERCIAL } \end{aligned}$	R-1 to R-5, RG-1 to RG-6, R-LC, MR-1 to MR-6, O-I, LW, C-1 to C-5, MRC-1 to MRC-3, PD-H, PD-MU, PD-OC	N/A	Established by Zoning District Regulations
INDUSTRIAL	LW, I-1, I-2, PD- BP	N/A	Established by Zoning District Regulations
OFFICE/INSTITUTIONAL	$\begin{aligned} & \text { R-1 to R-5 } \\ & \text { RG-1 to RG-6, MR-1 to MR-6 } \\ & \text { O-I, PD-BP } \\ & \hline \end{aligned}$	N/A	Established by Zoning District Regulations
OFFICE/INSTITUTIONAL RESIDENTIAL	R-1 to R-5 RG-1 to RG-6, MR-1 to MR-6 O-I	N/A	Established by Zoning District Regulations
MIXED-USE ($\mathrm{min} .20 \%$ residential required)	All districts except for I-1, I-2 and PDBP	N/A	Established by Zoning District Regulations

Except for I and PD districts, all land use designations are incremental. A higher density designation may include lesser density designations.
Source: City of Atlanta Bureau of Planning.

Zoning Categories Basic Description:

(C-2) Commercial Service: Intent: Provide a broad range of sales, service and repair activities while encouraging residential use either as a principal use or in mixed use development. There is an unlimited height requirement except when adjacent to residential uses.
(C-3) Commercial-Residential: Intent: Provide a moderate to high-intensity uses of a broad range in areas of major intersections or of areas of regional significance. The maximum height allowed is 225 feet.
(RG) Residential General: Intent: Provide for a range of residential densities that are compatible with the comprehensive plan. RG2 FAR: .174-.348, RG4 FAR: .746-1.49, RG5 FAR: 1.6-3.2.
(LW) Live-Work: Intent: Encourage the rehabilitation or development of underutilized industrial areas while enhancing the environmental and recreational amenities. The floor area ratio ranges from .5 for non-residential uses to .696 for residential uses to a combined F.A.R. of 1.196. There is a 52 foot height maximum and a requirement for a minimum of 15 foot sidewalks.
(I-1) Light Industrial: Intent: Provide locations for wholesaling, warehousing, storage, light manufacturing, processing, repair services, and sales lots in addition to other retail and service establishments, as well as permitting the conversion of industrial buildings to multi-family dwellings.
(OI) Office-Institutional: Intent: Provide office, institutional, residential or mixed-use development without general commercial development.
(MRC2) Mixed Residential and Commercial: Intent: Provide for a medium density residential and commercial area that serves a group of adjacent neighborhoods. The floor area ratio ranges from 2.5 for non-residential uses to .696 for residential uses to a combined F.A.R. of 3.196 . There is a 225 foot height maximum, an open space requirement of $10 \%-20 \%$, and a requirement for a minimum of 15 foot sidewalks.
(SPI-15) Special Public Interest District: Lindbergh Transit Station Area: Intent: Create a diversified urban environment where the existing transit station area is retrofitted into a pedestrian-oriented and multi-family urban neighborhood.

Brookwood Hills Overlay District: Intent: To protect and enhance districts which represent special elements of the city's history. The Brookwood Hills Overlay District is a conservation easement.

BeltLine Overlay District: Intent: To establish a zoning district overlay that establishes a set of criteria regulating certain characteristics that anticipates, manages, and encourage quality development opportunities.

Summary

The zoning pattern further reflects the importance of the Peachtree Road and the Lindbergh area.

- A majority of the Lindbergh area falls into the SPI 15 category which allows for higher-intensity uses around the existing MARTA station.
- The Peachtree Corridor maintains its higherintensity commercial around Piedmont Hospital and allows for higher intensity residential south of Peachtree Creek to the BeltLine Transit Corridor.
- The majority of the Armour Road area is zoned Industrial.

1.4 Population \& Employment

There are five census tracts that are contained in the study area boundary.

Summary

- Tracts 91 and 94.02 are mostly contained in the study area boundary.
- Tract 91, which includes Collier Hills and Brookwood Hills, is projected to have the largest population growth.
- Tract 91 currently has the largest number of employees and will remain so in 2030.
- Tract 94.02, which is Lindbergh City Center, is projected to have the highest employment numbers despite having stagnant growth in population of the next 30 years.

Population and Employment					
		Population		Employment	
Tract \#	Description of Area	2000 Census	2030*	2000*	2030*
90.00	Channing Valley/Springdale	3,602	4,959	902	2,175
91.00	Collier Hills/Piedmont Hospital/Brookwood Hills/Ardmore	7,235	10,387	17,816	18,853
92.00	Armour Area, Piedmont Heights, Morningside	4,055	6,152	9,015	5,276
93.00	Peachtree Hills/Garden Hills/Peachtree Heights	4,751	5,351	1,943	3,782
94.02	Lindbergh City Center	4,172	4,784	5,407	14,054
	Total	23,815	31,633	35,083	44,137

*Based on the Atlanta Regional Commission's Projections

1.5 Related Studies:
 Land Use

There are a number of related studies and plans in and adjacent to the study area that have recommended future land use changes, opportunities for redevelopment, new street connections and transit recommendations. The following summarizes the key land use recommendations from each study.

Summary

Northside Drive Corridor Study

- Northside Drive, adjacent to I-75 should retain its commercial designation.
- Areas adjacent to commercial designations are recommended to become medium density residential as the transition to the adjacent existing single-family neighborhoods of Berkley Park and Loring Heights.

Peachtree Corridor

- Proposed future land use recommends mixed use adjacent to proposed BeltLine alignment that continues north along Peachtree Street as an alternative to the existing future land use of high density commercial.
- Proposes a public park in the southwest corner of CSX rail line and Peachtree Road intersection where there is currently a small strip-center and gas station.

BeltLine Redevelopment Plan

- Proposes high-density mixed use that transitions away from Peachtree Street into medium to low density residential.
- Bennett Street to remain low density commercial.
- Proposes new park areas along Peachtree Park Avenue and Colonial Homes Drive.

Cheshire Bridge Road

- Proposed to keep current designation of low density commercial uses along Piedmont Road and Cheshire Bridge Road except along Rockledge Road where it should change to low density residential and Manchester Street where the designation should change to Mixed Use.

Blueprint Piedmont Heights

- Encourage mixed use redevelopment of Ansley Mall, the Armour Drive area, Ottley Circle area and Monroe/Crescent area.

Lindbergh SPI

- Mixed-use, transit-oriented development around the Lindbergh MARTA Station.

	Study	Adopted Future Land Use	Proposed Future Land Use
(1)	BeltLine Redevelopment Plan	Very-High Density Residential	Mixed Use
(2)	BeltLine Redevelopment Plan	High-Density Commercial	Mixed Use
(3)	BeltLine Redevelopment Plan	Industrial	Mixed use
(4)	Cheshire Bridge Study	Low-Density Commercial	Low-Density Residential
(5)	BeltLine Redevelopment Plan	High-Density Residential	Mid-Density Residential
(6)	BeltLine Redevelopment Plan	High-Density Commercial	Mixed Use
(7)	BeltLine Redevelopment Plan	Low-Density Commercial	Mid-Density Residential
(8)	BeltLine Redevelopment Plan	High-Density Residential	Low-Density Residential
9	BeltLine Redevelopment Plan	High-Density Residential	Mid-Density Residential
10	BeltLine Redevelopment Plan	High-Density Commercial	Low-Density Commercial
(11)	Northside Drive Corridor Study	Low-Density Commercial	High-Density Commercial/Office
(12)	Northside Drive Corridor Study	Mixed Use	High-Density Commercial/Office
(13)	Northside Drive Corridor Study	Low-Density Commercial	High-Density Commercial/Office
(14)	Northside Drive Corridor Study	Mixed Use	Mid-Density Residential

1.6 Related Studies:
 Transportation

There are a number of related studies and plans in and adjacent to the study area that have recommended future land use changes, opportunities for redevelopment, new street connections and transit recommendations. The following summarizes the key transportation recommendations from each study.

Summary

Northside Drive Corridor Study

- New sidewalks on both sides of Northside Drive south of Bellemeade Street.
- Widen Northside Drive to six lanes and a median/ turn lane south of I-75.
- Potential for future transit in outside traffic lanes.

Peachtree Corridor

- Designates Peachtree Street at the proposed BeltLine intersection as a "gateway" project.
- Widen Peachtree Street to six lanes and a center median/turn lane.
- Streetcar transit in outside traffic lanes.

BeltLine Redevelopment Plan

- Proposes new pedestrian bridge from Piedmont Hospital to Bennett Street.
- Proposes extending Peachtree Park Avenue across Peachtree Road to Colonial Homes property.
- Proposes extending Colonial Homes Drive across Peachtree Road.
- Intersection Improvements along Peachtree Road at Peachtree Park Avenue, Colonial Homes, Peachtree Valley.
- Realign Spalding Drive to Peachtree Valley Road.

BeltLine Street Framework Plan

- Proposed new connections from Peachtree Park Drive to Peachtree Hills Avenue and Armour Drive.
- New connections in Armour Drive area to create development blocks.

Cheshire Bridge

- Re-stripe Cheshire Bridge Road from six lanes to five lanes with bike lane at l-85.
- Where possible increase width of sidewalks to $10^{\prime}-0^{\prime \prime}$.

Blueprint Piedmont Heights

- Encourage a new street grid at Armour Drive.
- Realign Monroe Drive and Buford Highway interchange.
- New Connections from Piedmont Road to Armour Drive area.

Lindbergh SPI

- New street grid and block structure to organize new mixed-use redevelopment.

1.7 Potential Redevelopment

This snapshot of the potential redevelopment opportunities in the study area is based on stakeholder interviews, field observations and land use analysis of existing parcels within the TAD. They have been grouped into the following categories:

- Parcels Currently Redeveloping - projects that are under construction or approved.
- Parcels Ready for Redevelopment (short-term)
- parcels that are likely to redevelop in the next 2-5 years based on location and under utilization.
- Parcels Ready for Redevelopment (Long-term)
- parcels that are in position to redevelop in the next 5 years and beyond based on location and under utilization.

Summary:

- In the Peachtree/Piedmont Hospital area, there is significant potential for redevelopment in the short-term including several large parcels such as the Colonial Homes property and the Brookwood Square shopping center.
- The Lindbergh Station Area is undergoing significant redevelopment currently.
- The Armour Drive/Monroe Drive area has some potential for redevelopment in the short-term with some redevelopment underway.

1.8 Neighborhoods \&
 Historic Resources

The study area includes many established and historic neighborhoods that were built between the early 1900s to the 1950s. These neighborhoods have left behind a range of historic resources which include buildings, objects, and structures.

Summary

Designated Areas on the National Register of Historic Places- These cultural resources were deemed by the National Register as worthy of preservation on the local and state level.

- Brookwood Hills Historic District (local significance)- Developed in the 1920's as a suburban development; significance is based on it's major architectural, landscape, and planning elements.
- Knox Apartments/Cauthorn House (local significance)- This site contains three historic apartment buildings that are now known as Peachtree Commons; significance due to its architecture, development and community planning.
- Peachtree Heights Historic District (state level)This district was developed around the natural topography and vegetation of the area. Noted architects and landscape architects have been involved in its development.

Candidate for Historic District Designation (not defined by Park Service): "a group of historic residences (single or multi-family) within a definable geographic boundary." These districts have a local level of significance.

- Peachtree Hills Neighborhood- Peachtree Hills is comprised of a mix of single-family cottages laid out along curvilinear streets. There are several garden-style apartment complexes which line the eastern end of the neighborhood
- Colonial Homes Neighborhood- These apartments are an example of mid-20th century Modern apartment buildings. There are a total of 263 -story buildings set among a landscaped lawn.
- Collier Hills Neighborhood- Collier Hills' architecture makes it an excellent example of a Minimal Traditional neighborhood. A majority of the housing is from the WWII era.
- Ardmore Neighborhood- A planned development from the 1920's. The building stock includes cottages and brick apartment buildings. It serves as an excellent example of revival era architecture.
- Brookwood Hills Neighborhood- This is an amendment to the Brookwood Hills Historic District which will include the 20th century garden suburb.
"Historic" Resources- These resources have been identified by the Atlanta Urban Design Commission as "historic" resources.
- Historic Objects: Defined as: "a construction primarily artistic in nature or relatively small in scale and simply constructed, such as a statue or milepost."
(1) 1940-Telephone Poles
- Historic Structures: Defined as: "a functional construction made for purposes other than creating shelter, such as a bridge."
(2) 1950-Railroad overpass with steel culvert. Formed concrete with decorative insets and steel railings
(3) 1950-Concrete bridge over Peachtree Creek
(4) 1950-Concrete railroad overpass, minimal decorative insets, decorative pebbles inlaid in concrete, concrete piers
(5) 1910-Railroad underpass, steel truss posts, concrete abutments
- Historic Buildings: Defined as:"a resource created principally to shelter any form of human activity, such as a house." There are 55 historic buildings within the study area. Included in this are the following:
Rollins Corporation- This building is significant because of the prominence of the Rollins Corporation and their buyout of the Orkin Exterminating Company.
Bennett Street Arts \& Antiques District- There are nine buildings built between 1940 and 1950 that compose the Bennett Street Arts \& Antiques District.
Sources:
Atlanta Urban Design Commission, www.nationalregisterof historicplaces.com, www.buckheadis.com/historic_site, http:// www.nps.gov/history/nr/travel/atlanta/index.htm

Sources: Atlanta Urban Design Commission, www.nationalregisterof historicplaces.com, www.buckheadis.com/historic_site,

1.9 The Battle of Peachtree Creek

An important part of this area's history is its role in the Civil War battle for Atlanta. The Battle of Peachtree Creek was centrally fought in the area bordered by Collier Road to the north, Deering Road to the south, Howell Mill Road to the west and Peachtree Road to the east.

The above map shows the maximum penetration of the Confederate attacks, between 4:30 and 5:30 p.m. on 20 July 1864. Maps by Georgia Battlefields Association (www.georgiabattlefields.org).

The above map shows the situation in mid afternoon of Wednesday, 20 July 1864, as the Confederate divisions under French, Walthall, Loring, Maney (formerly Cheatham's division), Cleburne, Walker, and Bate are about to attack northward from the outer defense line.
Maps by Georgia Battlefields Association (www.georgiabattlefields.org).

1.10 The Urban Design Character

The urban design character varies from garden style apartments to industrial warehouses. These urban design characteristics have been broken down into districts. The following is a summary of these districts:

Summary

Haynes Manor District (residential)- This district is characterized by estate homes on large lots. The district is bounded by a linear park along Peachtree Battle to the north and Peachtree Creek to the south.

Peachtree Hills District (residential)- This district is characterized by craftsman style houses with a small neighborhood commercial core and public park.

Piedmont Heights District (residential)- Piedmont Heights is surrounded by encroaching commercial development along Piedmont Road and Monroe Drive. The area is characterized by ranch style housing along the northern edge and craftsman style housing to the south.

Brookwood Hills District (residential)- Brookwood Hills is an historic neighborhood which began development in the 1920's. The building stock is a mix of classical revival, bungalows, and tudor revival that fronts curvilinear streets.

Collier Hills, Collier Hills North, and Ardmore District (residential)- These neighborhoods began as civil war battlefield sites but later became residential developments in the 1920's. The area contains a mix of cottage style housing and brick apartment buildings.

Garden Apartment District (residential)- The

 Peachtree corridor contains several garden apartment homes and condominiums. The apartments are generally two to three stories with brick facades and include Colonial Homes Apartment Complex.Apartment High-rise District (residential)- This area is currently undergoing redevelopment with new apartment buildings in addition to the existing Darlington Apartment building which is over 10 stories.

Peachtree Corridor District (residential and com-mercial)- The Peachtree Corridor district combines a mix of historic garden apartments, new high-rise condo buildings, and strip-commercial development.

Park Avenue Office District (office)- This district predominately contains 60's style, low-level office buildings.

Peachtree Corridor District (residential and com-mercial)- The Peachtree Corridor district combines a mix of historic garden apartments, new high-rise condo buildings, and strip-commercial development.

Bennett Street Arts \& Antiques District (commer-cial)- The Bennett Street Arts \& Antiques District contains a mix of artist studios and commercial shops.

ADAC (commercial)- The Atlanta Decorative Arts Center contains over 55,000 square feet of space that provides a showcase for interior design products housed in a warehouse-style building.

Piedmont Hospital District (medical office and hospital)- This district contains not only the growing Piedmont Hospital, but a wide-range of supporting medical office buildings and towers.

Brookwood/Ardmore Commercial District (historic

 commercial, strip-commercial, and historic apartment buildings)- This district contains the historic Brookwood Hills Commercial District as well as new strip-commercial buildings. This district also contains several historic apartment buildings.Ottley Circle/Armour Drive District (light-industrial and residential)- This district is one of the few remaining industrial complexes in the City. The area is composed mostly of 2 -story industrial buildings. A recent addition to the area has been the Armour Heights residential mixed-use development.

Cheshire Bridge Commercial District (strip-commercial and light industrial)- This district houses single level industrial and strip-commercial uses.

2.1 Existing Network \&

Connectivity

Summary

- Based on simple connectivity ratios (number of road links divided by intersections) the study area performs below urban areas in Atlanta, such as Midtown.
- Selected areas such as the Peachtree Road / Collier Road area (centered on Piedmont Hospital) perform even worse in connectivity ratios as compared to a similar size area in Midtown.
- The figure ground diagrams for each area confirm visually the difference in block size, street connectivity, and density of street connections.

Area	Analysis 1*	A na Iy si s $\mathbf{2 * *}^{* *}$
BeltLine Study Area 7	1.5	.88
Midtown	1.6	1
 Collier Roads	1.2	.86

[^8]
Source:

Reid, Ewing (1996), Best Development Practices; Doing the Right Thing and Making Money at the Same Time, Planners Press (www.planning.org), 1996.
USEPA (2002), Smart Growth Index (SGI) Model, U.S. Environmental Protection Agency
(www.epa.gove/smartgrowth/topics/sgipilot.htm), 2002.
Victoria Transport Policy Institute (2007), Roadway Connectivity; Creating More Connected Roadway and Pathway Networks, (www.vtpi.org/tdm.com)

2.2 Effective Network

Summary

- There are 55 miles of road network within the Study Area boundary.
- Of those 55 miles only 24 miles, or 44%, connect to more than one street to form a connected network.
- These "effective network" streets are the streets that provide real connectivity in the area, providing the multiple travel routes that move residents and regional trips.
- The area where lack of "effective network" becomes most apparent is in the area south of Peachtree Hills Avenue, between Peachtree Road and Piedmont Road.

2.3 East-West \&

North-South Connections

Summary

- Connectivity in the study area relies heavily on the north-south connections of Northside Drive, Peachtree Road, Piedmont Road and their regional connections to I-85 and I-75.
- There are only four east-west connections in the study area: Peachtree Battle, Collier Road, Lindbergh Drive and Peachtree Hills Avenue.
- There is building pressure on the east-west connections, particularly on Collier Road and Lindbergh Drive, due to their connection to major employment centers at Piedmont Hospital and the Lindbergh MARTA station.
- Peachtree Road's lack of access to I-75 has put increased pressure on Collier Road and Northside Drive as the primary l-75 route for traffic bound for the Piedmont Hospital area.
- Interstates 75 and 85 , Peachtree Creek, and the existing rail lines all serve as significant barriers to increased connections.

Existing Network

North-South \& East-West Network

- North-South Connections
— East-West Connections

2.4 Connectivity Analysis

Utilizing a GIS-based tool developed by Professor John Peponis at Georgia Tech, the study area has been further analyzed for connectivity. This analysis produces a number of valuable measures that allows the connectivity of each link in the study area to be analyzed for connectivity and compared to other areas in Atlanta.

Summary

Connectivity Measures:

- Street miles per square mile of land
- Mean distance between intersections
- Number of blocks per square mile
- Number of intersections per square mile
- Metric Reach (street miles accessible from the midpoint of each road for a given distance)
- Directional Turns (average number of turns needed to get to all the streets accessible within a mile of a given point)

Connectivity Diagrams

One of the great strengths of this analysis is the ability to pin-point specific connectivity weaknesses and illustrates graphically the connectivity analysis. The resulting connectivity diagrams highlight on a color spectrum from red to dark blue the range of connectivity.

Red $=$ areas with high connectivity and straight access
Blue = areas with low connectivity and access requiring multiple direction changes

- The general pattern that becomes obvious for the study area is presence of a "blue-hole" right in the middle, associated with the industrial peninsula around Armour Drive and the area
around Piedmont Hospital. This contrasts with the more "connected" area of Buckhead to the north between Peachtree Road and Piedmont Road.

Conclusions \& Observations

- The challenge will be to find ways to add connections without adversely affecting the current qualities of the area's residential neighborhoods.
- The study area has fewer street miles than most of the comparison areas in the Atlanta region (even fewer than the example area from Dunwoody).
- The number of blocks per square mile is significantly lower than appropriate comparables such as Decatur, Virginia Highland, or Ansley Park.
- The number of intersections per square mile is lower than all of the comparable areas.
- The average metric reach (the number of miles accessible from a given point) is the lowest, excluding Dunwoody.
- Overall there is significant need to expand connectivity in the study area.

	Connectivity: Measures				
	Street Miles (per sq. mile)	Intersections (per sq. mile)	Blocks (per sq. mile)	Reach (miles in a mile radius)	Avg. Number of Turns (1 mile radius)
	26.7	234	151.5	52.5	3.2
Decatur	15.9	96.9	39.4	25.7	5.5
Ansley Park	15.5	93.9	40.1	26.9	4.2
Va. Highland	14.4	82.3	34.5	25.1	5.1
Dunwoody	14	67.1	20.6	13.9	8.5
Study Area	$\mathbf{1 0 . 6}$	$\mathbf{5 2 . 9}$	$\mathbf{2 9 . 7}$	$\mathbf{1 6 . 6}$	$\mathbf{4 . 7}$

Connectivity Diagram: The Study Area

Connectivity Diagram: Decatur, Georgia Connectivity Diagram: Downtown Atlanta Connectivity Diagram: Dunwoody, Georgia

2.5 Historic \& Projected Traffic Counts

Historic traffic counts were analyzed within the study area. The major corridors of Peachtree Road, Piedmont Road, and Northside Drive were further studied for historic and projected traffic counts between the years 2001 and 2030.

Summary

- Piedmont Road north of Buford Highway saw a slight increase in volume between 2001 and 2005 only to drop by 22% in 2006.
- Piedmont Road south of Buford Highway showed the most significant growth in volume-39\% between 2005 and 2006.
- Peachtree Road showed a slight increase in traffic volumes from 2001 to 2006 but is projected to increase by 41% by the 2030 .
- Northside Drive decreased by 17% between 2005 and 2006 but is projected to increase by 28% by 2020.
- Piedmont Road north of Buford Highway is projected to have the biggest traffic volume increase by 2030 at a 65% increase.

Piedmont Road (N)		Piedmont Road (S)		Northside Drive		Peachtree Road (N)		Peachtree Road (S)	
Year	Volume								
2001	50,924	2001	23,300	2001	27,014	2001	39,025	2001	42,007
2002	52,324	2002	23,090	2002	28,035	2002	39,930	2002	43,316
2003	52,481	2003	23,388	2003	23,206	2003	50,606	2003	43,111
2004	53,424	2004	23,811	2004	23,627	2004	42,337	2004	42,823
2005	53,950	2005	24,050	2005	25,210	2005	40,910	2005	43,250
2006	39,620	2006	32,340	2006	22,380	2006	40,390	2006	42,190
2020	61,701	2020	40,638	2020	28,831	2020	53,930	2020	50,752
2030	65,515	2030	42,105	2030	32,878	2030	57,141	2030	51,912

Projected Volume from ARC TDM
Source: Georgia Department of Transportation, The Atlanta Regional Commission's TDM

2.6 Interstate Access \& Street Hierarchy

The area's connectivity is also influenced by access to Interstates 75 and 85 . Key observations of the study area include:

Summary

- I-85 and I-75 are major barriers to north-south connectivity.
- There are only three north-south connections that cross I-75 and I-85: Northside Drive, Peachtree Road, and Piedmont Road.
- Northside Drive has full access to Interstate 75.
- Peachtree Road has partial access to Interstate 85 (southbound exit and northbound on).
- Piedmont Road has full access to Interstate 85 (via Armour Drive, Monroe Drive, and Buford Highway).

2.7 Existing Crash Data

The crash data was analyzed along the five major roads within the study area: Peachtree Road, Piedmont Road, Northside Drive, Monroe Drive and Collier Road. The crash data was provided by the Georgia Department of Transportation for the years 2004-2006.

Peachtree Road at Collier Road $\mathbf{2 5 2}$ Accidents	
Type	Percent
Pedestrian	2%
Angle	50.1%
Head-on	1.4%
Rear-end	32.1%
Sideswipe Opposite Direction	1.4%
Sideswipe Same Direction	13.2%
Other	0%

Peachtree Road at Peachtree Park Drive $\mathbf{1 1 8}$ Accidents	
Type	Percent
Pedestrian	1.7%
Angle	34.7%
Head-on	1.7%
Rear-end	34.8%
Sideswipe Opposite Direction	0%
Sideswipe Same Direction	20.3%
Other	6.8%

Northside Drive at Collier Road 68 Accidents	
Type	Percent
Pedestrian	1.6%
Angle	29.4%
Head-on	2.9%
Rear-end	47.1%
Sideswipe Opposite Direction	2.9%
Sideswipe Same Direction	10.3%
Other	5.8%

Piedmont Road at Garson Drive 66 Accidents	
Type	Percent
Pedestrian	3%
Angle	30.3%
Head-on	3%
Rear-end	44%
Sideswipe Oppo- site Direction	0%
Sideswipe Same Direction	12.1%
Other	7.6%

Monroe Drive at Piedmont Circle 60 Accidents	
Type	Percent
Pedestrian	0%
Angle	50%
Head-on	3.4%
Rear-end	16.6%
Sideswipe Oppo- site Direction	30%
Sideswipe Same Direction	0%
Other	0%

[^9]Source: Georgia Department of Transportation

Peachtree Road Crash Data
Source: Georgia Department of Transportation

Piedmont Road Crash Data
Source: Georgia Department of Transportation

Collier Road Crash Data
Source: Georgia Department of Transportation

Mile Posts (/10th Mile)
Segment 1 Mile Posts
Crash Data
"Hotspot" Location

2.8 Sidewalk Network

Summary

- Collier Road has incomplete sidewalks from Northside Drive to Howell Mill Road and has sidewalks only on the north side of the street from Dellwood Drive to Northside Drive.
- The majority of streets within the Brookwood Hills and Ardmore neighborhoods have complete sidewalks. Ardmore Road, which leads to Ardmore Park, has no sidewalks.
- The neighborhoods of Collier Hills, Collier Hills North, Channing Valley, and Peachtree Hills have no sidewalks.
- Piedmont Heights has one-sided sidewalks along most of its streets.

2.9 Bicycle Network

Summary

- There are current plans underway for bicycle routes throughout the study area.
- The 2005 proposed BeltLine Redevelopment Plan intersects the City's proposed bicycle routes at Peachtree Road and Collier Road.

2.10 Existing Rail \&
 Transit Corridors

The study area includes a number of active freight and transit rail corridors that limit connectivity for new transit, streets and trails.

Summary

- The proposed BeltLine transit alignment utilizes the existing CSX Rail line and the Norfolk Southern Rail, both active rail corridors with no direct connection between them.
- Any BeltLine transit alignment will need to make a new connection to the Lindbergh MARTA Station or a new "infill" MARTA station at Armour Drive.
- The proposed BeltLine transit alignment runs under Interstate 85 utilizing the Norfolk Southern underpass.

2.11 Bus Routes

Summary

Three main routes run through the study area:

- Route 23 Lenox/Arts Center- This line links Midtown's Arts Center Station area with Lenox Square Shopping Mall. This route serves Amtrak, the Atlanta History Museum and the historic Rhodes Memorial Hall.
- Route 44 West Wesley- This bus line serves the Lindbergh Station area with stops along Northside Drive, Howell Mill Road and Moores Mill.
- Route 27 Monroe Drive/Lindbergh- This bus line serves Ansley Mall and Piedmont Park. During the weekday this line has stops along Armour Drive and Ottley Drive. It terminates at the North Avenue Station.

2.12 Physical Constraints

The study area includes a number of physical constraints that challenge the creation of network connections but also add to the overall open space.

Summary

- Theexisting interstates, $\mathrm{I}-75$ and $\mathrm{I}-85$, limitvehicular and pedestrian connections to the south.
- While the floodplain does add to the overall open space of the study area it also limits the amount of redevelopment that can occur adjacent to Peachtree Creek and connections across the Creek.
- The confluence of the CSX Rail Line, Norfolk Rail Line, and MARTA provide a constraint to the proposed BeltLine trail within the right-of-way and potential connections across these rail lines.

2.14 Transit Accessibility

Pedestrian accessibility to future BeltLine Transit Stations will be important for the success of transit in the area. This diagram illustrates the actual 5 and 10minute walking distances around the proposed stations at Collier Road, Peachtree Street, Armour Drive, and existing Lindbergh MARTA Station.

Summary

Collier Road Station Accessibility:

- While the existing street network limits the "reach" of this station, key neighborhood streets and Collier Road itself should be enhanced with sidewalks and bicycle facilities to maximize pedestrian accessibility.

Armour Drive Station Accessibility:

- The limited street network and barriers such as I-85 and existing rail lines constrict pedestrian accessibility. Additionally, the existing roads lack appropriate sidewalks and pedestrian enhancements.

Peachtree Station Accessibility:

- The CSX rail line and Peachtree Creek limit the "reach" of this station.
- New redevelopment in this area will provide the opportunity to create more connections and enhance public streetscapes.

2.15 Programmed Projects

The planned projects listed below for this study area were taken from the City of Atlanta's Capital Improvements Program (2008-2013) and The Atlanta Regional Commission's 2008-2012 Transportation Improvement Program (TIP) and the Regional Transportation Plan (RTP).

Project Name	Description	Start/End Dates	Status	Source	TIP Number	Cost	Funding Source
Collier Road Sidewalk	Construction of sidewalks on Collier Road from Howell Mill Road to Peachtree Road	01/08-07/08	Authorized	CIP	AT-AR-BP-154	\$430,000	Local
1-85 @ Monroe Slip Ramps	The reconstruction of the I-85 North and Monroe Drive interchange. It will relocate the on and off ramps to Monroe Drive		Long-range	CIP	$\begin{align*} & \text { AT-AR- } \tag{1}\\ & 106 \end{align*}$	\$33,081,000	State/Fed- eral
Peachtree Peachtree Battle Road	Intersection improvements	04/09-09/09	n/a	CIP	DPW-05- 0402	\$179,100	Local
Piedmont Road	Streetscape from I-85 to Peachtree Road		Long-range	CIP	DPW-050425	\$945,000	$\begin{aligned} & \$ 545,000 \\ & \text { Local } \end{aligned}$
Peachtree Road Bridge ROW Acquisition	Piedmont Road Bridge over CSX Railroad		n/a	CIP/TIP	AT-229	\$400,000	$\begin{array}{\|l} \mid \$ 50,000 \\ \text { Local } \end{array}$
Piedmont Road Turn Lanes	The addition of turn lanes and median improvements on Piedmont Road from Sidney Marcus Boulevard/Morosgo Drive to Garson Road. Designed to improve traffic flow in and around MARTA Lindbergh.			CIP	$\begin{array}{\|l} \hline \text { DPW-06- } \\ 0050 \end{array}$	\$11,778,955	Not Funded
Peachtree Streetcar Phase 2	Phase 2 construction of Peachtree Streetcar		Long-range	TIP	AR-456B	\$84,482,300	Local
BeltLine Transit Service in NW Quadrant	BeltLIne Transit from Bankhead to Lindbergh		Long-range	TIP	AR-451D	\$266,000,000	Local
BeltLine Transportation Corridor	Bicycle/Pedestrian Facility		Programmed	TIP	AR-450	\$75,000,000	\$57 M (local) \$18 M (Federal)
Lindbergh/ Emory High-Speed Transit	Transportation Service from Lindbergh MARTA Station to Emory University/CDC		Programmed	TIP	$\begin{aligned} & \text { M-AR- } \\ & 288 \end{aligned}$	\$230,000,000	Local
BeltLine Transit Service in NE Quadrant	BeltLine Transit from Lindbergh to Inman		Long-Range	TIP	AR-451A	\$123,500,00	Local

INVENTORY \&
 ASSESSMENT REPORT

3.0

Parks \& Greenspace

3.1 Parks \& Open Space

The Study Area includes a unique range of remarkable parks and open spaces.

Summary

Bobby Jones Golf Course:

- One of Atlanta's few public golf courses, constructed in 1932. Today, the site includes the Bitsy Grant Tennis Center.

Tanyard Creek Park:

- Runs along Tanyard Creek through the Ardmore and Collier Hills neighborhoods and was an important site in Atlanta's Civil War Peachtree Battle.

Cathedral Woods:

- Property owned by the City of Atlanta connecting the Howard Property to Bobby Jones Golf Course.

The Howard Property:

- Recently purchased by the City of Atlanta as a green space that connects Cathedral Woods with Tanyard Creek Park.

Peachtree Hills Community Center and Park:

- Located in the Peachtree Hills Neighborhood, serves a large part of the community with after school youth programs, and several playing fields.

The Clear Creek Property:

- Purchased by the Brookwood Hills Neighborhood Association to serve as a protected green space and natural area along Clear Creek. This property
has a conservation easement that protects it from being developed.

Atlanta's Project Greenspace:

Included here are greenspace connection opportunities identified as part of the City's Project Greenspace planning process

- Multi-use Trails -planned alignment along Peachtree Creek \& Clear Creek.
- Arterials with potential for enhanced streetscape such as Northside Drive.
- Electric Utility Corridor

Bobby Jones Golf Course

3.2 Existing Tree Canopy

The study area is fortunate to have substantial tree coverage.

Summary

- The majority of tree coverage is located in the existing neighborhoods and park space.
- The Peachtree Corridor has a limited tree canopy particularly around Piedmont Hospital and additional strip developments.
- Piedmont Road and the Armour Road/Ottley Circle area have a sparse tree canopy.

3.3 Topography \&
 Creek Systems

The area's topography has influenced its historic development pattern.

Summary

- Peachtree Street, with its higher-density residential and commercial uses sits on a ridge that runs north-south.
- Many of the area's parks and open space are located in the lower-lying areas along the creek systems.
- Peachtree Creek runs east-west through the study area and includes a significant area of floodplain which limits development along it.
- Tanyard Creek and Clear Creek flow to the north into Peachtree Creek.
- The CSX Rail Line was aligned east-west through the area at an elevation as even as possible, running along hills to avoid peaks and valleys.
- The topography, creeks, and floodplain present significant natural impediments to greater street and pedestrian connectivity.

3.4 Previously Considered Trail Alternatives

Summary

The BeltLine's corridor lies in an active freight rail right-of-way. As a result there have been previous studies to examine a non-rail trail alternative in this study area. The following highlights some key concepts of each previous study:

Trust for Public Lands Study (2004)

- Proposes to bring trail through the eastern edge of Tanyard Creek Park.
- There are two options once trail exits Tanyard Creek onto Bobby Jones Golf Course:
(1) Trail continues between the Colonial Homes property and Bobby Jones GolfCourse to Peachtree Creek and follows the Creek.
(2) Trail follows Colonial Homes Drive across Peachtree Road to Peachtree Creek.
- Trail runs along Peachtree Creek and extends southbound through the Clear Creek Property and under existing rail and I-85 at Clear Creek and returning to the BeltLine rail corridor at the north end of the Ansley Golf Course.
- A leg of the trail will follow Peachtree Creek and connect to Lindbergh City Center.

BeltLine Redevelopment Plan (2005)

- Trail follows the eastern edge of the Tanyard Creek Park.
- There are two options once trail exits the Bobby Jones Golf Course:
(1) The trail continues eastbound along Bennett Street, across Peachtree Road to Peachtree Creek.
(2) The trail connects to Peachtree Creek along the western edge of the Colonial Homes property.
- East of Peachtree Road, the trail follows the same alignment as the TPL Study.

Key Areas for Further Alignment Study:

- Alternative alignments through Tanyard Creek that might avoid the east side of the park.
- Resolve alignment through the future redevelopment of the Bennett Street/Peachtree Road area.
- Appropriate alignments that minimize impact on the Clear Creek Property.
- Maximizing connections to the trail from neighborhoods north of Peachtree Creek.
- Preferred/feasible crossing of the I-85 corridor.

[^0]: *"The number of roadway links divided by the number of roadway nodes (Ewing, 1996).... a score of 1.4 is the minimum required for a walkable community." (VTPI, 2007)
 **"The ratio of intersections divided by intersections and dead-ends, expressed on scale from zero to 1.0 (USEPA, 2002). An index over .75 is desirable." (VTPI, 2007)

 ## Source:

 Reid, Ewing (1996), Best Development Practices; Doing the Right Thing and Making Money at the Same Time, Planners Press (www.planning.org), 1996.
 USEPA (2002), Smart Growth Index (SGI) Model, U.S. Environmental Protection Agency
 (www.epa.gove/smartgrowth/topics/sgipilot.htm), 2002.
 Victoria Transport Policy Institute (2007), Roadway Connectivity; Creating More Connected Roadway and Pathway Networks,
 (www.vtpi.org/tdm.com)

[^1]: * Ratios are consistent with metro area

[^2]: ${ }^{1}$ Local-serving office includes community-serving office space typically located in smaller mixed-use developments, retail centers, and office condominium developments
 ${ }^{2}$ Regional-serving office is defined as mid- and high-rise office space typically found in major office cores
 ${ }^{3}$ Local-serving retail is defined as grocery-anchored centers (at the high end of the size range), neighborhood centers, community centers, and unanchored retail
 ${ }^{4}$ Regional-serving retail is defined as big-box retail centers, power centers, and regional malls

[^3]: Subarea 7 Northside/Peachtree/Piedmont
 Cultural Planning Analysis

[^4]: Subarea 7 Northside/Peachtree/Piedmont

[^5]: Subarea 7 Northside/Peachtree/Piedmont
 Cultural Planning Analysis

[^6]: Subarea 7 Northside/Peachtree/Piedmont

[^7]: Subarea 7 Northside/Peachtree/Piedmont

[^8]: *"The number of roadway links divided by the number of roadway nodes (Ewing, 1996).... a score of 1.4 is the minimum required for a walkable community." (VTPI, 2007)
 **"The ratio of intersections divided by intersections and dead-ends, expressed on scale from zero to 1.0 (USEPA, 2002). An index over .75 is desirable." (VTPI, 2007)

[^9]: "Hotspot" Locations

