

Russell R. McMurry, P.E., Commissioner One Georgia Center 600 West Peachtree NW Atlanta, GA 30308 (404) 631-1990 Main Office

April 14, 2022

Acting Georgia Field Supervisor U.S. Fish & Wildlife Service, Georgia Ecological Services RG Stephens Jr. Federal Building 355 East Hancock Avenue, Room 320 Athens, GA 30601 ATTN: Meg Hedeen

Daniel T. Hinton, Acting Georgia Division Administrator Federal Highway Administration Atlanta Federal Center 61 Forsyth Street, S.W., Suite 17T100 Atlanta, Georgia 30303-3104 ATTN: Chetna Dixon-Thomas

Re: Action Request: Technical Assistance

GDOT Project PI# 0009395, Fulton County

Dear Acting Georgia Field Supervisor and Mr. Hinton,

Please find attached the Ecology Resource Survey Report for the above referenced project. The proposed project is a multi-use trail project (Segment 3 of the Atlanta BeltLine NE) located within the City Limits of Atlanta, Georgia. As the Federal Highway Administration's designated non-federal representative, the Department provides the attached report containing details on findings related to ecological resources.

This report is being provided for your information and files. If applicable, please provide technical assistance regarding the defined action area and project-specific recommendations for any species that may be affected by the project. Please copy the Lead Federal Agency, GDOT Ecologist, and GDOT Environmental Analyst assigned to the project on your response or any other correspondence. If you have any questions or need additional information, please contact GDOT Ecologist Kelly Burdette at 404-631-1699 (kburdette@dot.ga.gov) or GDOT Senior Ecology Team Leader Jaime Collazo at 404-631-1740 (jcollazo@dot.ga.gov).

Sincerely,

Eric Duff

State Environmental Administrator

Twe Duff / June

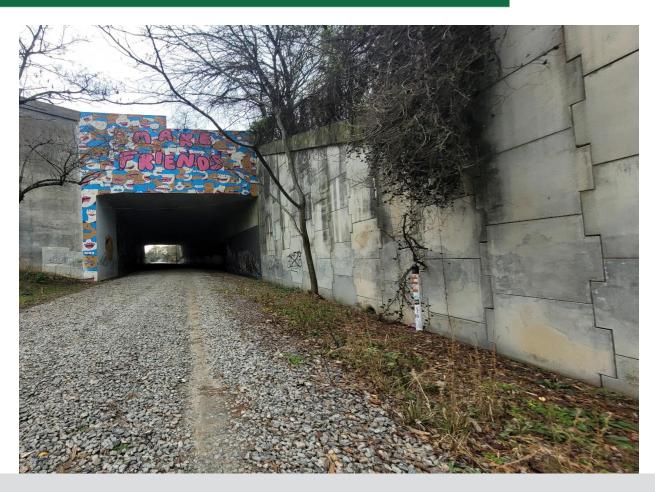
ED/JMC/scs

Enclosure

cc: GDOT Project Manager, Porshia Renee Hayden

GDOT Environmental Analyst, Jessica Kern (jkern@dot.ga.gov)

GDOT ECB (Daryl Williams)
GDOT Mitigation (Lisa Westberry)


EPD-GDOT Inbox (epd.gdot@dnr.ga.gov)

DNR, WRD Maggie Hunt EPA (Eric Somerville)

GDOT IOEQ Inbox (IOEQsubmittals@dot.ga.gov)

EPEI Consultant, Sara Carey Smith (Scareysmith@edwards-pitman.com)

Ecology Resource Survey Report:

Beltline Corridor from Lindbergh Center to 10th Street/Monroe Drive

Fulton County PI No. 0009395 April 2022

Prepared by: Edwards-Pitman Environmental, Inc.

Under Contract With: Heath & Lineback Engineers, Inc.

Prepared for: Georgia Department of Transportation

Report Author:

Sara Carey Smith, Project Ecologist

Chartotte Eds

Charlotte Estes, Senior Ecologist

GDOT Reviewer:

Kelly Burdette, GDOT Ecologist

Ecology Resource Survey Overview PI No. 0009395, Fulton County

Jurisdictional Waters						
Resource Type	# Within Survey Area	Length of Impact (ft.)	Area of Impact (ac.)			
Perennial Streams	4	TBD	TBD			
Intermittent Streams	3	TBD	TBD			
Ephemeral Channel(s)	0	N/A	N/A			
TOTAL	7	TBD	TBD			
Wetlands	4	TBD	TBD			
Open Water(s)	0	N/A	N/A			
TOTAL	4	TBD	TBD			

Project Info				
Funding Type	Federal			
Project Delivery Type	Design-Bid-Build			

Present in the Study Area			
Invasive Species	Yes		
Eagle Habitat	No		
Eagle Nest	No		
Critical Habitat	No		
Essential Fish Habitat	No		
Bat Roosting Habitat	Yes		
Migratory Bird Habitat	Yes		

Key: To Be Determined (TBD), Not Applicable (N/A)

Agency Coordination			
Coordination under the Fish and Wildlife Coordination Act	TBD		
Consultation under Section 7 of the Endangered Species Act (ESA)	TBD		
Special Provision(s)	TBD		
Section 7 ESA Consultation for Designated Critical Habitat	TBD		
Consultation under Magnuson-Stevens Fisheries Conservation Act (MSFCA) for Essential Fish Habitat	TBD		
Expected Clean Water Act Section 404 Permit(s)	TBD		
Expected Clean Water Act Section 404 Permit Mitigation	TBD		
Georgia Stream Buffer Variance	TBD		
Georgia Stream Buffer Mitigation Credits	TBD		

Key: To Be Determined (TBD)

Ecology Resource Survey Overview, continued PI No. 0009395, Fulton County

Federal and State Protected Species							
Common Name	Scientific Name	Federal Rank	State Rank	Habitat Present	Species Present	Special Provision	Effect Determination
Bay star-vine	star-vine Schisandra glabra		Т	Yes	TBD	TBD	TBD
Chattahoochee crayfish	Cambarus howardi		Т	Yes	Yes*	TBD	TBD
Bluestripe shiner	Cyprinella callitaenia		R	Yes	Yes*	TBD	TBD
Peregrine falcon	Falco peregrinus		R	No	N/A	TBD	TBD
Monarch butterfly	Danaus plexippus	С		Not Assessed	Not Assessed	TBD	TBD

Key: Candidate (C), Rare (R), Threatened (T), Not Applicable (N/A), To Be Determined (TBD), Presence Assumed (*)

Table of Contents

I.	DO	CUMENT VERSION SUMMARY	4
II.	PRO	OJECT OVERVIEW	5
	A. B. C. D. E.	Project Description Project Location. Need and Purpose Survey Methodology Survey Summary	6 6 6
III.	FEI	DERALLY PROTECTED RESOURCES	9
	A. B. C.	Action Area Federally Threatened, Endangered, Candidate and Proposed Species Proposed or Designated Critical Habitat	9
	D. E.	Bald and Golden Eagles	11
	F. G. H.	Essential Fish Habitat Invasive Species Jurisdictional Waters of the U.S.	14
IV.		RMIT AND MITIGATION	
V.	STA	ATE PROTECTED RESOURCES	58
	A. B.	State Threatened, Endangered, Rare and Unusual Species Bats	58
	C. D.	State WatersState Mandated Buffers	
VI.	API	PENDICES	68
VII	. CO	NSTRUCTION PLANS	77
VII	I.SUI	PPORTING DOCUMENTATION	78

VI. APPENDICES

Appendix II: Project Overview

Appendix III: Federally Protected Resources Appendix V: State Protected Resources

VII. CONSTRUCTION PLANS

VIII. SUPPORTING DOCUMENTATION

I. DOCUMENT VERSION SUMMARY

Date	Description of Changes
4/2022	Ecology Resource Survey Report (ERSR)

II. PROJECT OVERVIEW

A. Project Description

Georgia Department of Transportation (GDOT) Project, PI No. 0009395, is a multi-use trail project located within the City Limits of Atlanta, Georgia (Figure 1, Appendix II). This project is considered Segment 3 of the proposed mainline Atlanta BeltLine Northeast (NE) Trail and proposes a 14-foot wide concrete shared-use path approximately 2.70 miles in length. The project includes approximately 2.10 miles of spur trail, 12-feet in width. The project also includes several walls and bridges. Segment 3 of the proposed Atlanta BeltLine NE Trail begins at the end of the existing tunnel under Interstate (I)-85. At the end of the tunnel the trail would cross under the existing Metropolitan Atlanta Rapid Transit Authority (MARTA) bridge, which spans over Mayson Street. The trail then transitions to the Norfolk Southern and MARTA maintenance road before paralleling the MARTA and Norfolk Southern railway tracks and transitioning to a proposed bridge over the active Norfolk Southern railway tracks and yard. After crossing the Norfolk Southern railway tracks, the trail will continue on the bridge over Armour Drive adjacent to the existing industrial plants and over CSX Transportation railroad and Peachtree Creek. The trail will remain on structure until connecting to Kinsey Court. This point is where the future connection to the Atlanta BeltLine Northwest (NW) Trail is proposed. This point ends the mainline trail. There are also four spur alignments off the mainline trail.

The first spur continues from the mainline trail at the proposed connection point to the future NW BeltLine Trail at Kinsey Court East on structure over a Peachtree Creek tributary and then at grade parallel to Peachtree Creek, under the Norfolk Southern Railway and MARTA tracks. From there the spur trail continues behind Passion City Church along Peachtree Creek before bridging up to Garson Drive.

The second spur would serve as a connection to the MARTA Lindbergh Station. The spur trail will continue at grade along Garson Drive crossing the existing MARTA overpass. This will require a road diet to make room for the proposed spur trail with the oversized lanes on Garson Drive reduced from existing 12 to 18-foot lanes to 11-foot lanes, allowing room for a curb and gutter section and a 5-foot buffer. The spur trail then continues adjacent to Garson Drive and crosses the Lindbergh Drive intersection at grade before tying into the Lindbergh MARTA station plaza.

The third spur alignment would serve as a connection to the existing PATH 400 (PATH Foundation) Trail by spurring off the MARTA Lindbergh Station trail to the east of Passion City Church, following Peachtree Creek, passing under the Piedmont Road overpass and running along the 2:1 slopes on structure until tying into PATH 400 near Parkland Drive.

The fourth spur alignment would serve as a connection to the Armour-Ottley business district by bridging off the mainline trail to follow along Armour Drive as a side path ending at the Ottley Drive and Clayton Road intersection.

The existing right-of-way (ROW) is 50 feet on Armour Drive and varies from 50-85 feet on Garson Drive. Additional ROW would be required for the proposed project.

B. Project Location

Nearest City or Other Defining Feature:	Within City limits of Atlanta
County:	Fulton
Project Midpoint:	33.812710°, -84.377960°
Level IV Ecoregion:	Southern Outer Piedmont (45b)
HUC (Hydrologic Unit Code)10 Watershed Name:	Peachtree Creek
	HUC 0313000112

C. Need and Purpose

The Atlanta BeltLine is a transformative project shaping the way the City of Atlanta will mature as a city, by creating parks, trails, transit, and new development along a 22-mile loop of rail segments that encircle the City's urban core. The Atlanta BeltLine – by attracting and organizing a portion of the region's future growth around parks, transit, and trails located in the inner core of Atlanta – will lead to a vibrant and livable Atlanta with an enhanced quality of life for all City residents. The revival of this historically industrial landscape will become the uniquely Atlanta solution and an exemplary model for effectively managing growth by providing:

- Trails and pedestrian-friendly streets to link neighborhoods previously severed by freight rail and industry;
- A 22-mile streetcar/light rail transit loop providing an alternative to auto trips among jobs, residences, and cultural attractions;
- Compact mixed-used development that supports transit, parks and trails, as well as businesses;
- A connected network of beautiful parks and greenspaces;
- Affordable workforce housing;
- Preservation of historical buildings and structures; and
- Environmental remediation of underutilized brownfield areas.

The project seeks to connect the existing Northside Trail to the MARTA Lindbergh Station with a connection to the existing PATH400 Trail via independent alignment through private property and existing City and State ROW.

D. Survey Methodology

Background research of relevant published and online information sources was conducted prior to field surveys to identify potential ecological resources within the study area. Sources included U.S. Geological Survey (USGS) topographic maps, National Wetland Inventory (NWI) maps, and U.S. Department of Agriculture – Natural Resources Consultation Service (USDA-NRCS) soil survey maps of the county. Prior to visiting the proposed project site, ecologists reviewed the U.S. Fish and Wildlife Service (USFWS) Information for Planning and Consultation (IPaC) website, USFWS Georgia Ecological Services Field Office – Southeast Region HUC 10 Watershed Reports, and the Georgia Natural Archaeological Historical Resources GIS (GNAHRGIS) Ecology Review and Surveys Module to identify protected species that could potentially occur within the HUC 10 watershed and county (Appendix III and V). Species descriptions were prepared using the GADNR Wildlife Resource Division (WRD) website, NatureServe Explorer, and USDA-NRCS Plants database.

Field surveys to assess and document the presence of ecological resources such as habitat/land use within the project boundaries, and presence and location of jurisdictional and state waters, protected species and their habitats, and other ecological resources were conducted using approved methodologies (Appendix III and V). Jurisdictional wetland determinations were performed using the three-parameter approach (hydrophytic vegetation, hydric soils, and hydrology) as described in the 1987 U.S. Army Corps of Engineers (USACE) Wetland Delineation Manual and utilized the 2012 Eastern Mountains and Piedmont Regional Supplement as

guidance. Stream classifications were performed using the North Carolina Division of Water Quality (NC DWQ) Methodology for Identification of Intermittent and Perennial Streams and Their Origins, Version 4.11. State waters were delineated using the Georgia Environmental Protection Division (EPD) 2017 Field Guide for Determining the Presence of State Waters that Require a Buffer. Surveys for protected species or their habitats were conducted using approved survey methodologies and/or appropriate resource agency recommendations to assess habitat suitability and species presence as appropriate.

E. Survey Summary

Survey History

	Date of	Recommended	Surveyor Name,		
Survey Type	Survey	Survey Season	Affiliation	Survey Duration	Surveyed Area
Resource Survey – pedestrian survey along side roads, including assessment of waters and species habitat	6/8/2020; 6/11/2020	Year Round	Kayla Theilig and Evan Seal, Edwards-Pitman Environmental Inc. (EPEI)	2 days, 8 hours each day	3 miles, 154.1 acres
Additional Survey Area – pedestrian survey, along side roads, including assessment of waters and species habitat	1/16/2022	Year Round	Jackson Peyton and Sara Carey Smith, EPEI	2 hours	0.6 mile, 15.2 acres

Weather Conditions

Weather conditions during surveys are presented below. Weather data is included in Section VIII: Supporting Documentation.

Date Of Survey:	6/8/2020	6/11/2020
Average Temperature:	78° Fahrenheit (F)	72°F
Weather Conditions:	Sunny	Sunny
Date of Most Recent Precipitation Event:	6/5/2020	6/10/2020*
Amount of Most Recent Precipitation Event:	0.54 inch	0.85 inch
Cumulative Precipitation for Previous 30 Days:	2.57 inches	4.38 inches
10-Year Average Precipitation for Previous 30 Days:	3.67 inches (Atlanta, GA)	3.67 inches (Atlanta, GA)

Date Of Survey:	1/16/2022
Average Temperature:	78° F
Weather Conditions:	Overcast
Date of Most Recent Precipitation Event:	1/9/2022
Amount of Most Recent Precipitation Event:	0.22 inch
Cumulative Precipitation for Previous 30 Days:	5.47 inches
10-Year Average Precipitation for Previous 30 Days:	3.90 inches (Atlanta, GA)

^{*}Precipitation from previous days did not negatively influence the Ecology Survey

On the day of the 1/16/2022 survey, Atlanta, GA recorded 0.87 inch of rain. However, this precipitation fell after the additional field survey and did not impact the survey.

Habitat and Land Use Types Summary
Habitat and land use types within the survey area along with their absolute and relative coverages within the

survey area are presented below.

Habitat and Land Use Type	Acreage within survey area	Approx. % of survey area	Brief description (include dominant species present and approximate age of trees if forested)	Suitable for protected species?
Commercial	61.4	36.3	This land use consists of local business and their parking lots. Vegetation consisted of planted landscaping shrubbery.	No
Existing ROW	54.7	32.3	This land use consists of existing roadway, parking lots, railways, and associated ROW. Vegetation consists of various turfgrasses.	No
Riparian Corridor	30.9	18.2	This land use consists of Perennial Stream (PS) 9/Peachtree Creek and its buffer. Vegetation consists of water oak (<i>Quercus nigra</i>), silver maple (<i>Acer saccharinum</i>), box elder (<i>Acer negundo</i>), sweetgum (<i>Liquidambar styraciflua</i>), tulip poplar (<i>Liriodendron tulipifera</i>), red maple (<i>Acer rubrum</i>), sycamore (<i>Platanus occidentalis</i>), mockernut hickory (<i>Carya tomentosa</i>), mimosa (<i>Albizia julibrissin</i>), Chinese privet (<i>Ligustrum sinense</i>), kudzu (<i>Pueraria montana</i>), Virginia creeper (<i>Parthenocissus quinquefolia</i>), muscadine (<i>Vitis rotundifolia</i>), Chinese wisteria (<i>Wisteria sinensis</i>), English ivy (<i>Hedera helix</i>), poison ivy (<i>Toxicodendron radicans</i>), Japanese stiltgrass (<i>Microstegium vimineum</i>), spotted touch-me-not (<i>Impatiens capensis</i>), sensitive fern (<i>Onoclea sensibilis</i>), and Asiatic dayflower (<i>Commelina communis</i>). Trees are 10 – 50 years old.	Yes, bluestripe shiner (Cyprinella callitaenia) and Chattahoochee crayfish (Cambarus howardi)
Mixed Hardwood- Pine Forest	17.3	10.2	Vegetation includes black walnut (<i>Juglans nigra</i>), tulip poplar, red maple, loblolly pine (<i>Pinus taeda</i>), Japanese honeysuckle (<i>Lonicera japonica</i>), English ivy, Chinese privet. Trees are 10 – 30 years old.	Yes, bay starvine (Schisandra glabra)
Parkland	5.0	3.0	The land use consists of the of the Ansley Golf Club and its border of the ROW. Vegetation consists of various turf grasses, ornamental shrubs, and a wooded border of loblolly pine and various hardwoods (primarily mixed oak, maple, and walnut). Trees are 10 – 20 years old.	No

III. FEDERALLY PROTECTED RESOURCES

A. Action Area

Action area is defined in 50 CFR 402.02 as all areas to be affected directly or indirectly by the federal action and not merely the immediate area involved in the action. The action area for the proposed project extends approximately one mile beyond the environmental survey boundary (ESB) (Figure 3 in Appendix II). The action area is based on the anticipated extent of potential impacts (e.g., water quality and sedimentation, noise and lighting) resulting from project actions.

B. Federally Threatened, Endangered, Candidate and Proposed Species

In compliance with the Endangered Species Act (ESA), the lead federal agency must identify the presence of proposed (P) or listed threatened (T) and endangered (E) species and proposed or designated Critical Habitat, as well as evaluate impacts to these resources. Species that are candidates (C) for listing under the ESA are also considered in the report. The following sources were used to compile a list of protected species potentially occurring within the project vicinity: IPaC website, USFWS HUC 10 Watershed Reports, and the GNAHRGIS Ecology module (Appendix III and V). The federal candidate monarch butterfly (*Danaus plexippus*) was listed on the IPaC generated from the ESB shapefile.

Although the rusty-patched bumblebee (*Bombus affinis*) has an extirpated element occurrence record documented in the GNAHRGIS Ecology Module, it is outside of the USFWS consultation range, and no further analysis is required.

Common Name, Scientific Name	Status	Predicted within project area?	Species Description (including range)	Description of preferred habitat	Habitat or Species Present?	Effect Determination
Monarch butterfly, Danaus plexippus	С	Not assessed	Butterfly with orange and black markings and wingspan of 7-10 cm; breeding and migration throughout GA; range is statewide	Open habitats that contain milkweed plants or other nectar-producing plants	Habitat: Not assessed EO within action area: N/A Species: Not assessed	TBD

Key: Candidate (C), Element Occurrence (EO) as reported on GNAHRGIS, Not Applicable (N/A), To Be Determined (TBD)

<u>Habitat Assessment/Effect Analysis</u>
Potentially suitable monarch butterfly habitat occurs statewide and may be present within existing and proposed GDOT rights-of-way.

Avoidance and Minimization Measures:

C. Proposed or Designated Critical Habitat

Critical Habitat is designated under the Endangered Species Act for the protection and recovery of listed species.

Critical Habitat Summary

Is Critical Habitat present within survey area?	No
If so, list species here:	N/A
Effect Determination:	TBD

Key: Not Applicable (N/A), To Be Determined (TBD)

Habitat Assessment/Effect Analysis:

Critical Habitat is not designated within the ESB.

Avoidance and Minimization Measures:

To be determined.

D. Bald and Golden Eagles

The Bald and Golden Eagle Protection Act (BGEPA) provides for the protection of the bald eagle (*Haliaeetus leucocephalus*) and the golden eagle (*Aquila chrysaetos*) by prohibiting, except under certain specified conditions, the taking, possession, and commerce of such birds. Under the BGEPA, a "take" of an eagle is defined as to "pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest, or disturb." Golden eagles occur in very low densities in Georgia and are present only during the winter months. Reintroduction efforts have not been successful and there are no known breeding pairs in Georgia. Additionally, given their reclusive nature, it is unlikely that active GDOT projects would impact golden eagles. Therefore, a habitat assessment and effect analysis was conducted only for bald eagles.

Bald and Golden Eagles Summary

Survey Date:	6/8/2020; 6/11/2020; 1/16/2022
Known eagle nest location within 3 miles?	No
Is eagle foraging/nesting habitat present within survey area?	No
Would this project result in "take" of bald eagles?	TBD
Protective measures:	TBD

Key: To Be Determined (TBD)

Habitat Assessment/Effect Analysis:

No known eagle nests are located within three miles of the ESB.

Avoidance and Minimization Measures:

E. Migratory Birds

The Migratory Bird Treaty Act (16 U.S.C. 703-711) requires the protection of migratory birds by prohibiting take of birds, feathers, eggs, and nests. Actions must be taken to avoid or minimize impacts to migratory birds and to prevent or abate the detrimental alteration of the environment for the benefit of migratory birds, as practicable. See Appendix V B- Bats in Bridges Data form for survey notes.

Migratory Birds Summary

Survey Date:	6/8/2020; 6/11/2020; 1/16/2022
Was evidence of nesting migratory birds observed on structures?	No Structure ID 121-0111-0 Structure ID 121-0670-0
Nesting species (if known):	N/A
Approximate number of nests observed:	N/A
Protective measures:	TBD

Key: To Be Determined (TBD), Not Applicable (N/A)

Avoidance and Minimization Measures:

F. Essential Fish Habitat

Essential Fish Habitat (EFH) is protected under the Magnuson-Stevens Fishery Conservation and Management Act, (MSFCMA) as amended in 1996. EFH refers to habitat that supports breeding, spawning, nursery, feeding, and protection functions for marine species. As such, it includes rivers and estuaries that are used for spawning by anadromous species. In compliance with the MSFCMA, GDOT must identify unavoidable adverse impacts to EFH.

Essential Fish Habitat Summary

Is EFH present within the survey area?	No
Will EFH be impacted as a result of this project?	No
Recommended Effect Determination:	TBD

Key: To Be Determined (TBD)

Habitat Assessment/Effect Analysis:

EFH is not present within the ESB.

Avoidance and Minimization Measures:

G. Invasive Species

In accordance with Executive Order (E.O.) 13112 (Invasive Species, Feb. 3, 1999) and E.O. 13751 (Safeguarding the Nation from the Impacts of Invasive Species, Dec. 5, 2016), a survey for populations of invasive species that may be spread during construction was conducted for this project. The spread of invasive species will be minimized by the Contractor's adherence to Standard Specifications, Section 201, Clearing and Grubbing of Right-of-Way.

Invasive Species Summary

invasive species summary							
Common Name	Scientific Name	EDDMapS Record ID	Description of Infestation	Station Numbers (for large infestations)			
Kudzu	Pueraria montana var. lobata	8546759	Large infestation	TBD			
English ivy	Hedera helix	8546757	Scatted dense patches	N/A			
Chinese privet	Ligustrum sinense	8546760	Scattered individuals	N/A			
Japanese honeysuckle	Lonicera japonica	8546758	Scattered individuals	N/A			
Chinese wisteria	Wisteria sinensis	10421310	Scattered individuals	N/A			
Japanese stiltgrass	Microstegium vimineum	10421311	Large infestation	TBD			
Mimosa	Albizia julibrissin	8546756	Scattered individuals	N/A			

Key: Not Applicable (N/A), To be determined (TBD)

H. Jurisdictional Waters of the U.S.

Jurisdictional Waters of the U.S. are defined by 33 CFR Part 328.3(b) and are protected by Section 404 of the Clean Water Act (33 USC 1344). A summary of the Jurisdictional Waters of the U.S. is included below, with additional information on individual resources included in subsequent pages.

A total of eleven (11) jurisdictional waters were identified within the survey area including four (4) wetlands (WL), four (4) PS, and three (3) intermittent streams (IS).

Resource Name:	PS 1 (Clear Creek)	NCDWQ Score:	41.5	Trout Water	r?	No
Latitude/Longitude:	33.807944°, -84.385958°			HUC 10:	03130	000112
	Flowing north/northeast toward Peachtree Creek					
Location:		from the intersection of Clayton Road NE and				Yes
	Armour Dr. NE					
Bankfull Dimensions:	40 feet x 10 feet	Wetted Dimension	ns:	15 fee	t x 3 fee	et
Substrate Composition:	Sand, Gravel, Silt, Cobble, and Boulders Flow Condition:			No	Normal	
In-Channel Structure:	Riffles and runs present with occasional deep pools. Several depositional bars in channel from excessive sedimentation					
Ordinary High Water Mark	Natural line impressed on the bank, scour, bed and banks, presence of litter and					
Indicator(s)	debris					
Current Water Quality:	Clear water with no apparent smell; significant amounts of sediment in channel					
Existing Structures:	None					
Existing Aquatic		None				
Connectivity Barriers:	None					
Impact Activity:		TBD				
Impact/Length		TBD				
(Area)/Duration:	IRD					
Length of Resource within	Annrovimat		oproximately 395 linear feet			
Survey Area:	1	ipproximately 373	IIIICUI I			
FWCA Required?	TBD					
Does resource provide habitat	for protected species?	Yes, Chattahoo	chee cr	ayfish and blu	uestripe	shiner

Key: To Be Determined (TBD)

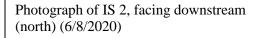
Impact Discussion/Avoidance and Minimization: To be determined.

Photograph of PS 1, facing downstream (northeast) (6/8/2020)

NC DWQ Stream Identification Form Version 4.11

Date: 6/8/2020	Project/Site: PI No. 0009395	Latitude: 33.807944°	
Evaluator: Kayla Theilig and Evan Seal	County: Fulton	Longitude: -84.385958°	
Total Points: Stream is at least intermittent if ≥ 19 or perennial if $\geq 30^*$	Stream Determination (circle one) Ephemeral Intermittent Perennial	Other e.g. Quad Name:	

A. Geomorphology (Subtotal <u>21</u>)	Absent	Weak	Moderate	Strong		
l ^{a.} Continuity of channel bed and bank	0	1	2	3		
2. Sinuosity of channel along thalweg	0	1	2	3		
3. In-channel structure: ex. riffle-pool, step-pool,	0	1	2	3		
ripple-pool sequence	0	I		$\underline{}$		
Particle size of stream substrate	0	1	2	3		
5. Active/relict floodplain	0	1	2	3		
6. Depositional bars or benches	0	1	2	3		
7. Recent alluvial deposits	0	1	2	3		
B. Headcuts	0	1	2	3		
9. Grade control	0	0.5	1	1.5		
I0. Natural valley	0	0.5	1	1.5		
I1. Second or greater order channel	No	= 0	Yes =	= 3		
^a artificial ditches are not rated; see discussions in manual						
^{3.} Hydrology (Subtotal = <u>7.5</u>)						
12. Presence of Baseflow	0	1	2	3		
13. Iron oxidizing bacteria	0	1	2	3		
14. Leaf litter	1.5	1	0.5	0		
15. Sediment on plants or debris	0	0.5	1	1.5		
16. Organic debris lines or piles	0	0.5	1	1.5		
17. Soil-based evidence of high water table?	No	No = 0		Yes = 3		
C. Biology (Subtotal = <u>13</u>)	·					
18. Fibrous roots in streambed	3	2	1	0		
l9. Rooted upland plants in streambed	3	2	1	0		
		1	2	3		
20. Macrobenthos (note diversity and abundance)	0					
20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks	0 0	0	2	3		
			2	3 1.5		
21. Aquatic Mollusks	0	Θ				
21. Aquatic Mollusks 22. Fish	0 0	0.5	1	1.5		
21. Aquatic Mollusks 22. Fish 23. Crayfish	0 0 0	0.5 0.5	1	1.5 1.5		
21. Aquatic Mollusks 22. Fish 23. Crayfish 24. Amphibians	0 0 0 0	0.5 0.5 0.5 0.5	1	1.5 1.5 1.5 1.5		


Sketch:

Resource Name:	IS 2	NCDWQ Score:	26.5	Trout Wate	r?	No
Latitude/Longitude:	33.810316°, -	84.382671°	•	HUC 10:	03130	000112
Location:	Flowing north toward Clear Creek from Armour Dr. NE			Buffered?		Yes
Bankfull Dimensions:	3 feet x 3 feet Wetted Dimensions:			1-foot	x 0.5 inc	ch
Substrate Composition:	Sand, Silt, and Clay	Flow Condition:		No	ormal	
In-Channel Structure:	Sca	ttered stagnant poo	ols, shor	t runs		
Ordinary High Water Mark Indicator(s)	Scour, bed and banks, water/mud staining on vegetation					
Current Water Quality:	Muddy water with no apparent smell; channel bed is almost exclusively sand and clay deposition					
Existing Structures:	None					
Existing Aquatic Connectivity Barriers:	Intermittent flow regime					
Impact Activity:		TBD				
Impact/Length (Area)/Duration:	TBD					
Length of Resource within Survey Area:		Approximately 57 linear feet				
FWCA Required?	TBD					
Does resource provide habitat	for protected species?			No	-	

Key: To Be Determined (TBD)

<u>Impact Discussion/Avoidance and Minimization:</u>

Photograph of IS 2, facing downstream (north) (6/8/2020)

NC DWO Stream Identification Form Version 4.11

Date: 6/8/2020	Project/Site: PI	No. 0009395	Latitude: 33.8	310316°	
Evaluator: Kayla Theilig and Evan Seal	County: Fultor	1	Longitude: -84.382671° Other e.g. Quad Name:		
Total Points: Stream is at least intermittent 26.5 if \geq 19 or perennial if \geq 30*		nation (circle one) rmittent Perennial			
A. Geomorphology (Subtotal = 13.5	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	0	1	2	3	
Sinuosity of channel along thalweg	0	1	2	3	
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
4. Particle size of stream substrate	0	1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	3	
8. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	1	1.5	
11. Second or greater order channel	No	No = 0		= 3	
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 10)					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	0	1	2	3	
14. Leaf litter	1.5	1	0.5	0	
15. Sediment on plants or debris	0	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	(1.5)	
17. Soil-based evidence of high water table?	No	No = 0		Yes = 3)	
C. Biology (Subtotal = 3		<u> </u>			
18. Fibrous roots in streambed	3	2	1	0	
		2	1	0	
19. Rooted upland plants in streambed	3	_		3	
19. Rooted upland plants in streambed20. Macrobenthos (note diversity and abundance)	3 0	1	2) s	
20. Macrobenthos (note diversity and abundance)	-		2	3	
Macrobenthos (note diversity and abundance) Aquatic Mollusks	0	1			
Macrobenthos (note diversity and abundance) Aquatic Mollusks Fish	0	1	2	3	
	0	1 0.5	2 1	3 1.5	
20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish 23. Crayfish	0	1 0.5 0.5	2 1 1	3 1.5 1.5	
20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish 23. Crayfish 24. Amphibians	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.5 0.5 0.5	2 1 1 1 1	3 1.5 1.5 1.5 1.5	
20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish 23. Crayfish 24. Amphibians 25. Algae		1 0.5 0.5 0.5 0.5 0.5 FACW = 0.75; OBI	2 1 1 1 1	3 1.5 1.5 1.5 1.5	

Sketch:

Resource Name:	WL 3	Wetland Type:	Riverine			
Latitude/Longitude:	33.810927°, -84.381932°	HUC 10:	0313000112			
Location:	North of Armour Drive, adjacent to IS 4					
Current Quality:	Forested wetland with standing water, hydrologic patterns, and hydrologic connection to IS 4					
Existing Structures:	None					
Impact Activity:	TBD					
Impact/Area/Duration:		TBD				
Area of Resource:	Approximately 0.5 acre	Area of Resource within Survey Area:	Approximately 0.15 acres			
FWCA Required		TBD				
Does resource provide habitat	for protected species?	No				

Key: To Be Determined (TBD)

Impact Discussion/Avoidance and Minimization: To be determined.

Photograph of WL 3 hydric soil (6/8/2020)

Photograph of WL 3, facing north (6/8/2020)

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

Project/Site:	Beltline NE		City/Co.: F	ulton		S	Sampling Date: 6/8/202	.0
Applicant/Owner:	GDOT				State:	GA S	sampling Point: WL 3 W	Vetland
Investigator(s):	Kayla Theilig & Evar	n Seal	Section	on, Townsh	nip, Range:			
- , ,	terrace, etc.) toeslope				cal Relief :		Slope (%	6): 2
Subregion(LRR/MLR/		: 33.8109		Long:	-84.3819		Datum: NAD83	
Soil Map Unit Name:	Congaree sandy loa	ım				NWI Classificati	on: None	
Are climatic/hydrologi	ic conditions on the site	typical for this	s time of year?	Yes	□ No	(If no, exp	plain in Remarks.)	
Are Vegetation □	, Soil 🔲 , or Hydr	rology 🗆	significantly disturbe	d?	Are "Norn	nal Circumstances"	present? ☑ Yes	□ No
Are Vegetation □		rology 🗆	naturally problemation	c?		explain any answei	•	
-								
SUMMARY OF FI	INDINGS - Attach s	ite map sh	owing sampling p	oint loc	ations, tr	ansects, import	ant features, etc.	
		•	<u> </u>		,		•	
Hydrophytic Vegeta	tion Present?	Yes ☑ N	lo 🗆 I	s the Sam	pled Area			
Hydric Soil Present				within a we	•	Yes ☑	No □	
Wetland Hydrology			lo 🗆					
Remarks								
Remarks								
HYDROLOGY								
Wetland Hydrology	Indicators:					Secondary Indicato	ors (minimum of two req	uired)
	ninimum of one is require	ed: check all t	hat apply):				Cracks (B6)	
☐ Surface Water			Aquatic Plants (B14)				getated Concave Surfa	ce (B8)
☑ High Water Ta	` '		rogen Sulfide Odor (C			. ,	atterns (B10)	()
☑ Saturation (A3	, ,		dized Rhizospheres on	,	ots (C3)	☐ Moss Trim L	, ,	
☐ Water Marks (•		sence of Reduced Iron	-	010 (00)		Water Table (C2)	
☑ Sediment Dep	'		ent Iron Reduction in 1	` '	(C6)	☐ Crayfish Bur	, ,	
•	, ,		Much Surface (C7)	illeu oolis	(00)	•	/isible on Aerial Imagery	, (CO)
	` '		` '	.\			Stressed Plants (D1)	/ (C9)
☐ Algal Mat or C			er (Explain in Remarks)			` '	
☐ Iron Deposits (ible on Aerial Imagery (D7)				-	Position (D2)	
_	0,1	D/)				☐ Shallow Aqu	, ,	
☑ Water-Stained	, ,						aphic Relief (D4)	
Aquatic Fauna	· ,						Trest (D5)	
Field Observations:			5 " "					
Surface Water Prese	_	☑ No	Depth (inches):					
Water Table Present	_	□ No	Depth (inches):	5				
Saturation Present?		☐ No	Depth (inches):	surface	Wetland	Hydrology Presen	t? ☑ Yes 🗆	No
(includes capillary frir								
Describe Recorded D	oata (stream gauge, mo	nitoring well, a	erial photos, previous	inspection	s), if availa	ble:		
Remarks: Hydrology	indicators were observ	red.						
I								

VEGETATION (Four Strata) - Use scientific names of plants. Sampling Point: WL 3 Wetland Johnnance Test Workshee Absolute Dominant Indicator **Number of Dominant Species** Tree Stratum (Plot size: 30ft radius) % Cover Species? Status That Are OBL, FACW, or FAC: FAC 1. Acer negundo 25 7 _(A) 2. Liquidambar styraciflua 25 Υ FAC **Total Number of Dominant** 3. Carya tomentosa 20 Υ FACU Species Across All Strata: (B) 4. Betula nigra 15 **FACW** Percent of Dominant Species That Are OBL, FACW, or FAC: 5. Platanus occidentalis 15 **FACW** 78% (A/B) 6. 7. Prevalence Index worksheet: 8. Total % Cover of: Multiply = Total Cover **OBL** species 20 x 1 =20 50% of total cover: 50 20% of total cover: 20 **FACW** species 95 x 2 = 190 Sapling/Shrub Stratum (Plot size: 30ft radius) FAC species 70 x3 =210 Impatiens capensis **FACW FACU** species 30 x 4 = 120 1. 60 2. Ligustrum sinense 10 FACU **UPL** species 0 0 x 5 = FAC 3. Acer negundo 5 Column Totals: 215 540 (B) 4. Prevalence Index = B/A = 5. Hydrophytic Vegetation Indicators: 6. 7. Rapid Test for Hydrophytic Vegetation 8. Dominance Test is > 50% 4 9. Prevalence Index is $\leq 3.0^{1}$ Morphological Adaptations1 (Provide supporting 10. = Total Cover data in Remarks or on a separate sheet Problematic Hydrophytic Vegetation¹ (Explain) 50% of total cover: 37.5 20% of total cover: Herb Stratum (Plot size: 30ft radius) Murdannia keisak OBL ¹ Indicators of hydric soil and wetland hydrology must 1 20 FACW be present, unless disturbed or problematic 2. Juncus effusus 5 3. Definitions of Four Vegetation Strata: 4. 5. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or 6. more in diameter at breast height (DBH), regardless of 7. height. 8. 9. Sapling/Shrub - Woody plants, excluding vines, less than 3 in. DBH and greater than 3.28 ft (1 m) tall. 10. 11. 12. Herb - All herbaceous (non-woody) plants, regardless of = Total Cover size, and woody plants less than 3.28 ft tall. 50% of total cover: 12.5 20% of total cover: Woody Vines - All woody vines greater than 3.28 ft in height. Woody Vine Stratum (Plot size: 30ft radius) Toxicodendron radicans 10 FAC FACU 2. Parthenocissus quinquefolia 5 3. Vitis rotundifolia 5 FAC 4. 5. Hydrophytic 6. Vegetation Yes 🗹 No □ Present? 10 = Total Cover 20% of total cover: 50% of total cover: Remarks: (Include photo numbers here or on a separate sheet.) Hydrophytic vegetation was observed.

SOIL Sampling Point: WL 3 Wetland

	scription: (Describe to	the depth	needed to documen			rm the ab	sence of indicators).	
Depth	Matrix				Features	2		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2	2.5Y 3/1	100	40\/D 4/4					
2-16+	2.5Y 4/2	08	10YR 4/4	20	C	PL	Sandy clay	
¹ Type C =	Concentration, D = depl	etion, RM :	= Reduced Matrix, MS	= Masked	Sand Grains		² Location: PL = Pore Linia	ng, M = Matrix
Hydric Soi	il Indicators:						Indicators for Problema	tic Hydric Soils ³ :
☐ Hist	osol (A1)		☐ Dark Surface (S7)			☐ 2 cm Muck (A10) (MLRA 147)
☐ Hist	ic Epipedon (A2)		□ Polyvalue Belo	w Surface ((S8) (MLRA 1	147, 148)	☐ Coatal Prairie Red	ox (A16)
☐ Blac	ck Histic (A3)		☐ Thin Dark Surfa	ace (S9) (M	ILRA 147, 14	8)	(MLRA 147, 14	18)
	rogen Sulfide (A4)		☐ Loamy Gleyed				☐ Piedmont Floodpla	, ,
_	tified Layers (A5)		☑ Depleted Matrix				(MLRA 136, 14	•
	n Muck (A10) (LRR N)		☐ Redox Dark Su	, ,	_,		☐ Very Shallow Dark	
. –	leted Below Dark Surfa	ce (A11)	☐ Depleted Dark		7)		☐ Other (Explain in F	Remarks)
	ck Dark Surface (A12)		☐ Redox Depress☐ Iron-Manganes		(E12) (I DD N	MI DA 1	26)	
	dy Mucky Material (S1)		_		. , .		•	ophytic vegetation and
	R N, MLRA 147, 148) dy Gleyed Matrix (S4)						wetland hydrology	
	dy Redox (S4)		☐ Piedmont Floor☐ Red Parent Ma	•	` '	•	unless disturbed o	
	oped Matrix (S5)			iteriai (i 2 i)	(WILIVA 127	, 147)	uniess disturbed o	i problematic.
	Layer (if observed):							
	Type:							
Dep	th (inches):			-			Hydric Soil Present?	Yes ☑ No □
Remarks:	Hydric soils were obser	rved.						

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

Project/Site:	Beltline NE			City/Co.:	Fulton			Sampling Date: 6/8	
Applicant/Owner:	GDOT					State:		Sampling Point: W	L 3 Upland
Investigator(s):	Kayla Theili		Seal	Sect	tion, Townsh				
Landform: (hillslope, to			20.044		-	ocal Relief :	concave		ope (%): 2
Subregion(LRR/MLRA		_	33.811		Long:	-84.3818	1 11 A // Class	Datum: NA	4D83
Soil Map Unit Name:				their times of year?	¬ Voo	- No	-	sification: None	
Are Vegetation				•	☑ Yes	☐ No	,	no, explain in Remarks.) nces" present? ☑ Yo	
Are Vegetation ☐ Are Vegetation ☐	, Soil □ , Soil □	, or Hydro , or Hydro						nces" present? ☑ Y∈ answers in Remarks.)	'es □ No
Alo vogotatio	, 00	, 01 11,	log, _	nataranj prozesta	uo:	(11 1100000.,	, OAPIGIT G, -	moword in rediractor,	
SUMMARY OF FI	NDINGS - A	Attach si	te mar	showing sampling	point loc	ations, tr	ansects, in	nportant features, e	etc.
				<u> </u>	<u> </u>		· ·	<u> </u>	
Hydrophytic Vegetat	tion Present?	,	Yes □	No 🗹	Is the Sam	pled Area			ļ
Hydric Soil Present?			Yes 🗆	No ☑	within a we	•	Yes [□ No ☑	I
Wetland Hydrology I	Present?		Yes □	No ☑					
Remarks									
									!
									ļ
									!
									ļ
HYDROLOGY									
	diastoro						Casandonila	!	irod)
Wetland Hydrology I		- io roquire	d chack	!! that annly):				ndicators (minimum of two	<u>/o requirea)</u>
Primary Indicators (mi		s is required			11)			ce Soil Cracks (B6)	O.:=f=00 (D0)
☐ Surface Water	` '			True Aquatic Plants (B14	,			ely Vegetated Concave	Surrace (bo)
☐ High Water Tall☐ Saturation (A3)				Hydrogen Sulfide Odor (C		oto (C3)		age Patterns (B10)	I
				Oxidized Rhizospheres o	-	ots (Ca)		Trim Lines (B16)	١
☐ Water Marks (E	•			Presence of Reduced Iro	, ,	(00)	-	eason Water Table (C2)	<i>'</i>
☐ Sediment Depo	, ,			Recent Iron Reduction in	Tillea Solis	(C6)	•	sh Burrows (C8)	(00)
☐ Drift Deposits (` '			Thin Muck Surface (C7)	`			ation Visible on Aerial Im	0 , (,
☐ Algal Mat or Cr				Other (Explain in Remark	(S)			ed or Stressed Plants (D	1)
☐ Iron Deposits (I	,	lacaon, (D	١٦١					orphic Position (D2)	
☐ Inundation Visil☐ Water-Stained		imagery (D	1)					ow Aquitard (D3) topographic Relief (D4)	
☐ Water-Stained☐ Aquatic Fauna	, ,							Neutral Test (D5)	
Field Observations:	(613)						ПППАО-П	vedital Test (B5)	
Surface Water Preser	nt?	☐ Yes	☑ No	Depth (inches):					
Water Table Present?		☐ Yes	☑ No			i			
Saturation Present?		☐ Yes	☑ No	. , ,		Wetland	Hydrology P	resent?	☑ No
(includes capillary fring				2004 (1	,		
	0 ,	auge, moni	itorina w	vell, aerial photos, previou	s inspection	ıs). if availa	ble:		
Becombe recorded by	ata (ottoani g	aago, mom	toring w	on, donar priotoc, proviou	о тороской	io), ii availa			
Remarks: Hydrology	indicators we	re not obse	erved						
remarks: Trydrology	maloators we	TO HOL ODGE	Ji vou.						

VEGETATION (Four Strata) - Use scientific names of plants. Sampling Point: WL 3 Upland Absolute Dominant Indicator Dominance Test Worksheet: % Cover Species? Status **Number of Dominant Species** Tree Stratum (Plot size: 30ft radius) That Are OBL, FACW, or FAC: 1. Pinus taeda 25 FAC (A) 2. Juglans nigra 20 Υ **FACU Total Number of Dominant** 3. Liriodendron tulipfera 20 Υ FAC Species Across All Strata: 6 (B) FAC Percent of Dominant Species 4. Acer rubrum 15 That Are OBL, FACW, or FAC: 5. 50% (A/B) 6. 7. Prevalence Index worksheet: 8. Total % Cover of: Multiply = Total Cover **OBL** species x 1 =0 50% of total cover: 20% of total cover: FACW species 0 x 2 = 0 x 3 = Sapling/Shrub Stratum (Plot size: 30ft radius) FAC species 75 225 **FACU** species 80 Ligustrum sinense **FACU** x 4 = 320 1. 2. **UPL** species 0 0 x 5 = 3. Column Totals: 155 545 4. Prevalence Index = B/A = 5. Hydrophytic Vegetation Indicators: 6. Rapid Test for Hydrophytic Vegetation 7. 8. Dominance Test is > 50% 9. П Prevalence Index is ≤ 3.0¹ 10. Morphological Adaptations1 (Provide supporting П data in Remarks or on a separate sheet) 60 = Total Cover Problematic Hydrophytic Vegetation¹ (Explain) 50% of total cover: 30 20% of total cover: 12 Herb Stratum (Plot size: 30ft radius) ¹ Indicators of hydric soil and wetland hydrology must 1. be present, unless disturbed or problematic 2. Definitions of Four Vegetation Strata: 3. 4. 5. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or 6. more in diameter at breast height (DBH), regardless of 7. height. 8. 9. Sapling/Shrub - Woody plants, excluding vines, less 10. than 3 in. DBH and greater than 3.28 ft (1 m) tall. 11. 12. Herb - All herbaceous (non-woody) plants, regardless of = Total Cover size, and woody plants less than 3.28 ft tall. 50% of total cover: 20% of total cover: Woody Vines - All woody vines greater than 3.28 ft in height. Woody Vine Stratum (Plot size: 30ft radius) FAC Lonicera japonica 15 FACU Υ 2. 5 Hedera helix 3. 4. 5. Hydrophytic Vegetation 6. Yes No ☑ Present? = Total Cover 15 20% of total cover: 50% of total cover: 7.5 Remarks: (Include photo numbers here or on a separate sheet.) Hydrophytic vegetation was not observed.

SOIL Sampling Point: WL 3 Upland

	scription: (Describe t	o the depth	needed to documen			irm the ab	sence of indicators)		
Depth (inches)	Matrix Color (moist)	%	Color (moist)	%	Features Type ¹	Loc ²	Texture	Remarks	
0-2	2.5Y 5/3	100	` ,			LUC	Sandy clay		
2-16+	2.5Y 4/4	80					Sandy clay		
	2.01 1/1						<u>candy oldy</u>		_
							•		
	Concentration, D = dep	letion, RM =	Reduced Matrix, MS	= Masked S	Sand Grains		² Location: PL = Pore		
1 -	il Indicators:						Indicators for Prob	-	oils":
	cosol (A1)		☐ Dark Surface (,	CO) (BAL DA	447 440)	•	(10) (MLRA 147)	
	ic Epipedon (A2) ck Histic (A3)		☐ Polyvalue Belo☐ Thin Dark Surfa	,	, ,		☐ Coatal Prairie (MLRA 14	` '	
	lrogen Sulfide (A4)		☐ Thin Dark Surfa☐ Loamy Gleyed	. , .		+0)	-	odplain Soils (F19)	\
	atified Layers (A5)		☐ Depleted Matri				(MLRA 13	. , ,	'
	m Muck (A10) (LRR N)		☐ Redox Dark Su	, ,			•	Dark Surface (TF1	12)
	eleted Below Dark Surfa	ace (A11)	☐ Depleted Dark	, ,	7)		•	n in Remarks)	′
	ck Dark Surface (A12)	. ,	☐ Redox Depress	`			, ,	,	
	dy Mucky Material (S1))	☐ Iron-Manganes	se Masses (F12) (LRR N	I, MLRA 1	36)		
(LR	R N, MLRA 147, 148)		☐ Umbric Surface	e (F13) (ML	RA 136, 122	2)	³ Indicators of	hydrophytic veget	ation and
☐ San	dy Gleyed Matrix (S4)		☐ Piedmont Floor	•	· / ·	,	wetland hydro	logy must be pres	ent,
	dy Redox (S4)		☐ Red Parent Ma	iterial (F21)	(MLRA 127	⁷ , 147)	unless disturb	ed or problematic	
	oped Matrix (S5)								
Restrictive	e Layer (if observed):								
Don				-			Hudria Cail Bross	mt2 Voo.□	No 🗔
Бер	th (inches):	•					Hydric Soil Prese	nt? Yes □	No ☑
Remarks:	Hydric soil indicators w	vere not obs	erved						
	,								

Resource Name:	IS 4	NCDWQ Score:	19	Trout Wate	Trout Water?			
Latitude/Longitude:	33.810856°, -	HUC 10:	03130	000112				
Location:	Flowing west toward Clear NE	Buffered?		Yes				
Bankfull Dimensions:	3 feet x 1-foot	Wetted Dimensio	ns:	1 – 3 fee	et x 0.5 i	nch		
Substrate Composition:	Sand, Silt, and Clay	Flow Condition:		No	ormal			
In-Channel Structure:	Sca	ttered stagnant poo	ls, shor	t runs				
Ordinary High Water Mark Indicator(s)	Scour, bed an	Scour, bed and banks, water/mud staining on vegetation						
Current Water Quality:	Muddy water with no apparent smell; channel bed is almost exclusively sand and clay deposition							
Existing Structures:		None						
Existing Aquatic Connectivity Barriers:		Intermittent flow	regime	;				
Impact Activity:		TBD						
Impact/Length (Area)/Duration:		TBD						
Length of Resource within Survey Area:		Approximately 155	linear f	eet				
FWCA Required?		TBD						
Does resource provide habitat	for protected species?			No				

Key: To Be Determined (TBD)

<u>Impact Discussion/Avoidance and Minimization:</u> To be determined.

Photograph of IS 4, facing upstream (south) (6/8/2020)

Photograph of IS 4, facing downstream (north) (6/8/2020)

NC DWO Stream Identification Form Version 4.11

NC DWQ Stream Identification Fo	orm Version 4.11			
Date: 6/8/2020	Project/Site: PI	Project/Site: PI No. 0009395 Latitude: 33.81085		
Evaluator: Kayla Theilig and Evan Seal	County: Fulton	1	Longitude: -8	4.381665°
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*	Stream Determine Ephemeral (Inte	:		
A. Geomorphology (Subtotal 10)	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	0	1	2	3

A. Geomorphology (Subtotal 10)	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	0	1	2	3
3. In-channel structure: ex. riffle-pool, step-pool,	0		2	3
ripple-pool sequence	·			
4. Particle size of stream substrate	0	1	2	3
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	1	2	3
8. Headcuts	0	1	2	3
9. Grade control	0	0.5	1	1.5
10. Natural valley	0	0.5	1	1.5
11. Second or greater order channel	A	o = 0	Yes	= 3
artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = ⁸				
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing bacteria	0	1	2	3
14. Leaf litter	1.5	1	0.5	0
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles	0	0.5	1)	1.5
17. Soil-based evidence of high water table?	N	o = 0	Yes	= 3
C. Biology (Subtotal = 1)	<u>.</u>			
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	0		2	3
21. Aquatic Mollusks	0	1	2	3
22. Fish	0	0.5	1	1.5
23. Crayfish	0	0.5	1	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed) OBL = 1.5 Other = 0	
*perennial streams may also be identified using other method	ds. See p. 35 of manua			
Notes:				
10.00.				
Sketch:				

Resource Name:	IS 5	NCDWQ Score:	26.5	Trout Water?		No		
Latitude/Longitude:	33.811266°, -8	84.380972°		HUC 10:	03130	000112		
Location:	Flowing north toward Clear Creek from Armour Dr. NE			Buffered?		Yes		
Bankfull Dimensions:	2 feet x 1-foot	Wetted Dimension	ns:	1-foot	x 0.5 inc	ch		
Substrate Composition:	Sand, and silt	Flow Condition:		Ne	ormal			
In-Channel Structure:		Riffles and r	uns					
Ordinary High Water Mark Indicator(s)	Bed and bank	Bed and banks, presence of litter and debris, deposition						
Current Water Quality:	Clear water with no apparent smell; channel bed is comprised of gravel in a variety of sizes.							
Existing Structures:		None						
Existing Aquatic Connectivity Barriers:		Intermittent flow	regim	e				
Impact Activity:		TBD						
Impact/Length (Area)/Duration:		TBD						
Length of Resource within Survey Area:		Approximately 271	linear	feet				
FWCA Required?		TBD						
Does resource provide habitat	for protected species?			No				

Key: To Be Determined (TBD)

<u>Impact Discussion/Avoidance and Minimization:</u> To be determined.

Photograph of IS 5, facing downstream (northeast) (6/8/2020)

Photograph of IS 5, facing upstream (south) (6/8/2020)

NC DWQ Stream Identification Form Version 4.11

Date: 6/8/2020	Project/Site: Pl	No. 0009395	Latitude: 33.811266°		
Evaluator: Kayla Theilig and Evan Seal	County: Fultor	า	Longitude: -84.380972° Other e.g. Quad Name:		
Total Points: Stream is at least intermittent if ≥ 19 or perennial if $\geq 30^*$	Stream Determine Ephemeral (Internal	ination (circle one) ermittent Perennial			
A. Geomorphology (Subtotal 11)	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	0	1	2	3	
2. Sinuosity of channel along thalweg	0	1	2	3	
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
Particle size of stream substrate	0	1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	3	
8. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	1	1.5	
11. Second or greater order channel	N	o = 0	Yes	= 3	
a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 7.5) 12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	0	1	2	3	
14. Leaf litter	1.5	1	0.5	0	
15. Sediment on plants or debris	0	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17. Soil-based evidence of high water table?	No	o = 0	Yes	= 3	
C. Biology (Subtotal = 8)		<u>.</u>			
18. Fibrous roots in streambed	3	2	1	0	
19. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	0	2	3	
21. Aquatic Mollusks	9	1	2	3	
22. Fish	0	0.5	1	1.5	
23. Crayfish	9	0.5	1	1.5	

0

0

0.5

0.5

1.5

1.5

FACW = 0.75; OBL = 1.5 Other = 0

*perennial streams may also be identified using other methods. See p. 35 of manual. Notes:

Sketch:

24. Amphibians

26. Wetland plants in streambed

25. Algae

Resource Name:	WL 6	Wetland Type:	Riverine					
Latitude/Longitude:	33.811595°, -84.380534° HUC 10:		0313000112					
Location:	Northeast of A	Northeast of Armour Dr. NE, bordered on the west by IS 5						
Current Quality:	Forested wetland alor	ng eastern edge of IS 5, impag	cted by roadway litter					
Existing Structures:	None							
Impact Activity:		TBD						
Impact/Area/Duration:		TBD						
Area of Resource:	0.08 acre	Area of Resource within Survey Area:	0.08 acre					
FWCA Required		TBD						
Does resource provide habitat	for protected species?	N	lo					

Key: To Be Determined (TBD)

<u>Impact Discussion/Avoidance and Minimization:</u> To be determined.

Photograph of WL 6, east of IS 5 (6/8/2020)

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

Project/Site:	Beltline NE		City/Co.:	: Fulton			Sampling Date: 6/8/20)20
Applicant/Owner:	GDOT				State: GA	S	Sampling Point: WL 6	Wetland
Investigator(s):	Kayla Theilig 8		Sec	ction, Townsh				
Landform: (hillslope, to				_	ocal Relief : con	icave	Slope	` ′
Subregion(LRR/MLRA		Lat: 33.8115	598	_ Long:	-84.380581		Datum: NAD8	3
Soil Map Unit Name:						NWI Classificati		
Are climatic/hydrologic				☑ Yes	□ No	, .	plain in Remarks.)	- N-
-		or Hydrology ar Hydrology				ircumstances"	•	☐ No
Are Vegetation □	, Soil _ , o	or Hydrology	naturally problema	IIIC?	(If fieeded, exp	lain any answe	rs in Remarks.)	
SUMMARY OF FI	NDINGS - Att	ach site man	showing sampling	noint loca	ations, trans	ects import	ant features, etc.	
	1100 7	4011 0110 1115	7 3110 111119 049	point iou	utiono,	octo, imper	ant router 55, 515.	
Hydrophytic Vegetat	tion Present?	Yes ☑	No □	Is the Sam	nled Area			
Hydric Soil Present?		Yes ☑	No □	within a we	•	Yes ☑	No □	
Wetland Hydrology I		Yes ☑	No □			<u>-</u>		
Remarks:								
LIVEROL OOV								
HYDROLOGY								,
Wetland Hydrology I			" " t. A.				ors (minimum of two re	equired)
Primary Indicators (mi				43			l Cracks (B6)	(D0)
☐ Surface Water	` '		True Aquatic Plants (B14	,			egetated Concave Surf	iace (B8)
☐ High Water Tal			Hydrogen Sulfide Odor (,	oto (C3)	-	atterns (B10)	
☑ Saturation (A3)			Oxidized Rhizospheres of	-	, ,		, ,	
☐ Water Marks (E	,		Presence of Reduced Iron	, ,	(C6)	-	Water Table (C2)	
☑ Sediment Depo	. ,		Recent Iron Reduction in	1 Hilea Solis	` '	•	` '	(00)
☐ Drift Deposits (` '		Thin Much Surface (C7)	1\			/isible on Aerial Image	ry (C9)
☐ Algal Mat or Cr ☐ Iron Deposits (I			Other (Explain in Remark	KS)			Stressed Plants (D1)	
' '	ible on Aerial Ima	ageny (R7)				•	Position (D2)	
☑ Mater-Stained		agery (Dr)					raphic Relief (D4)	
☐ Aquatic Fauna	, ,						. ,	
Field Observations:	(2.0)					17.0	11001 (20)	
Surface Water Preser	nt?	Yes ☑ No	Depth (inches):	:				
Water Table Present?	_	Yes □ No	. , ,					
Saturation Present?	_	Yes □ No	. , ,		Wetland Hyd	lrology Presen	it? ☑ Yes [□ No
(includes capillary frin			1 (,			3,		_
		ge, monitoring w	ell, aerial photos, previou	us inspection	ıs), if available:			
	, ,	, ,	, , , , , , , , , , , , , , , , , , , ,		,,			
Remarks: Hydrology	indicators were	observed.						

VEGETATION (Four Strata) - Use scientific names of plants. Sampling Point: WL 6 Wetland Johnnance Test Workshee Absolute Dominant Indicator **Number of Dominant Species** Tree Stratum (Plot size: 30ft radius) % Cover Species? Status That Are OBL, FACW, or FAC: FAC 1. Liquidambar styraciflua 25 7 _(A) 2. 25 Υ FAC **Total Number of Dominant** Acer negundo 3. Carya tomentosa 20 Υ FACU Species Across All Strata: 11 (B) 4. Liriodendron tulipifera 15 FACU Percent of Dominant Species That Are OBL, FACW, or FAC: 5. Platanus occidentalis 15 **FACW** 64% (A/B) 6. 7. Prevalence Index worksheet: 8. Total % Cover of: Multiply = Total Cover **OBL** species 20 x 1 =20 50% of total cover: 50 20% of total cover: 20 **FACW** species 70 x 2 = 140 Sapling/Shrub Stratum (Plot size: 30ft radius) FAC species 70 x3 =210 Impatiens capensis 40 **FACW** FACU species 55 x 4 = 220 1. 2. Ligustrum sinense 10 FACU UPL species 0 x 5 = 0 Υ FACU 3. Carya tomentosa 10 Column Totals: 215 590 (B) 4. Acer negundo 5 FAC Prevalence Index = B/A = 5. Hydrophytic Vegetation Indicators: 6. 7. Rapid Test for Hydrophytic Vegetation 8. Dominance Test is > 50% 4 9. Prevalence Index is $\leq 3.0^{\circ}$ Morphological Adaptations1 (Provide supporting 10. = Total Cover data in Remarks or on a separate sheet Problematic Hydrophytic Vegetation¹ (Explain) 50% of total cover: 32.5 20% of total cover: Herb Stratum (Plot size: 30ft radius) Murdannia keisak OBL ¹ Indicators of hydric soil and wetland hydrology must 1 20 FACW be present, unless disturbed or problematic 2. Woodwardia areolata 15 3. Definitions of Four Vegetation Strata: 4. 5. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or 6. more in diameter at breast height (DBH), regardless of 7. height. 8. 9. Sapling/Shrub - Woody plants, excluding vines, less than 3 in. DBH and greater than 3.28 ft (1 m) tall. 10. 11. 12. Herb - All herbaceous (non-woody) plants, regardless of = Total Cover size, and woody plants less than 3.28 ft tall. 35 50% of total cover: 17.5 20% of total cover: Woody Vines - All woody vines greater than 3.28 ft in height. Woody Vine Stratum (Plot size: 30ft radius) Toxicodendron radicans 10 FAC FACU 2. Parthenocissus quinquefolia 10 3. Vitis rotundifolia 5 FAC 4. 5. Hydrophytic 6. Vegetation Yes 🗹 No □ Present? 25 = Total Cover 12.5 20% of total cover: 50% of total cover: Remarks: (Include photo numbers here or on a separate sheet.) Hydrophytic vegetation was observed.

SOIL Sampling Point: WL 6 Wetland

	scription: (Describe t	o the depti	n needed to documen			rm the ab		rs).	
Depth	Matrix	0/	0-1 (Features	Loc ²	Tt	Damanila	
(inches) 0-5	Color (moist) 5YR 3/3	% 100	Color (moist)	%	Type ¹	LOC	Texture	Remarks	
5-16+	5YR 3/2	80	5YR 4/6	20		PL	Sandy clay Sandy clay		
0 10.	OTT OIL		011(4/0		. <u> </u>	- ' -	<u>Gariay diay</u>		
					·				
¹ Type C = 1	Concentration, D = dep	lation PM	- Poducod Matrix MS	- Maskad	Sand Crains		² Location: DL = D	ore Lining, M = Matri	v
		netion, Rivi	- Neduced Matrix, MS	- Maskeu	Sanu Grains			oblematic Hydric Sc	
-	I Indicators: osol (A1)		☐ Dark Surface (S7)				: (A10) (MLRA 147)	JIIS .
	ic Epipedon (A2)		☐ Polyvalue Belo	,	(S8) (MLRA 1	147. 148)		irie Redox (A16)	
	ck Histic (A3)		☐ Thin Dark Surfa					147, 148)	
☐ Hyd	rogen Sulfide (A4)		□ Loamy Gleyed)		☐ Piedmont F	Floodplain Soils (F19))
	tified Layers (A5)		□ Depleted Matrix					136, 147)	
	n Muck (A10) (LRR N)		☑ Redox Dark Su	. ,				ow Dark Surface (TF1	12)
	leted Below Dark Surfa	ice (A11)	☐ Depleted Dark	•	7)		☐ Other (Exp	lain in Remarks)	
	k Dark Surface (A12) dy Mucky Material (S1)	١	☐ Redox Depress☐ Iron-Manganes		(F12) (I DD N	MIRA4	36)		
	dy Mucky Materiai (ST) R N, MLRA 147, 148)	,	☐ Umbric Surface					of hydrophytic veget	ation and
	dy Gleyed Matrix (S4)		☐ Piedmont Floor					drology must be pres	
	dy Redox (S4)		☐ Red Parent Ma					urbed or problematic	
	oped Matrix (S5)		_	, ,	, ,			'	
Restrictive	Layer (if observed):								
	Туре:			_					
Dep	th (inches):						Hydric Soil Pre	sent? Yes ✓	No □
Bomorko	Hydric soil indicators v	voro obconv	ad						
rtemarks.	Tryano son maioators v	VCIC ODSCIV	cu.						
1									
1									
1									
1									
1									
1									

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

Project/Site:	Beltline NE			City/Co.:	Fulton			Sampling Date: 6/8/2	
Applicant/Owner:	GDOT					State: GA		Sampling Point: WL	6 Upland
Investigator(s):	Kayla Theilig		Seal	Sect	ion, Townsh	· - —			
Landform: (hillslope, to						cal Relief : con	ncave		e (%): 2
Subregion(LRR/MLRA		_	33.8116	319	Long:	-84.380456		Datum: NAD)83
Soil Map Unit Name:					= ,,		NWI Classifica		
Are climatic/hydrologic		,	, ,	,	☑ Yes	□ No	,	xplain in Remarks.)	- N-
-		, or Hydrol				Are "Normal C		•	s 🗆 No
Are Vegetation □	, Soil 🔲	, or Hydrol	ogy 🗀	naturally problemat	.IC !	(IT needed, exp	Diain any answ	ers in Remarks.)	
SHIMMARY OF FI	NDINGS - A	ttach eit	o mar	showing sampling	noint loca	atione trans	eacte imna	rtant foatures et	^
JOHN ART S	NDINGE	illacii o	6 map	Silowing Sumpling	ponit ioca	2110113, 1.41.5	occio, mipo	Italit louturoo, o.	٠.
Hydrophytic Vegetat	tion Present?	Y	Yes ☑	No □	Is the Samp	nled Area			
Hydric Soil Present?			res ⊡		within a wet		Yes □	No ☑	
Wetland Hydrology I			Yes □	No ☑				110 🗀	
Remarks:									
HYDROLOGY									
Wetland Hydrology I							•	tors (minimum of two	required)
Primary Indicators (mi		is required						oil Cracks (B6)	
☐ Surface Water	` '			True Aquatic Plants (B14)	,			egetated Concave Su	urface (B8)
☐ High Water Tal				Hydrogen Sulfide Odor (C	,	. (00)	-	Patterns (B10)	Į
☐ Saturation (A3)				Oxidized Rhizospheres or	-	, ,		Lines (B16)	
☐ Water Marks (E	,			Presence of Reduced Iron	` '	(20)	•	on Water Table (C2)	
☐ Sediment Depo	. ,			Recent Iron Reduction in	Tilled Soils	` '	•	urrows (C8)	(20)
☐ Drift Deposits (` '			Thin Much Surface (C7)	•			Visible on Aerial Imag	. ,
☐ Algal Mat or Cr	, ,			Other (Explain in Remark	.s)			Stressed Plants (D1))
☐ Iron Deposits (I			7\				-	ic Position (D2)	
☐ Inundation Visit		magery (D	()					quitard (D3)	
☐ Water-Stained☐ Aquatic Fauna	, ,							graphic Relief (D4) ral Test (D5)	
Aquatic Fauna	(B13)						FAC-INCUU	rai Test (D5)	
Surface Water Preser	nt? [□ Yes	☑ No	Depth (inches):					
Water Table Present?	_	□ res □ Yes	☑ No						
Saturation Present?	_	□ Yes	☑ No			Wetland Hyd	drology Prese	ent? 🗆 Yes	□ No
(includes capillary fring		_ 103	<u> </u>	Dopur (mones).		Victiana riya	arology i resc		. 110
	0 /	uge monit	toring w	ell, aerial photos, previous	s inspection:	s) if available:			
Describe recorded by	ata (Stream ga	lago, mom	.omig w	cii, acriai priotos, previoas	3 mopeodon	oj, ii avaliabio.			
Remarks: Hydrology	indicators wer	e not obse	rved						
remarks: Trydrology	maioators were	C HOL ODGO	ivou.						

VEGETATION (Four Strata) - Use scientific names of plants. Sampling Point: WL 6 Upland Dominiance rest worksnes Absolute Dominant Indicator **Number of Dominant Species** Tree Stratum (Plot size: 30ft radius) % Cover Species? Status Number of Dominant Species That Are OBL, FACW, or FAC: FAC _(A) 1. Liquidambar styraciflua 30 6 2. 30 Υ FACU **Total Number of Dominant** Juglans nigra 3. Carya tomentosa 20 Υ FACU Species Across All Strata: 10 (B) 4. Liriodendron tulipifera 15 FACU Percent of Dominant Species That Are OBL, FACW, or FAC: 5. 60% (A/B) 6. 7. Prevalence Index worksheet: Multiply 8. Total % Cover of: 95 = Total Cover **OBL** species 0 x 1 =0 50% of total cover: 20% of total cover: **FACW** species 0 x 2 = 0 Sapling/Shrub Stratum (Plot size: 30ft radius) FAC species 140 x 3 = 420 Quercus nigra 30 FAC **FACU** species 100 x 4 = 400 1. FACU 2. Ligustrum sinense 25 Υ UPL species 0 0 x 5 = FACU 3. Carya tomentosa 10 Column Totals: 240 820 (B) 4. Acer negundo 5 FAC Prevalence Index = B/A = 5. Hydrophytic Vegetation Indicators: 6. 7. Rapid Test for Hydrophytic Vegetation Dominance Test is > 50% 8. 4 9. Prevalence Index is $\leq 3.0^{1}$ Morphological Adaptations1 (Provide supporting 10. 70 = Total Cover data in Remarks or on a separate sheet Problematic Hydrophytic Vegetation¹ (Explain) 50% of total cover: 20% of total cover: Herb Stratum (Plot size: 30ft radius) Microstegium vimineum 40 FAC ¹ Indicators of hydric soil and wetland hydrology must 1 Commelina communis FAC be present, unless disturbed or problematic 2. 20 3. Definitions of Four Vegetation Strata: 4. 5. **Tree** - Woody plants, excluding vines, 3 in. (7.6 cm) or 6. more in diameter at breast height (DBH), regardless of 7. height. 8. 9. Sapling/Shrub - Woody plants, excluding vines, less than 3 in. DBH and greater than 3.28 ft (1 m) tall. 10. 11. 12. Herb - All herbaceous (non-woody) plants, regardless of 60 = Total Cover size, and woody plants less than 3.28 ft tall. 50% of total cover: 20% of total cover: Woody Vines - All woody vines greater than 3.28 ft in height. Woody Vine Stratum (Plot size: 30ft radius) Toxicodendron radicans 10 FAC 2. FACU Parthenocissus quinquefolia 10 3. Vitis rotundifolia 5 Υ FAC 4. 5. Hydrophytic 6. Vegetation Yes 🗹 No □ Present? 25 = Total Cover 20% of total cover: 50% of total cover: 12.5 Remarks: (Include photo numbers here or on a separate sheet.) Hydrophytic vegetation was observed.

SOIL

	escription: (Describe t	o the depth	n needed to documer			irm the ab	sence of indicators).	·
Depth (inches)	Matrix Color (moist)	%	Color (moist)	Redox %	Features Type ¹	Loc ²	Texture	Remarks
` /	` ,		,		• •			Remarks
0-5 5-16+	5YR 4/4 5YR 5/6	<u>100</u> 70						
3-10+	31K 3/0			. ———			Sandy clay	
	Concentration, D = dep	letion, RM =	= Reduced Matrix, MS	= Masked	Sand Grains		² Location: PL = Pore Li	
1 -	oil Indicators:			07)			Indicators for Problem	-
	tosol (A1)		☐ Dark Surface (,	(CO) (MI DA	447 440)	☐ 2 cm Muck (A10	
	tic Epipedon (A2) ck Histic (A3)		☐ Polyvalue Belo☐ Thin Dark Surf				☐ Coatal Prairie Ro (MLRA 147,	
	drogen Sulfide (A4)		☐ Thin Dark Surf☐ Loamy Gleyed			ю)	□ Piedmont Flood	-
	atified Layers (A5)		☐ Depleted Matri				(MLRA 136,	
	m Muck (A10) (LRR N)		☐ Redox Dark Su					rk Surface (TF12)
	pleted Below Dark Surfa	ce (A11)	☐ Depleted Dark	, ,	7)		☐ Other (Explain in	
	ck Dark Surface (A12)	(/ (/ / / /	☐ Redox Depress		. ,		_ Julio (Explail II	
	ndy Mucky Material (S1)		☐ Iron-Manganes	` '	(F12) (LRR N	I, MLRA 1	36)	
	RR N, MLRA 147, 148)		☐ Umbric Surface		. , .		•	drophytic vegetation and
	ndy Gleyed Matrix (S4)		☐ Piedmont Floo					gy must be present,
	ndy Redox (S4)		☐ Red Parent Ma	•	, , ,	•	unless disturbed	
	ipped Matrix (S5)				(, ,	4555 4.544.254	or problemation
	e Layer (if observed):							
	Type:			_				
Dep	oth (inches):						Hydric Soil Present?	P Yes ☐ No ☑
Remarks:								
Hydric soi	I indicators were not obs	servea.						

Resource Name:	Score:		Trout Water?		No	
Latitude/Longitude:	33.812341°, -8	84.379454°		HUC 10:	03130	000112
Location:	Flowing north toward Clear NE	Buffered?		Yes		
Bankfull Dimensions:	4 feet x 3 feet	Wetted Dimension	ons:	2 feet	x 1-foo	t
Substrate Composition:	Sand, Silt, and Clay	Flow Condition:		No	ormal	
In-Channel Structure:		Riffles, runs and	d pools			
Ordinary High Water Mark Indicator(s)	Bed and banks, presence of litter and debris, deposition, change in plant community					
Current Water Quality:	Clear water with no apparent smell; channel bed is sandy, with large gravel					
Existing Structures:		None				
Existing Aquatic Connectivity Barriers:		Low flow reg	gime			
Impact Activity:		TBD				
Impact/Length (Area)/Duration:		TBD				
Length of Resource within Survey Area:	Approximately 173 linear feet					
FWCA Required?		TBD				
Does resource provide habitat	for protected species?	Yes, Chattahoo	ochee c	rayfish and blu	uestripe	shiner

Key: To Be Determined (TBD)

Impact Discussion/Avoidance and Minimization:

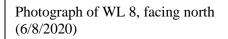
Photograph of PS 7, facing downstream (north) (6/8/2020)

Photograph of PS 7, facing upstream (south) (6/8/2020)

NC DWQ Stream Identification Form Version 4.11

Date: 6/8/2020	Project/Site: PI No. 0009395	Latitude: 33.812341°	
Evaluator: Kayla Theilig and Evan Seal	County: Fulton	Longitude: -84.379545°	
Total Points: Stream is at least intermittent 30 if ≥ 19 or perennial if $\geq 30^*$	Stream Determination (circle one) Ephemeral Intermittent Perennial	Other e.g. Quad Name:	

A. Geomorphology (Subtotal <u>14</u>)	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	0	1	2	3
In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3
Particle size of stream substrate	0	1	2	3
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	1	2	3
8. Headcuts	0	1	2	3
9. Grade control	0	0.5	1	1.5
10. Natural valley	0	0.5		1.5
11. Second or greater order channel	N	0 = 0	Yes :	= 3
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = 8)				
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing bacteria	0	1	2	3
10. Iron oxidizing bacteria			_	, ,
14. Leaf litter	1.5		0.5	0
•	_	•		
14. Leaf litter 15. Sediment on plants or debris	1.5	1	0.5 1	0
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles	1.5	0.5	0.5	0 1.5 1.5
14. Leaf litter	1.5	0.5 0.5	0.5	0 1.5 1.5
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table?	1.5	0.5 0.5	0.5	0 1.5 1.5
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal = 8) 18. Fibrous roots in streambed	1.5 0 0 N	0.5 0.5 0.5 0 = 0	0.5 1 1 (Yes:	0 1.5 1.5
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal =8)	1.5 0 0 No	0.5 0.5 0.5 0 = 0	0.5 1 1 Yes:	0 1.5 1.5 = 3
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal = 8) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed	1.5 0 0 No	0.5 0.5 0.5 0 = 0	0.5 1 1 Yes:	0 1.5 1.5 = 3
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal = 8) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance)	1.5 0 0 No	0.5 0.5 0.5 0 = 0	0.5 1 1 Yes =	0 1.5 1.5 = 3
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal =8) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish	1.5 0 0 No	0.5 0.5 0.5 0 = 0	0.5 1 1 Yes:	0 1.5 1.5 = 3
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal = 8) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks	1.5 0 0 No	0.5 0.5 0.5 0 = 0	0.5 1 1 Yes:	0 1.5 1.5 = 3) 0 0 0 3 3 1.5
14. Leaf litter 15. Sediment on plants or debris 16. Organic debris lines or piles 17. Soil-based evidence of high water table? C. Biology (Subtotal = 8) 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish 23. Crayfish	1.5 0 0 No 3 3 0 0	0.5 0.5 0.5 0 = 0	0.5 1 1 Yes:	0 1.5 1.5 = 3) 0 0 0 3 3 1.5 1.5


Sketch:

Resource Name:	WL 8	Wetland Type:	Riverine			
Latitude/Longitude:	33.813381°, -84.379303°	HUC 10:	0313000112			
Location:	North of Armour Dr. and adjacent to the east of the Ready-Mix concrete facility					
Current Quality:	Large, forested wetland, east of IS 7, impacted by invasive species					
Existing Structures:	None					
Impact Activity:		TBD				
Impact/Area/Duration:		TBD				
Area of Resource:	Approximately 4 acres	Area of Resource within Survey Area:	2.03 acres			
FWCA Required		TBD				
Does resource provide habitat	t for protected species?	No				

Key: To Be Determined (TBD)

<u>Impact Discussion/Avoidance and Minimization:</u> To be determined.

Photograph of WL 8, facing east (6/8/2020)

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

Project/Site:	Beltline NE		City/Co	o.: Fulton		Sampling Date:	6/8/2020
Applicant/Owner:	GDOT				State: GA	Sampling Point:	WL 8 Wetland
Investigator(s):	Kayla Theilig & Ev	van Seal	Se	ection, Towns	hip, Range:		
Landform: (hillslope,		е		Lo	ocal Relief : concave		Slope (%): 1
Subregion(LRR/MLR/	A <u>P/136</u> L	_at: <u>33.81296</u>	35	Long:	-84.378784	Datum:	NAD83
Soil Map Unit Name:	Udorthents				NWI C	Classification: None	
Are climatic/hydrologi	c conditions on the s	ite typical for	this time of year?	Yes	□ No	(If no, explain in Remark	ks.)
Are Vegetation □	, Soil ☐ , or H	ydrology 🗆	significantly distu	ırbed?	Are "Normal Circum	stances" present?	Yes ☐ No
Are Vegetation ☐	, Soil ☐ , or H	ydrology 🗌	naturally problem	natic?	(If needed, explain a	ny answers in Remarks.)
SUMMARY OF FI	NDINGS - Attach	ı site map	showing sampling	g point loc	ations, transects	, important features	s, etc.
Hydrophytic Vegeta		Yes ☑	No 🗆	Is the Sam	·		
Hydric Soil Present		Yes ☑	No 🗆	within a we	etland? Ye	s ☑ No □	
Wetland Hydrology	Present?	Yes ☑	No 🗆				
Remarks							
HYDROLOGY							•
Wetland Hydrology	Indicators:				Secondar	ry Indicators (minimum c	of two required)
Primary Indicators (m		uired: check a	all that apply):			ırface Soil Cracks (B6)	
☐ Surface Water			Frue Aquatic Plants (B	14)		parsely Vegetated Conca	eve Surface (B8)
☐ High Water Ta	` '		Hydrogen Sulfide Odor	,	•	ainage Patterns (B10)	ive carrace (Bo)
☑ Saturation (A3			Oxidized Rhizospheres	. ,		oss Trim Lines (B16)	
☐ Water Marks (Presence of Reduced I	-	, ,	y-Season Water Table (C2)
☑ Sediment Dep	•		Recent Iron Reduction	, ,		ayfish Burrows (C8)	<i>52)</i>
	, ,				` '	aylish Bullows (Co) aturation Visible on Aeria	I Imagani (CO)
· ·	` '		Thin Much Surface (C7	,			0, 1,
☐ Algal Mat or C☐ Iron Deposits (Other (Explain in Rema	aiks)		unted or Stressed Plants	, (D1)
	ible on Aerial Imager	n/ (P7)				eomorphic Position (D2) nallow Aquitard (D3)	
_	•	у (Б/)				crotopographic Relief (D	14)
☑ Water-Stained☐ Aquatic Fauna	` '					เตอเอออฐาสตาแต่ Relier (D เC-Neutral Test (D5)	4)
☐ Aquatic Fauna	(B13)				FA	(C-Neuliai Test (D3)	
Surface Water Prese	nt? □ Ye	s 🗇 No	Depth (inches	.).			
Water Table Present	_			<i>'</i> — — —	-		
	_		Depth (inches		Watland Hudualan	Dracent?	′ □ N-
Saturation Present?	☑ Yes	s 🗆 No	Depth (inches	s): surrace	Wetland Hydrolog	y Present?	es 🗆 No
(includes capillary frin	• ,		U	!			
Describe Recorded D	ata (stream gauge, r	nonitoring we	ll, aerial photos, previo	ous inspection	is), it available:		
Remarks: Hydrology	indicators were obs	erved.					

VEGETATION (Four Strata) - Use scientific names of plants. Sampling Point: WL 8 Wetland Absolute Dominant Indicator Dominance Test Worksheet: % Cover Species? Status **Number of Dominant Species** Tree Stratum (Plot size: 30ft radius) Quercus nigra That Are OBL, FACW, or FAC: 25 FAC 1. (A) 2. Liquidambar styraciflua 20 FAC Total Number of Dominant Liriodendron tulipifera 3. 20 FACU Species Across All Strata: 6 (B) FACW 4. Platanus occidentalis 10 Percent of Dominant Species (A/B) FACU That Are OBL, FACW, or FAC: 5. Carya tomentosa 10 67% 6. 7. Prevalence Index worksheet: 8. Total % Cover of: Multiply = Total Cover **OBL** species x 1 = 0 0 50% of total cover: 42.5 20% of total cover: FACW species 10 x 2 = 20 75 Sapling/Shrub Stratum (Plot size: <u>30ft radius</u>) FAC species 225 x 3 = FACU FACU species 50 Ligustrum sinense 200 x 4 = 2. UPL species 0 x 5 = 0 3. Column Totals: 135 445 (B) 4. Prevalence Index = B/A = 3.3 5. 6. **Hydrophytic Vegetation Indicators:** Rapid Test for Hydrophytic Vegetation 7. 8. Dominance Test is > 50% 9. Prevalence Index is ≤ 3.0¹ 10. Morphological Adaptations1 (Provide supporting = Total Cover data in Remarks or on a separate sheet 50% of total cover: 20% of total cover: Problematic Hydrophytic Vegetation¹ (Explain) 10 Herb Stratum (Plot size: 30ft radius) ¹ Indicators of hydric soil and wetland hydrology must Commelina communis Υ FAC be present, unless disturbed or problematic 2. Definitions of Four Vegetation Strata: 3. 4. 5. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or 6. more in diameter at breast height (DBH), regardless of 7. height. 8. 9. Sapling/Shrub - Woody plants, excluding vines, less than 3 in. DBH and greater than 3.28 ft (1 m) tall. 10. 11. 12. Herb - All herbaceous (non-woody) plants, regardless of = Total Cover size, and woody plants less than 3.28 ft tall. 50% of total cover: 20% of total cover: Woody Vine Stratum (Plot size: 30ft radius) Woody Vines - All woody vines greater than 3.28 ft in height. 1. Lonicera japonica FAC 2. 3.

5. 6.	<u> </u>	10 = Total Cover	Veg	lrophytic getation sent?	Yes ✓	No 🗆	
50% of total of		20% of total cover:	2				
emarks: (Include photo numbers here	e or on a separate	sheet.)					ļ
ydrophytic vegetation was observed.							
							_
S Army Corne of Engineers				Eastern	Mountains and	Diadmont Varaian 2	^

SOIL Sampling Point: WL 8 Wetland

	scription: (Describe t	o the depth	needed to documen			rm the ab	sence of indicators).	
Depth (inches)	Matrix Color (moist)	%	Color (moist)	Redox %	Features Type ¹	Loc ²	Texture	Remarks	
0-4	5YR 3/3	100	Color (moist)	70	туре	LUC	Sandy clay		
4-16+	5YR 3/2	80	5YR 4/6	20		PL	Sandy clay		
					· ·				
1	O	leties DM	Deduced Metric MO	- Manalanal	0		21 ti DI D		
	Concentration, D = dep	oletion, Rivi =	Reduced Matrix, MS	= Masked	Sand Grains		² Location: PL = Por Indicators for Prol		
1 -	tosol (A1)		☐ Dark Surface (S7)				A10) (MLRA 147)	, iis .
	tic Epipedon (A2)		☐ Polyvalue Belo	,	(S8) (MLRA 1	147, 148)	,	e Redox (A16)	
	ck Histic (A3)		☐ Thin Dark Surfa		. , .		(MLRA 1	` '	
	lrogen Sulfide (A4)		☐ Loamy Gleyed	. , .		-,	•	oodplain Soils (F19)
	atified Layers (A5)		☐ Depleted Matri				(MLRA 1	36, 147)	
☐ 2 cr	m Muck (A10) (LRR N)		☑ Redox Dark Su	ırface (F6)			☐ Very Shallov	/ Dark Surface (TF1	12)
	oleted Below Dark Surfa	ace (A11)	□ Depleted Dark		7)		☐ Other (Expla	in in Remarks)	
	ck Dark Surface (A12)		☐ Redox Depress	` '	(E40) :: ==				
	ndy Mucky Material (S1))	☐ Iron-Manganes		. , .		-		
	R N, MLRA 147, 148)		☐ Umbric Surface					f hydrophytic veget	
	ndy Gleyed Matrix (S4)		☐ Piedmont Floor	•	` '	,	•	ology must be pres	
	ndy Redox (S4) pped Matrix (S5)		☐ Red Parent Ma	iteriai (FZ1)	(WLRA 127	, 147)	uniess distur	bed or problematic	•
	e Layer (if observed):								
	Type:								
Dep	th (inches):	_		-			Hydric Soil Pres	ent? Yes ☑	No □
		-							
Remarks:									
Hydric soil	indicators were observ	ed.							

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

Project/Site:	Beltline NE		City/Co.: Ful	lton		Sampling Date: 6/8	3/2020
Applicant/Owner:	GDOT				State: 0	SA Sampling Point: W	L 8 Upland
Investigator(s):	Kayla Theilig & E		Section,	Townshi	p, Range:		
Landform: (hillslope, t		е		Loc	cal Relief : c	concave Slo	ope (%): 1
Subregion(LRR/MLRA	4 <u>P/136</u> L	_at: <u>33.812828</u>		Long:	84.378817	Datum: NA	۸D83
Soil Map Unit Name:	Udorthents					NWI Classification: None	
Are climatic/hydrologi	c conditions on the s	ite typical for th	is time of year? ☑	Yes	□ No	(If no, explain in Remarks.)	
Are Vegetation	, Soil 🔲 , or H	ydrology 🗆	significantly disturbed?)	Are "Norma	I Circumstances" present? ☑ Ye	es 🗌 No
Are Vegetation ☐	, Soil 🔲 , or H	ydrology 🗌	naturally problematic?	(If needed, e	explain any answers in Remarks.)	
SUMMARY OF FI	NDINGS - Attach	າ site map sh	nowing sampling poi	int loca	tions, tra	nsects, important features, e	tc.
Hydrophytic Vegeta	tion Present?	Yes ☑ N	No ☐ Is ti	he Samp	led Area		
Hydric Soil Present?	?	Yes □ N	No ☑ with	hin a wetl	and?	Yes □ No ☑	
Wetland Hydrology	Present?	Yes □ 1	No ☑				
Remarks							
HYDROLOGY							
Wetland Hydrology I	ndicators:				5	Secondary Indicators (minimum of tw	o required)
Primary Indicators (m		uired: check all	that apply):		_	☐ Surface Soil Cracks (B6)	
☐ Surface Water			ie Aquatic Plants (B14)			☐ Sparsely Vegetated Concave	Surface (B8)
☐ High Water Ta	` '		drogen Sulfide Odor (C1)			☐ Drainage Patterns (B10)	canace (Bo)
☐ Saturation (A3)	, ,	•	idized Rhizospheres on Liv	vina Root	ts (C3)	☐ Moss Trim Lines (B16)	
☐ Water Marks (I			esence of Reduced Iron (C	-	.0 (00)	☐ Dry-Season Water Table (C2)	
☐ Sediment Depo	,		cent Iron Reduction in Tille	,	C6)	☐ Crayfish Burrows (C8)	
☐ Drift Deposits (. ,		n Much Surface (C7)	ca cons (00)	☐ Saturation Visible on Aerial Im	nagery (C0)
☐ Algal Mat or Ci	,		ner (Explain in Remarks)			☐ Stunted or Stressed Plants (D	
☐ Iron Deposits (iei (Expiaiii iii Neiliaiks)			Geomorphic Position (D2)	')
	ble on Aerial Imager	v (B7)				☐ Shallow Aquitard (D3)	
☐ Water-Stained	-	y (D7)				☐ Microtopographic Relief (D4)	
☐ Aquatic Fauna	, ,					FAC-Neutral Test (D5)	
Field Observations:	(610)			Т			
Surface Water Preser	at2 □ Va	s 🗔 No	Donth (inches):				
Water Table Present?	_		Depth (inches):				
	_		Depth (inches):		Motlered	hudrologu Drocout?	No
Saturation Present?	☐ Yes	s 🗵 No	Depth (inches):		wetiand H	lydrology Present?	☑ NO
(includes capillary frin	• ,				\ : f : - - -		
Describe Recorded D	ata (stream gauge, r	nonitoring well,	aerial photos, previous ins	spections	s), if availabl	e:	
Remarks:							

VEGETATION (Four Strata) - Use scientific names of plants. Sampling Point: WL 8 Upland Johnnance Test Workshee Absolute Dominant Indicator **Number of Dominant Species** Tree Stratum (Plot size: 30ft radius) % Cover Species? Status Number of Dominant Species That Are OBL, FACW, or FAC: Liriodendron tulipifera **FACU** 1. 35 6 _(A) 2. Acer rubrum 20 Υ FAC **Total Number of Dominant** 3. Acer negundo 20 Υ FAC Species Across All Strata: (B) 4. Carya tomentosa 15 FACU Percent of Dominant Species That Are OBL, FACW, or FAC: 5. (A/B) 6. 7. Prevalence Index worksheet: Multiply 8. Total % Cover of: 90 = Total Cover **OBL** species 0 x 1 =0 50% of total cover: 45 20% of total cover: **FACW** species 0 x 2 = 0 Sapling/Shrub Stratum (Plot size: 30ft radius) FAC species 95 x3 =285 Acer rubrum FAC **FACU** species 60 x 4 = 240 1. 15 2. Ligustrum sinense 10 Υ FACU UPL species 0 0 x 5 = Υ FAC 3. Acer negundo 5 Column Totals: 155 525 (B) 4. Prevalence Index = B/A = 5. Hydrophytic Vegetation Indicators: 6. 7. Rapid Test for Hydrophytic Vegetation 8. Dominance Test is > 50% 4 9. Prevalence Index is $\leq 3.0^{1}$ Morphological Adaptations1 (Provide supporting 10. = Total Cover data in Remarks or on a separate sheet Problematic Hydrophytic Vegetation¹ (Explain) 50% of total cover: 20% of total cover: Herb Stratum (Plot size: 30ft radius) Toxicodendron radicans FAC ¹ Indicators of hydric soil and wetland hydrology must 1 be present, unless disturbed or problematic 2. 3. Definitions of Four Vegetation Strata: 4. 5. Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or 6. more in diameter at breast height (DBH), regardless of 7. height. 8. 9. Sapling/Shrub - Woody plants, excluding vines, less than 3 in. DBH and greater than 3.28 ft (1 m) tall. 10. 11. 12. Herb - All herbaceous (non-woody) plants, regardless of = Total Cover size, and woody plants less than 3.28 ft tall. 50% of total cover: 20% of total cover: Woody Vines - All woody vines greater than 3.28 ft in height. Woody Vine Stratum (Plot size: 30ft radius) Vitis rotundifolia 15 FAC FACU 2. Parthenocissus quinquefolia 5 3. 4. 5. Hydrophytic 6. Vegetation Yes 🗹 No □ Present? 20 = Total Cover 20% of total cover: 50% of total cover: Remarks: (Include photo numbers here or on a separate sheet.) Hydrophytic vegetation was observed.

SOIL Sampling Point: WL 8 Upland

Profile De	escription: (Describe to	o the depth	needed to documen	t the indica	tor or confi	rm the abs	sence of indicators).
Depth	Matrix			Redox	Features		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remarks
0-4	5YR 4/6	100					Sandy clay
4-16+	5YR 5/4	80					Sandy clay
¹ Type C =	Concentration, D = dep	letion, RM =	Reduced Matrix, MS	= Masked S	Sand Grains		² Location: PL = Pore Lining, M = Matrix
Hydric So	il Indicators:						Indicators for Problematic Hydric Soils ³ :
☐ His	tosol (A1)		☐ Dark Surface (S7)			☐ 2 cm Muck (A10) (MLRA 147)
☐ His	tic Epipedon (A2)		☐ Polyvalue Belo	w Surface (S8) (MLRA 1	147, 148)	☐ Coatal Prairie Redox (A16)
☐ Bla	ck Histic (A3)		☐ Thin Dark Surfa	ace (S9) (M	LRA 147, 14	8)	(MLRA 147, 148)
☐ Hyd	drogen Sulfide (A4)		□ Loamy Gleyed	Matrix (F2)			□ Piedmont Floodplain Soils (F19)
☐ Stra	atified Layers (A5)		□ Depleted Matri	x (F3)			(MLRA 136, 147)
	m Muck (A10) (LRR N)		☐ Redox Dark Su				☐ Very Shallow Dark Surface (TF12)
☐ Dep	oleted Below Dark Surfa	ce (A11)	□ Depleted Dark	Surface (F7	')		☐ Other (Explain in Remarks)
☐ Thi	ck Dark Surface (A12)		☐ Redox Depress	sions (F8)			
☐ Sar	ndy Mucky Material (S1))	☐ Iron-Manganes	se Masses (F12) (LRR N	, MLRA 13	36)
(LR	RR N, MLRA 147, 148)		☐ Umbric Surface	e (F13) (ML	RA 136, 122)	³ Indicators of hydrophytic vegetation and
	ndy Gleyed Matrix (S4)		☐ Piedmont Floor	dplain Soils	(F19) (MLR /	A 148)	wetland hydrology must be present,
	ndy Redox (S4)		☐ Red Parent Ma	aterial (F21)	(MLRA 127	, 147)	unless disturbed or problematic.
	pped Matrix (S5)						·
Restrictiv	e Layer (if observed):						
	Type:			_			
Dep	oth (inches):	i					Hydric Soil Present? Yes ☐ No ☑

Resource Name:	PS 9 (Peachtree Creek)	NCDWQ Score:	*	Trout Water	r?	No		
Latitude/Longitude:	33.812341°, -	33.812341°, -84.379454° HUC 10: 031300011						
Location:		Flowing east to west, parallel to CSX Transportation Line, perpendicular to Piedmont Road NE Buffered? Yes						
Bankfull Dimensions:	50 feet x 10 feet	Wetted Dimension	ns:	15 fee	et x 8 fee	et		
Substrate Composition:	Sand, Silt, Clay	Flow Condition:		No	ormal			
In-Channel Structure:		Runs and po	ools					
Ordinary High Water Mark Indicator(s)	Bed and banks, deposi	Bed and banks, deposition, shelving, leaf litter disturbed or washed away						
Current Water Quality:	Water was muddy with no smell; impacted by roadway run-off from Piedmont Road NE							
Existing Structures:	Structure ID 121-0111-0 with steel und	(Piedmont Road No erdecking; Bent 3 i		_	-	e bent,		
Existing Aquatic Connectivity Barriers:		None						
Impact Activity:		TBD						
Impact/Length (Area)/Duration:		TBD						
Length of Resource within Survey Area:	Approximately 5,2	263 linear feet, mea	anders in	n and out of th	he ESB			
FWCA Required?		TBD						
Does resource provide habitat	for protected species?	Yes, Chattahoo	ochee cr	ayfish and blu	uestripe	shiner		

Key: To Be Determined (TBD), *NCDWQ Stream ID worksheet not required on perennial streams named on USGS topographic map

Impact Discussion/Avoidance and Minimization: To be determined.

Photograph of PS 9 facing upstream (east) (6/11/2020)

Resource Name:	WL 10	Wetland Type:	Riverine				
Latitude/Longitude:	33.817306°, -84.369178° HUC 10: 0313000112						
Location:	South of Garson Drive and east of Passion City Church						
Current Quality:	Forested wetland, no smell or organic sheen, impacted by roadway debris and runoff						
Existing Structures:	None						
Impact Activity:		TBD					
Impact/Area/Duration:		TBD					
Area of Resource:	0.09 acre Area of Resource within Survey Area: 0.09 acre						
FWCA Required	TBD						
Does resource provide habitat	for protected species?	N	lo				

Key: To Be Determined (TBD)

Impact Discussion/Avoidance and Minimization:

Photograph of WL 10, facing west (6/11/2020)

Photograph of WL 10, facing south (6/11/2020)

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

Project/Site	: Beltline N	1E		City/Co.: Fult	ton		Sampling	Date: 6/11/2	2020
Applicant/O						State: GA	Sampling	Point: WL 10) Wetland
Investigator		eilig & Evan Se	al	Section,	Townsh	nip, Range:			
,	hillslope, terrace, etc.	<u>'</u>				cal Relief : concave		Slope	
	_RR/MLRA P/136	Lat: <u>33</u> .	817412		Long:	-84.369368		Datum: NAD8	3
•	nit Name: <u>Udorthen</u>						lassification: Non		
	hydrologic conditions			•	Yes	,	(If no, explain in F	,	_
Are Vegeta		, or Hydrology	_	icantly disturbed?		Are "Normal Circums	•		☐ No
Are Vegeta	tion , Soil	, or Hydrology	/ 🔲 natur	ally problematic?		(If needed, explain an	iy answers in Ren	iarks.)	
SIIMMAE	OV OF FINDINGS	- Attach sito i	nan showing	sampling poi	nt loc	ations, transects,	important for	ituros oto	
SOMMAN	TO TINDINGS	- Attach Site i	nap snowing	sampling pon	111 100	ations, transects,	important lea	itures, etc.	
Hydronbyt	tic Vegetation Presen	t? Yes	☑ No □	le th	ne Sami	pled Area			
	il Present?	Yes			in a we		s 🗵 No [а	
	Hydrology Present?	Yes						_	
Remarks	.,								
HYDROL	OGY								
	drology Indicators:					Secondar	y Indicators (minir	mum of two re	auired)
	icators (minimum of c		heck all that ann	dν).		-	rface Soil Cracks		<u>.quircu</u>
	ace Water (A1)	<u> </u>		ic Plants (B14)			arsely Vegetated	` '	ace (B8)
	Water Table (A2)		•	Sulfide Odor (C1)			ainage Patterns (E		acc (DO)
	ration (A3)		, ,	nizospheres on Liv	ina Roc		ss Trim Lines (B1	,	
	er Marks (B1)			f Reduced Iron (C	-		/-Season Water T	,	
	ment Deposits (B2)			Reduction in Tille	,		ayfish Burrows (C	, ,	
	Deposits (B3)			Surface (C7)	u oolis	. ,	turation Visible on	•	ny (CQ)
	I Mat or Crust (B4)			ain in Remarks)			inted or Stressed	-	iy (Ca)
_	Deposits (B5)	_	」 Otilei (Expi	alli ili Nelliaiks)			omorphic Positior	` ,	
	dation Visible on Aeria	al Imageny (B7)					allow Aquitard (D3	, ,	
	er-Stained Leaves (B	,					crotopographic Re	,	
57 54	atic Fauna (B13)	")					C-Neutral Test (D	` '	
Field Obse	, ,					V IA	O-Nedital Test (D	3)	
	iter Present?	☐ Yes ☑	No De	epth (inches):					
Water Table				epth (inches):	2				
Saturation F				epth (inches): su		Wetland Hydrology	v Present?	☑ Yes [¬ No
	apillary fringe)	☑ 162 □	NO D	eptii (iiiciies). <u>su</u>	iiace	welland Hydrology	y Fresent:	⊍ res [_ NO
,	ecorded Data (stream	gauge monitori	ng well aerial nh	notos previous ins	nection	s) if available:			
Describe N	ecorded Data (Stream	gauge, monitori	ng well, aerial pi	iolos, previous iris	pection	s), ii avaliable.			
Domarke:	Hydrology indicators v	wore observed							
Remarks:	Hydrology indicators v	were observed.							
I									

VEGETATION (Four Strata) - Use scientific names of plants.

Sampling Point: WL 10 Wetland

			Absolute	Dominant	Indicator	Dominance Test Worksheet:
Tree Stratu	<u>um</u> (Plot size: <u>30ft radius</u>)		% Cover	Species?	Status	Number of Dominant Species:
1.	Pinus taeda		15	Υ	FAC	That Are OBL, FACW, or FAC:6(A)
2.	Betula nigra		15	Υ	FACW	Total Number of Dominant
3.	Liriodendron tulipfera		15	Υ	FAC	Species Across All Strata: 8 (B)
4.	Platanus occidentalis		10		FACW	Percent of Dominant Species
5.	Acer saccharinum		5		FACW	That Are OBL, FACW, or FAC: 75% (A/B)
6.	Acer negundo		5		FAC	 \`'/I
7.						Prevalence Index worksheet:
8.						Total % Cover of: Multiply
0.			65	= Total Cov	/er	OBL species 0 x 1 = 0
	50% of total cover:	22 5		total cover:	13	· — — — —
Canling/Ch	••••••••••	32.5	20 /0 01	iolai covei.	13	FAC species 45 x 3 = 135
	rub Stratum (Plot size: 30ft radius)		45		E 4 (C) 4 (
1.	Betula nigra		15	Y Y	FACW	FACU species 10 x 4 = 40
	Ligustrum sinense		10	Y	FACU	UPL species 15 $x 5 = 75$
	Albizia julibrissin		5		UPL	Column Totals: 115 (A) 340 (B)
4.						Prevalence Index = B/A = 3.0
5.						
6.						Hydrophytic Vegetation Indicators:
7.						☐ Rapid Test for Hydrophytic Vegetation
8.						☑ Dominance Test is > 50%
9.	_					Prevalence Index is ≤ 3.0 ¹
10.						☐ Morphological Adaptations1 (Provide supporting
			30	= Total Cov	/er	data in Remarks or on a separate sheet
	50% of total cover:	15	20% of	total cover:	6	☐ Problematic Hydrophytic Vegetation ¹ (Explain)
Herb Stratu		10	2070 01	total bover.		
	(1 lot 3/26. <u>con radius</u>)					¹ Indicators of hydric soil and wetland hydrology must
1. 2.						
						be present, unless disturbed or problematic
3.						Definitions of Four Vegetation Strata:
4.						
5.						Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or
6.						more in diameter at breast height (DBH), regardless of
7.						height.
8.]
9.						Sapling/Shrub - Woody plants, excluding vines, less
10.						than 3 in. DBH and greater than 3.28 ft (1 m) tall.
11.						
12.						Herb - All herbaceous (non-woody) plants, regardless of
			0	= Total Cov	er/	size, and woody plants less than 3.28 ft tall.
	50% of total cover:	0	20% of	total cover:	0	
Woody Vin	ne Stratum (Plot size: 30ft radius)		ı			Woody Vines - All woody vines greater than 3.28 ft in height.
1.	Pueraria montana		10	Υ	UPL	
2.	Toxicodendron radicans		5	Υ	FAC	1
3.	Smilax rotundifolia		5	Υ	FAC	
4.				•		1
5.						Hydrophytic
6.						Vegetation Yes ☑ No □
٥.			20	= Total Cov	/or	Present?
				_= Total Cov total cover:		i resent:
	50% of total cover:	10	20% of	total cover	1	

SOIL

	scription: (Describe t	o the depth	needed to documen			rm the ab	sence of indicators).	
Depth	Matrix	0/	Color (moist)	Redox %	Features Type ¹	Loc ²	Texture Re	marka
(inches) 0-5	Color (moist) 5YR 3/3	% 100	Color (moist)	%	туре	LOC	Candy alay	marks
5-16	5YR 4/2	<u>100</u> 80	5 YR 5/6			PL	Sandy clay Sandy clay	
3-10	31K 4/2	00	3 1 1 3/0			PL_	Sandy ciay	
				-	·			
¹ Type C =	Concentration, D = dep	letion, RM =	= Reduced Matrix, MS	= Masked	Sand Grains		² Location: PL = Pore Lining, M	1 = Matrix
Hydric So	il Indicators:						Indicators for Problematic H	lydric Soils³:
☐ Hist	tosol (A1)		□ Dark Surface (\$	S7)			☐ 2 cm Muck (A10) (MLR)	
	tic Epipedon (A2)		☐ Polyvalue Belo		. , .		☐ Coatal Prairie Redox (A	A16)
	ck Histic (A3)		☐ Thin Dark Surfa			8)	(MLRA 147, 148)	
-	drogen Sulfide (A4)		☐ Loamy Gleyed)		☐ Piedmont Floodplain So	oils (F19)
	atified Layers (A5)		☑ Depleted Matrix				(MLRA 136, 147)	: (TE40)
	m Muck (A10) (LRR N)	νοο (Λ11)	☐ Redox Dark Su		7)		☐ Very Shallow Dark Surf	
	oleted Below Dark Surfa ck Dark Surface (A12)	ice (ATT)	□ Depleted Dark□ Redox Depress		")		☐ Other (Explain in Rema	111/2)
	ndy Mucky Material (S1))	☐ Iron-Manganes		(F12) (I RR N	. MLRA 1	36)	
	RR N, MLRA 147, 148)	,	☐ Umbric Surface				³ Indicators of hydrophy	tic vegetation and
000000	ndy Gleyed Matrix (S4)		☐ Piedmont Floor	. , .		-	wetland hydrology mus	-
	ndy Redox (S4)		☐ Red Parent Ma				unless disturbed or pro	
	pped Matrix (S5)			(- = -)	, (, ,	шине шине и ри	
	e Layer (if observed):							
	Type:			_				
Dep	oth (inches):			=			Hydric Soil Present? Ye	es ☑ No □
Remarks:	Hydric soil indicators w	vere observ	ea.					
i								
1								
1								
i								

WETLAND DETERMINATION DATA FORM - Eastern Mountains and Piedmont

Project/Site: Applicant/Owner: Investigator(s):	Beltline NE GDOT Kayla Theilig & B	Evan Seal	City/Co.	Fulton	State: GA nip, Range:		ate: 6/8/2020 bint: WL 10 Upland
Landform: (hillslope, t		ре		_ Lo	cal Relief : concave	е	Slope (%): 1
Subregion(LRR/MLR/		Lat: <u>33.817</u>	478	Long:	-84.369428		um: NAD83
Soil Map Unit Name:						Classification: None	
Are climatic/hydrologi				☑ Yes	□ No	(If no, explain in Rer	
Are Vegetation ☐ Are Vegetation ☐		Hydrology ☐ Hydrology ☐				nstances" present? any answers in Rema	☑ Yes ☐ No
Are vegetation	, 3011 📋 , 01 1	Tydrology _	I Haturally problema	uc:	(ii fieeded, explain a	ally allswers in Neilla	iks.)
SUMMARY OF FI	NDINGS - Attac	h site mar	showing sampling	point loca	ations, transects	s, important featu	ıres, etc.
Hydrophytic Vegeta	tion Present?	Yes □	No 🗹	Is the Sam	pled Area		
Hydric Soil Present	?	Yes □	No 🗾	within a we	tland? Yo	es □ No ☑	
Wetland Hydrology	Present?	Yes 🗆	No 🗵				
Remarks							
HYDROLOGY							
Wetland Hydrology	ndicators:				Seconda	ary Indicators (minimu	ım of two required)
Primary Indicators (m		auired: checl	k all that apply).			urface Soil Cracks (B	
☐ Surface Water			True Aquatic Plants (B14	1)		parsely Vegetated Co	' .
 □ High Water Ta	` '		Hydrogen Sulfide Odor (•		rainage Patterns (B10	` '
☐ Saturation (A3			Oxidized Rhizospheres	,		loss Trim Lines (B16)	'
☐ Water Marks (B1)		Presence of Reduced Iro	on (C4)	□ D	ry-Season Water Tab	ole (C2)
☐ Sediment Dependent D	osits (B2)		Recent Iron Reduction in	Tilled Soils	(C6) 🗆 C	rayfish Burrows (C8)	
□ Drift Deposits	(B3)		Thin Much Surface (C7)		□ S	aturation Visible on A	erial Imagery (C9)
☐ Algal Mat or C	rust (B4)		Other (Explain in Remar	ks)		tunted or Stressed Pl	` '
☐ Iron Deposits (,					Geomorphic Position (D2)
	ible on Aerial Image	ery (B7)				hallow Aquitard (D3)	(/5.4)
☐ Water-Stained☐ Aquatic Fauna	` '					licrotopographic Relie AC-Neutral Test (D5)	et (D4)
Field Observations:	(613)				<u> </u>	AC-Neutral Test (D3)	
Surface Water Preser	nt? □ Y	es 🗵 No	Depth (inches)				
Water Table Present		_	. , ,				
Saturation Present?	□ Ye		. , ,		Wetland Hydrolo	av Present?] Yes ☑ No
(includes capillary frin			F ()			3,	
Describe Recorded D	ata (stream gauge,	monitoring w	vell, aerial photos, previou	s inspection	s), if available:		
	, , ,	J		·	,		
Remarks: Hydrology	indicators were no	t observed.					

VEGETATION (Four Strata) - Use scientific names of plants.

	'ATION (Four Strata) - Use scier	itific na	ames of	plants.		Sampling Point: WL 10 Upland
ree Stra	atum_ (Plot size: <u>30ft radius</u>)		Absolute	_	Indicator Status	Dominance Test Worksheet: Number of Dominant Species:
1.	Carya tomentosa		35	Y	FACU	That Are OBL, FACW, or FAC: 5 (A)
2.	Quercus nigra	•	20	Y	FAC	Total Number of Dominant
3.	Pinus taeda	•	15		FAC	Species Across All Strata: 8 (B)
4.	Juglans nigra		15		FACU	Percent of Dominant Species
5.	• • • • • • • • • • • • • • • • • • • •	•				That Are OBL, FACW, or FAC: 63% (A/B)
6.		-				 ` ′
7.		-				Prevalence Index worksheet:
8.		•				Total % Cover of: Multiply
		•	85	= Total Cov	er er	OBL species 0 x 1 = 0
	50% of total cover:	42.5	20% of	total cover:	17	FACW species 0 x 2 = 0
ling/S	Shrub Stratum (Plot size: 30ft radius)			•		FAC species 100 x 3 = 300
1.	Acer rubrum		15	Υ	FAC	FACU species 60 x 4 = 240
2.	Ligustrum sinense	-	10	Υ	FACU	UPL species 0 x 5 = 0
3.	Acer negundo	-	5		FAC	Column Totals: 160 (A) 540 (B)
4.	Quercus nigra	-	5		FAC	Prevalence Index = B/A = 3.4
5.						
6.		-				Hydrophytic Vegetation Indicators:
7.		•				☐ Rapid Test for Hydrophytic Vegetation
8.						☑ Dominance Test is > 50%
9.						□ Prevalence Index is ≤ 3.0 ¹
10.		•				☐ Morphological Adaptations1 (Provide supporting
			35	= Total Cov	/er	data in Remarks or on a separate sheet
	50% of total cover:	17.5	20% of	total cover:	7	☐ Problematic Hydrophytic Vegetation ¹ (Explain)
o Stra	atum (Plot size: <u>30ft radius</u>)			•		
1.	Microstegium vimineum		20	Υ	FAC	¹ Indicators of hydric soil and wetland hydrology must
2.	Toxicodendron radicans	•	5	Υ	FAC	be present, unless disturbed or problematic
3.		•				Definitions of Four Vegetation Strata:
4.		•				1
5.		•				Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or
6.		•				more in diameter at breast height (DBH), regardless of
7.	·	•				height.
8.		•				1 *
9.		•				Sapling/Shrub - Woody plants, excluding vines, less
10.		•				than 3 in. DBH and greater than 3.28 ft (1 m) tall.
11.		•				1
12.		•				Herb - All herbaceous (non-woody) plants, regardless of
			25	= Total Cov	er/	size, and woody plants less than 3.28 ft tall.
	50% of total cover:	12.5	20% of	total cover:	5	
dy V	/ine Stratum (Plot size: 30ft radius)			•		Woody Vines - All woody vines greater than 3.28 ft in height.
1.	Vitis rotundifolia		15	Υ	FAC	
	Double and a decision of the		10	Υ	FACU	
	Parthenocissus quinquefolia	_				
2.	Hedera helix		5		FACU	
2. 3.		•	5		FACU	
2. 3. 4.		•	5		FACU	Hydrophytic
2. 3. 4. 5.			5		FACU	Hydrophytic Vegetation Yes ☑ No □
2. 3. 4. 5. 6.			30	= Total Cov		4 * * * *

	scription: (Describe t	o the depth	needed to documen			irm the ab	sence of indicators).		
Depth	Matrix				Features	. 2	_		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-5	5YR 4/6	100					Sandy clay		
5-16	5YR 5/4	80					Sandy clay		
							· 		
Type C = 0	Concentration, D = dep	letion, RM =	Reduced Matrix, MS	= Masked :	Sand Grains	;	² Location: PL = Pore	Lining, M = Mat	rix
• •	I Indicators:	•					Indicators for Probl		
•	osol (A1)		☐ Dark Surface (S7)				10) (MLRA 147)	
	c Epipedon (A2)		□ Polyvalue Belo		(S8) (MI PA	147 148)	☐ Coatal Prairie		
	k Histic (A3)		☐ Thin Dark Surfa				(MLRA 14		
	rogen Sulfide (A4)		☐ Loamy Gleyed				·	odplain Soils (F1	Q)
	tified Layers (A5)		☐ Depleted Matri		1		(MLRA 13		3)
	n Muck (A10) (LRR N)		☐ Redox Dark Su				·	Dark Surface (Ti	=12\
	leted Below Dark Surfa	oce (A11)	☐ Depleted Dark		7)		☐ Other (Explain		12)
	k Dark Surface (A12)	10 <u>0</u> (A11)	☐ Redox Depress		')		□ Otilei (Explaii	i iii Neiliaiks)	
	dy Mucky Material (S1)	١	☐ Redox Depress		(F12) (I RP I	MIRA 1	36)		
		′						hydrophytic vege	atation and
	R N, MLRA 147, 148)		☐ Umbric Surface☐ Piedmont Floor					nyaropnytic vege logy must be pre	
	dy Gleyed Matrix (S4)						•		
	dy Redox (S4)		☐ Red Parent Ma	iteriai (FZ1)	(WLKA 12	7, 147)	uniess disturb	ed or problemati	C.
	pped Matrix (S5) Layer (if observed):						1		
Kesti ictive	Type:								
Dept	th (inches):			_			Hydric Soil Prese	nt? Yes □	No 🔽
200		•							🖫

Resource Name:	PS 11 (South Fork Peachtree Creek)	NCDWQ Score:	*	Trout Water	er?	No			
Latitude/Longitude:	33.817187°,	-84.364101°		HUC 10:	03130	000112			
Location:	East of Lakes	East of Lakeshore Dr. NE Buffered? Ye							
Bankfull Dimensions:	50 feet x 10 feet	50 feet x 10 feet Wetted Dimensions: 15 feet x 4 feet							
Substrate Composition:	Sand, Silt and Clay	Sand, Silt and Clay Flow Condition: Normal							
In-Channel Structure:		Pools and runs							
Ordinary High Water Mark Indicator(s)	Bed and banks, deposition, shelving, leaf litter disturbed or washed away								
Current Water Quality:	Water was mudd	y with no smell; in	pacted	by roadway ri	un-off				
Existing Structures:		None							
Existing Aquatic Connectivity Barriers:		None							
Impact Activity:		TBD							
Impact/Length (Area)/Duration:		TBD							
Length of Resource within Survey Area:	Approximately 63 linear feet								
FWCA Required?		TBD							
Does resource provide habitat	for protected species?	Yes, Chattahoo	ochee cr	ayfish and blu	ıestripe	shiner			

Key: To Be Determined (TBD), *NCDWQ Stream ID worksheet not required on perennial streams named on USGS topographic map

<u>Impact Discussion/Avoidance and Minimization:</u> To be determined.

Photograph of PS 11, south of PS 9, facing downstream (south) (6/11/2020)

IV. PERMIT AND MITIGATION

Any discharge of dredge or fill material into a Water of the U.S. must comply with Section 404 of the Clean Water Act. All impacts will require mitigation if stream impacts exceed 100 linear feet or wetland impacts exceed 0.10 acre, per the USACE, Savannah District's 2018 *Standard Operating Procedure for Compensatory Mitigation*. Any needed mitigation credits would be purchased from an appropriate USACE approved mitigation bank. Permit and mitigation requirements for this project will be included in the Assessment of Effects Report.

Jurisdictional Stream Impact Summary

0 411 15 41 10 1	Julisticuonal Stream Impact Summary										
Resource Name	HUC	Lat	Long	Begins at Station #	Ends at Station #	FWCA?	Impact Type	Impact Length (ft.)	Impact Area (acre)	Loss Length (ft.)	Loss Area (ac.)
PS 1	0313000112	33.807944°	-84.385958°	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
IS 2	0313000112	33.810316°	-84.382671°	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
IS 4	0313000112	33.810856°	-84.381665°	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
IS 5	0313000112	33.811266°	-84.380972°	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
IS 7	0313000112	33.812341°	-84.379454°	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
PS 9	0313000112	33.812341°	-84.379454°	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
PS 11	0313000112	33.817187°	-84.364101°	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
						Total To	emporary Impacts	TBD	TBD		
	Total Permanent Loss Impacts									TBD	TBD
	Total Permitted Impacts TBD TBD										

Key: To Be Determined (TBD)

Jurisdictional Wetland, Open Water, Ditch, and Canal Impact Summary

Resource Name	HUC	Lat	Long	Begins at Station #	Ends at Station #	FWCA?	Impact Type	Temporary Impact Area (acre)	Permanent Impact Area (acre)
WL 3	0313000112	33.810927°	-84.381932°	TBD	TBD	TBD	TBD	TBD	TBD
WL 6	0313000112	33.811595°	-84.380534°	TBD	TBD	TBD	TBD	TBD	TBD
WL 8	0313000112	33.813381°	-84.379303°	TBD	TBD	TBD	TBD	TBD	TBD
WL 10	0313000112	33.817306°	-84.369178°	TBD	TBD	TBD	TBD	TBD	TBD
							Total Impacts	TBD	TBD

Key: To Be Determined (TBD)

Permit and Mitigation Summary

Expected Clean Water Act Section 404 Permit:	TBD
Expected Stream Mitigation Credits (2018):	TBD
Expected Stream Mitigation Credits (Grandfathered):	TBD
Expected Wetland Mitigation Credits (2018):	TBD
Expected Wetland Mitigation Credits (Grandfathered):	TBD

Key: To Be Determined (TBD)

V. STATE PROTECTED RESOURCES

A. State Threatened, Endangered, Rare and Unusual Species

The Georgia Endangered Wildlife Act prohibits the capture, killing, or selling of protected species and protects the habitat of these species on public lands. Georgia's Wildflower Preservation Act of 1973 provides for designation of and protection of plant species that are rare, unusual, or in danger of extinction. State protected species that have known occurrences within 3 miles of the project area or within the HUC 10 watershed(s) are considered in the report. The following sources were used to compile a list of protected species potentially occurring within the survey area: GNAHRGIS Ecology module (Appendix V). The following state protected species were listed in the GNAHRGIS letter from GADNR: bay-star vine, bluestripe shiner, Chattahoochee crayfish, and peregrine falcon (*Falco peregrinus*).

Common Name, Scientific Name	Status	Predicted Within Project Area?	Species Description (including range)	Description of Preferred Habitat	Habitat or Species Present?	Effect Determination
Bay star-vine, Schisandra glabra	Т	Yes, multiple historic occurrences including one on-site record, See Appendix V.A.	bumpy bark that twines up	Moist, deciduous hardwood forests, often with beech (Fagus grandifolia), usually on lower slopes, stream terraces, and floodplains	Habitat: Yes EO within action area: Yes Species: TBD	TBD

Key: Threatened (T), Element Occurrence (EO) as reported in GNAHRGIS, To Be Determined (TBD)

Habitat Assessment/Effect Analysis:

The moist deciduous hardwood forests along the floodplains of PS 1, PS 7, PS 9, and PS 11 would provide suitable habitat for bay star-vine. A plant survey will be conducted during the recommended survey months to look for individuals; survey results and effect determination for bay star-vine will be discussed in the upcoming Assessment of Effects Report. There is a record of bay star-vine on site.

Avoidance and Minimization Measures:

Photo of suitable bay star-vine habitat in floodplain of Peachtree Creek (6/8/2020)

Common Name, Scientific Name	Status	Predicted Within Project Area?	Species Description (including range)	Description of Preferred Habitat	Habitat or Species Present?	Effect Determination
Bluestripe shiner, Cyprinella callitaenia	R	Yes, 3.8 miles W of site in Nancy Creek	Small fish with seven to eight anal fin rays and a dusky olive back color with silvery sides; Found in Apalachicola River drainage	Mainstream reaches of rivers and large streams in riffles and runs with rubble or sand substrates	Habitat: Yes EO within action area: No Species: Yes*	TBD

Key: Rare (R), Element Occurrence (EO) as reported in GNAHRGIS, To Be Determined (TBD), Presence Assumed (*)

Habitat Assessment/Effect Analysis:

PS 7, PS 9 and PS 11 are large streams with riffles and runs with rubble or sand substrates. These streams would provide suitable habitat for bluestripe shiner. An aquatic species survey will not be conducted for the bluestripe shiner; presence of this species will be assumed. Effect determination for bluestripe shiner will be discussed in the upcoming Assessment of Effects Report.

Avoidance and Minimization Measures:

Photo of suitable bluestripe shiner habitat in PS 9 (6/11/2020)

Common Name, Scientific Name	Status	Predicted Within Project Area?	Species Description (including range)	Description of Preferred Habitat	Habitat or Species Present?	Effect Determination
Chattahoochee crayfish, Cambarus howardi	Т	Yes, 1.9 miles SE of site in Peachtree Creek and Tributaries in HUC 8 - 03130001	Crayfish with a bronze dorsal surface and bluish-green coloration on its claws, carapace, and abdomen; Found in the Chattahoochee River system	Clear, free-flowing waters, often in riffles in a range of stream sizes including tributary streams to mainstem rivers	Habitat: Yes EO within action area: No Species: Yes*	TBD

Key: Threatened (T), Element Occurrence (EO) as reported in GNAHRGIS, To Be Determined (TBD), Presence assumed (*)

Habitat Assessment/Effect Analysis:

PS 1, PS 7, PS 9, and PS 11 are clear, free-flowing waters. These streams would provide suitable habitat for Chattahoochee crayfish. GADNR occurrence records for Chattahoochee crayfish within the HUC 10 are less than five years old; therefore, presence of Chattahoochee crayfish has been assumed based upon the GDOT Aquatic Survey decision tree. Presence of the Chattahoochee crayfish, and effect determination, will be discussed in the upcoming Assessment of Effects Report.

Avoidance and Minimization Measures:

Photo of suitable Chattahoochee crayfish habitat in PS 9 (6/11/2020)

Common Name, Scientific Name	Status	Predicted Within Project Area?	Species Description (including range)	Description of Preferred Habitat	Habitat or Species Present?	Effect Determination
Peregrine falcon, Falco peregrinus	R	Yes, 2.8 miles S of site	Medium sized bird with long pointed wings, tail is long and narrow with alternating light and dark bands; Found in North Georgia/Atlanta	Nest on inaccessible cliff edges or buildings	Habitat: No EO within action area: No Species: No	TBD

Key: Rare (R), Element Occurrence (EO) as reported in GNAHRGIS, To Be Determined (TBD)

Habitat Assessment/Effect Analysis:

The survey consists of existing ROW, riparian corridor, mixed deciduous forest, parkland and commercial habitat. Within the commercial habitat, buildings are not higher than two stories. There are no inaccessible cliff edges or tall buildings within the survey area. Therefore, there is no suitable habitat for the peregrine falcon within the survey area.

Avoidance and Minimization Measures:

B. Bats

All bats are protected under Georgia state law (Official Code of Georgia § 27-1-28), and some species have additional protections under the federal Endangered Species Act of 1973. Bridges and culverts are often potential bat roosting locations and forested areas can serve as roosting and foraging habitats for bat species. Signs of bat roosts include visual, audible and olfactory identification, presence of guano, or staining from guano or body oils. A survey for potential roosting and foraging habitat was conducted throughout the project corridor.

State Protected Bats Summary

State 11 oteeted Bats Summary	
Survey date/bridge inspection date (if different):	6/8/2020; 6/11/2020; 1/16/2022
Are roosting structures present within survey area?	Yes Structure ID 121-0111-0 Structure ID 121-0670-0
Was suitable roosting or foraging habitat identified within survey area?	Roosting: Yes Foraging: Yes
Was evidence of bat roosting identified within survey area?	No
If "yes", describe location of bat roost(s):	N/A
Were bats identified within the survey area?	No
Protective measures:	TBD

Key: To Be Determined (TBD), Not Applicable (N/A)

During the initial survey (6/8/2020 and 6/11/2020) railroad bridges were not surveyed (Structure IDs 121-5135-0, 121-5396-0, 121-5211-0, 121-0487-0), as construction will not impact these bridges. During the Additional Area Survey (1/16/2022) Structure ID 121-0488-0 was not surveyed. This bridge crosses over I-85 and the underdeck and bents were inaccessible and unsafe to survey.

Habitat Assessment:

No visible sign of bats, guano, or other indicators that may suggest the presence of bats were observed on the bridge (Structure IDs 121-0111-0 and 121-0670-0). The mixed hardwood-pine forest habitat type would provide foraging and roosting habitat for state protected bats. However, no bats were observed during these surveys.

Avoidance and Minimization Measures:

^{*}Reference Appendix V B for Bats in Bridges Data forms.

View underneath Structure ID 121-0111-0, over Peachtree Creek (6/11/2020)

View underneath Structure ID 121-0670-0, under I-85 along Atlanta BeltLine (1/16/2022)

C. State Waters

State Waters are defined by the Official Code of Georgia § 12-7-1 and protected by the Georgia Erosion and Sedimentation Control Act of 1975. All Jurisdictional Waters of the U.S. are also state waters and are discussed in Section III.H. Additional state waters are described below. A site visit with a representative from the Georgia EPD was conducted on 9/13/2021, to determine the buffered status of selected features within the survey area. A State Water Determination letter was received from EPD on 9/14/2021 (Appendix V.C).

State Waters Summary

Resource Name:	Location:	Description:	
Non-buffered State Water (NBSW) A	North of PS 9, and south of Peachtree Hills Avenue NE;	Stormwater erosional gulley	
	adjacent to parking lot		

See Appendix II G for Figures 6 and 7: Federal and State Waters Map(s) (Topo and Aerial)

D. State Mandated Buffers

In compliance with the National Pollutant Discharge Elimination System (NPDES) permit under Section 402 of the Clean Water Act, any encroachment within the designated 25-foot or 50-foot buffer of a state water will be described, and the need for a variance will be indicated.

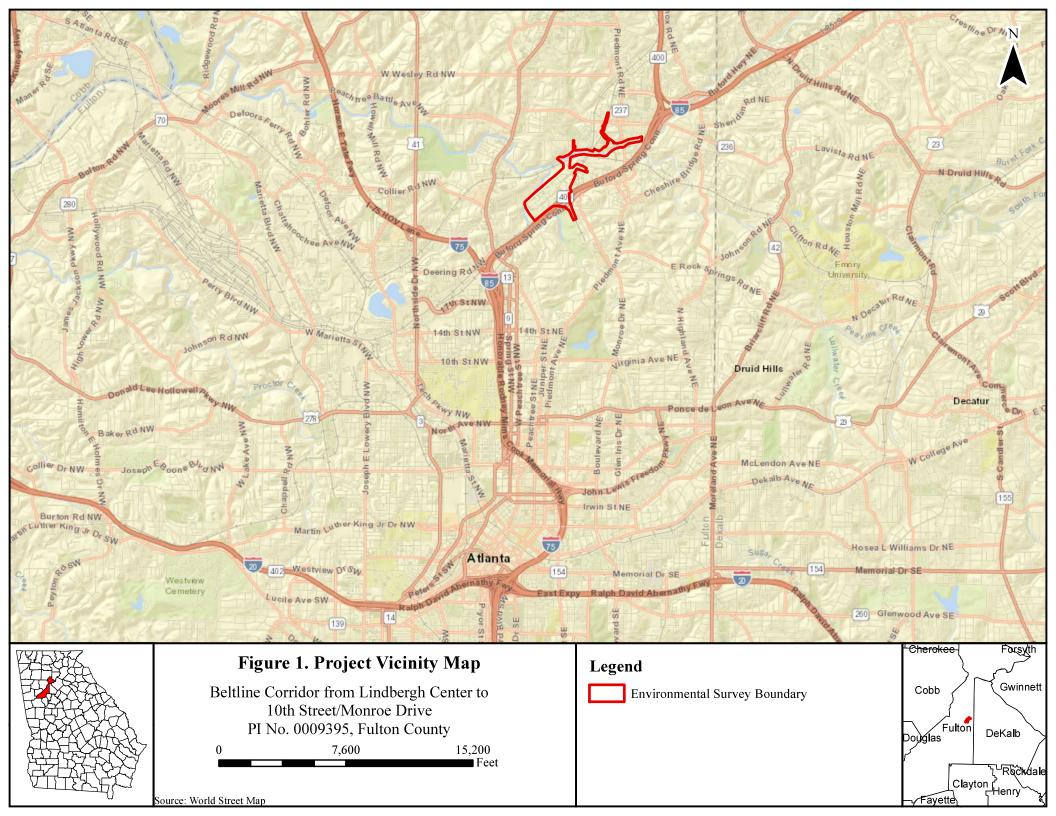
State Mandated Buffers Summary

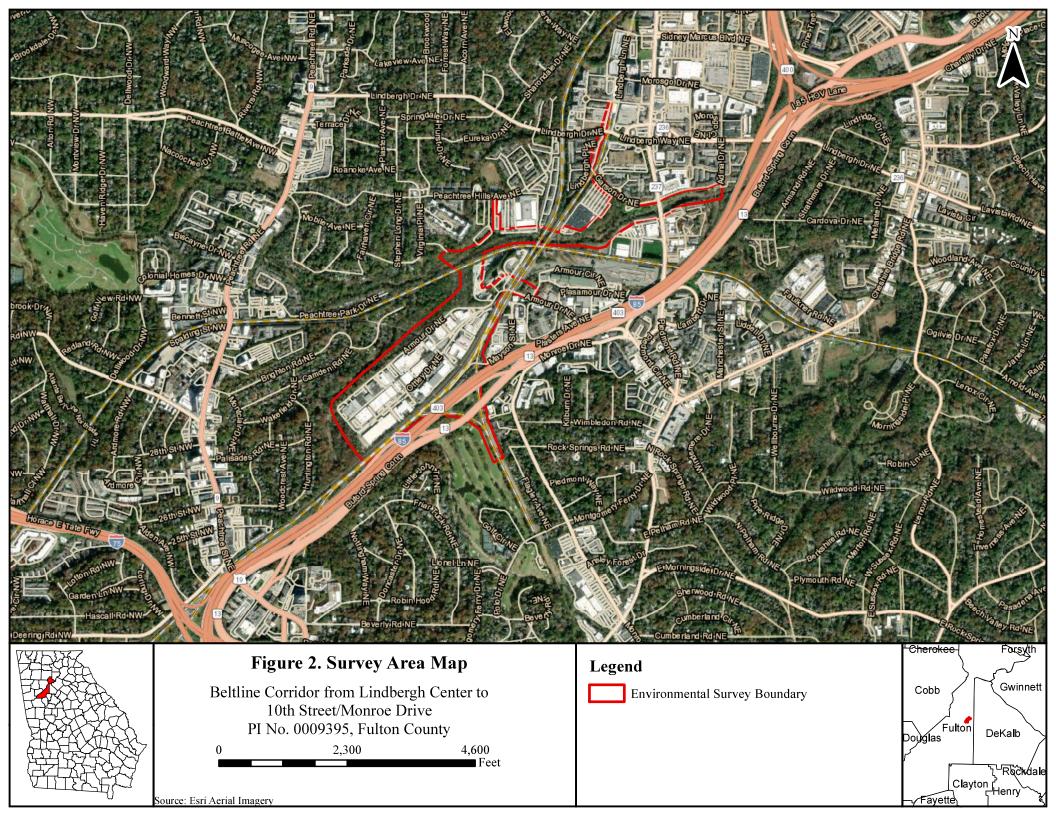
Resource Name	EPD- Regulated Buffer Size	Buffer Dimensions	Dominant Species	Buffer Impact	Exempt Impacts	Non-Exempt Impacts	BV Required
PS 1 (Clear Creek) Buffer	25 ft.	>25 ft. on both banks	Loblolly pine, black walnut, tulip poplar, red maple, Japanese honeysuckle, English ivy, and Chinese privet. Trees are 10 – 30 years old.	TBD	TBD	TBD	TBD
IS 2 Buffer	25 ft.	>25 ft. on both banks	Loblolly pine, black walnut, tulip poplar, red maple, Japanese honeysuckle, English ivy, and Chinese privet. Trees are 10 – 30 years old.	TBD	TBD	TBD	TBD
IS 4 Buffer	25 ft.	>25 ft. on both banks	Loblolly pine, black walnut, tulip poplar, red maple, Japanese honeysuckle, English ivy, and Chinese privet. Trees are 10 – 30 years old.	TBD	TBD	TBD	TBD
IS 5 Buffer	25 ft.	>25 ft. on both banks	Loblolly pine, black walnut, tulip poplar, red maple, Japanese honeysuckle, English ivy, and Chinese privet. Trees are 10 – 30 years old.	TBD	TBD	TBD	TBD
IS 7 Buffer	25 ft.	>25 ft. on both banks	Loblolly pine, black walnut, tulip poplar, red maple, Japanese honeysuckle, English ivy, and Chinese privet. Trees are 10 – 30 years old.	TBD	TBD	TBD	TBD

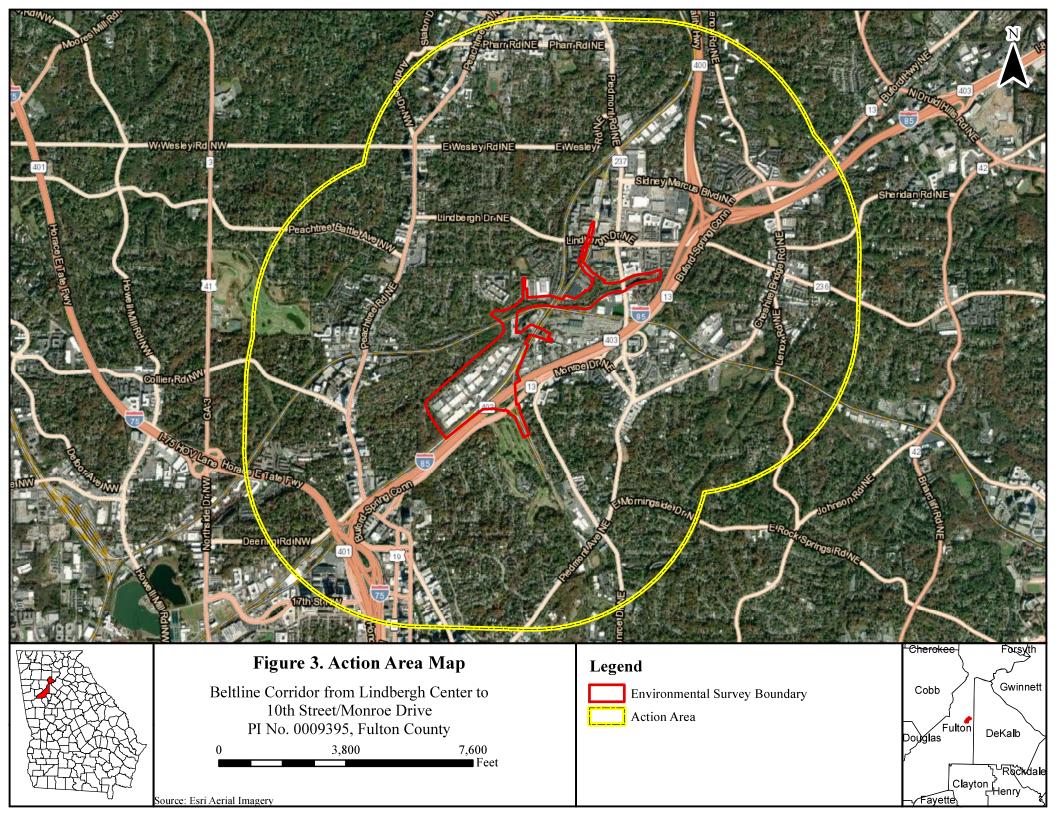
Resource Name	EPD- Regulated Buffer Size	Buffer Dimensions	Dominant Species	Buffer Impact	Exempt Impacts	Non-Exempt Impacts	BV Required
PS 9 (Peachtree Creek) Buffer	25 ft.	>25 ft. on both banks	Water oak, silver maple, box elder, sweetgum, tulip poplar, red maple, American sycamore, mockernut hickory, mimosa, Chinese privet, kudzu, Virginia creeper, muscadine, Chinese wisteria, English ivy, poison ivy, Japanese stiltgrass, spotted touch-me-not, sensitive fern, and Asiatic dayflower. Trees are 10 – 50 years old.	TBD	TBD	TBD	TBD
PS 11 (South Fork Peachtree Creek) Buffer	25 ft.	>25 ft. on both banks	Water oak, silver maple, box elder, sweetgum, tulip poplar, red maple, American sycamore, mockernut hickory, mimosa, Chinese privet, kudzu, Virginia creeper, muscadine, Chinese wisteria, English ivy, poison ivy, Japanese stiltgrass, spotted touch-me-not, sensitive fern, and Asiatic dayflower. Trees are 10 – 50 years old.	TBD	TBD	TBD	TBD

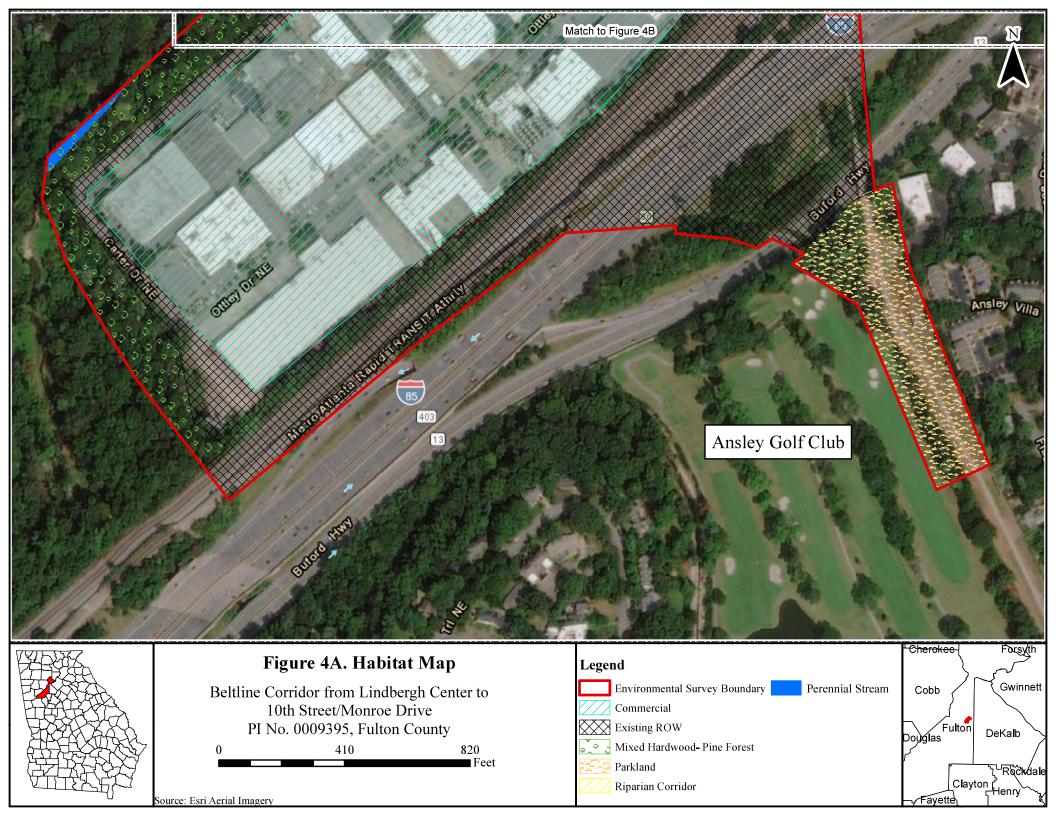
Key: To be determined (TBD)

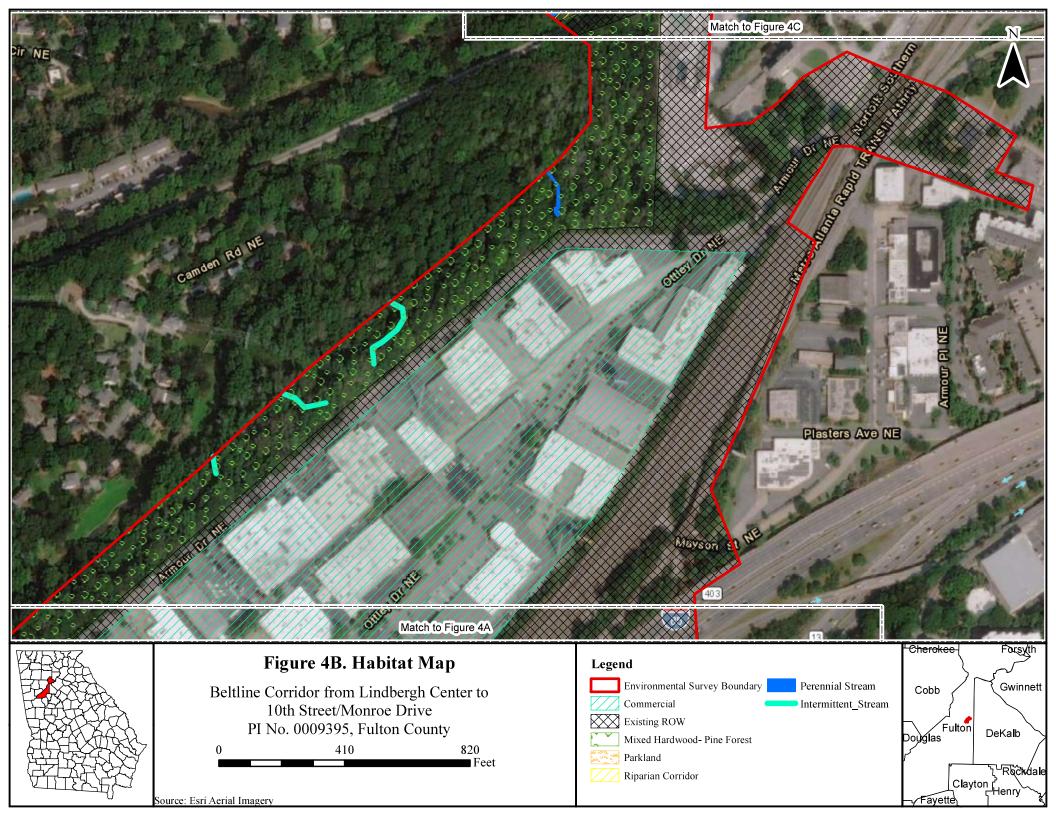
Effect Analysis:

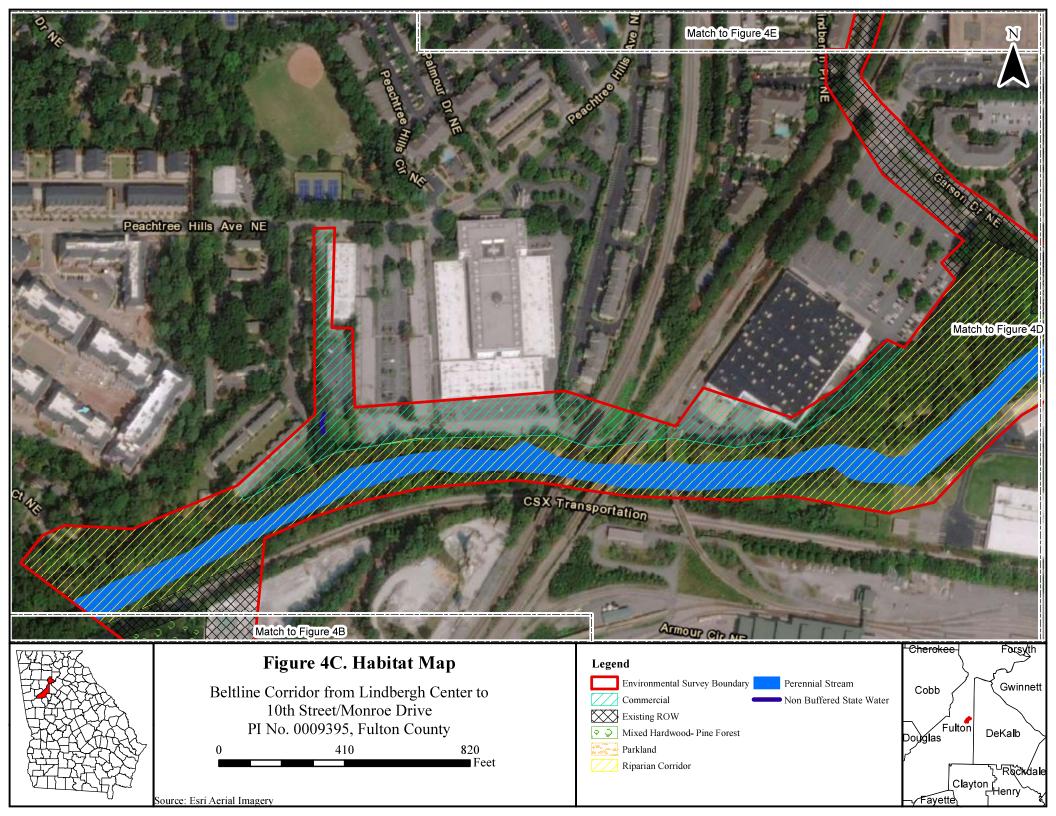

To be determined.

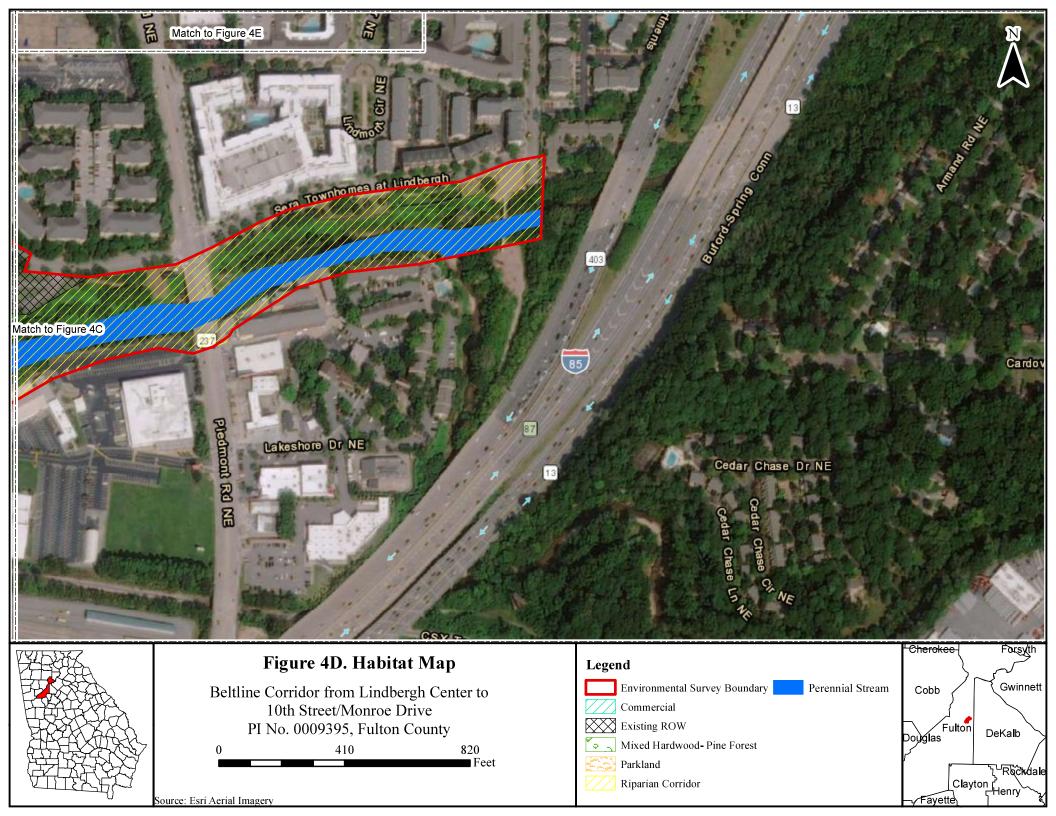

Avoidance and Minimization Measures:

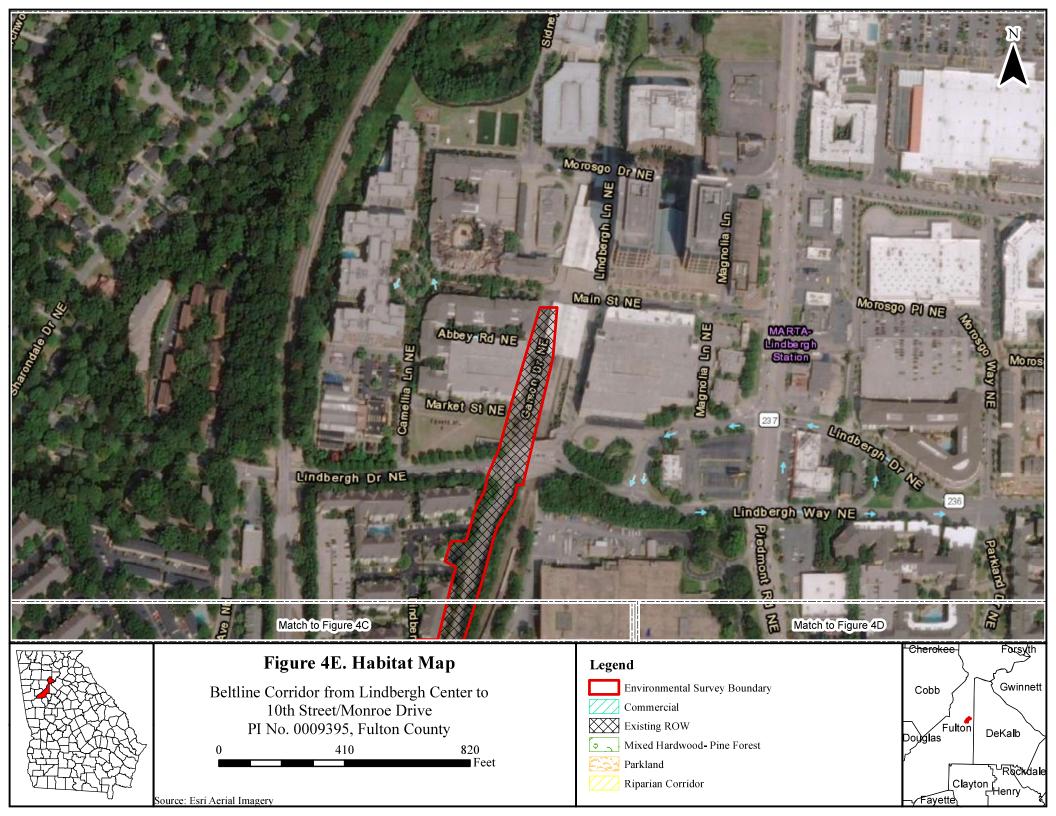

VI.	Appendices
VI.	Appendices

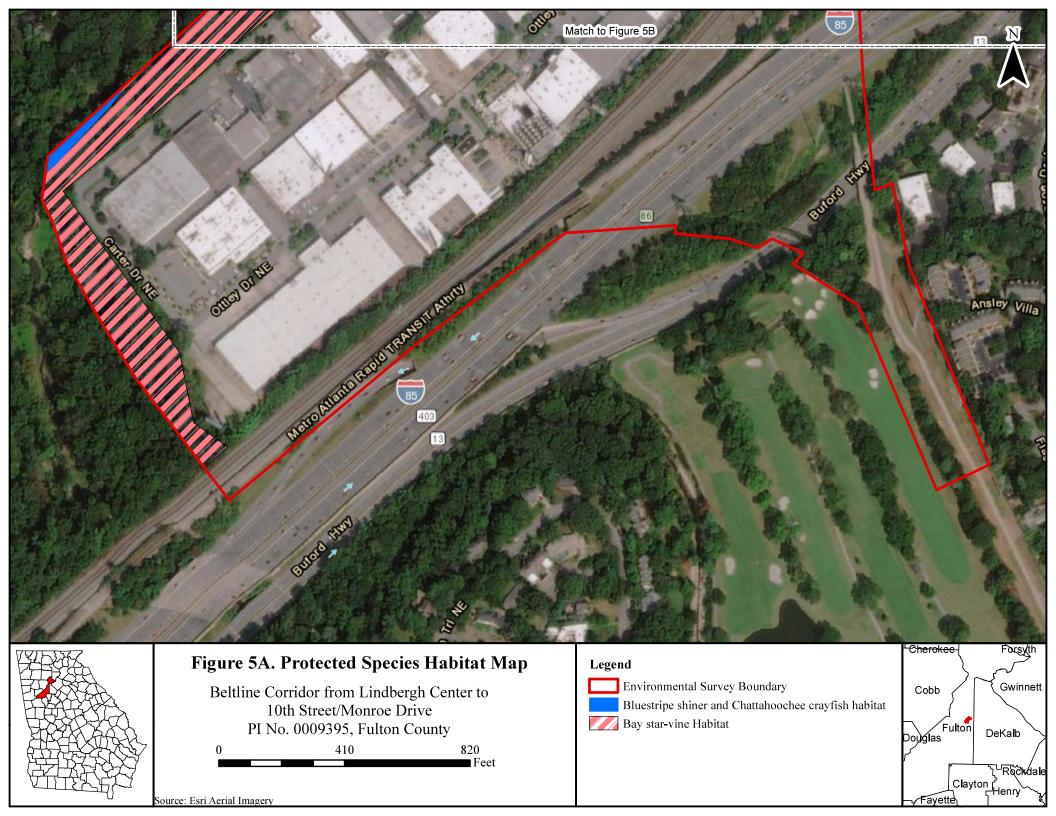

Appendix II: Project Overview

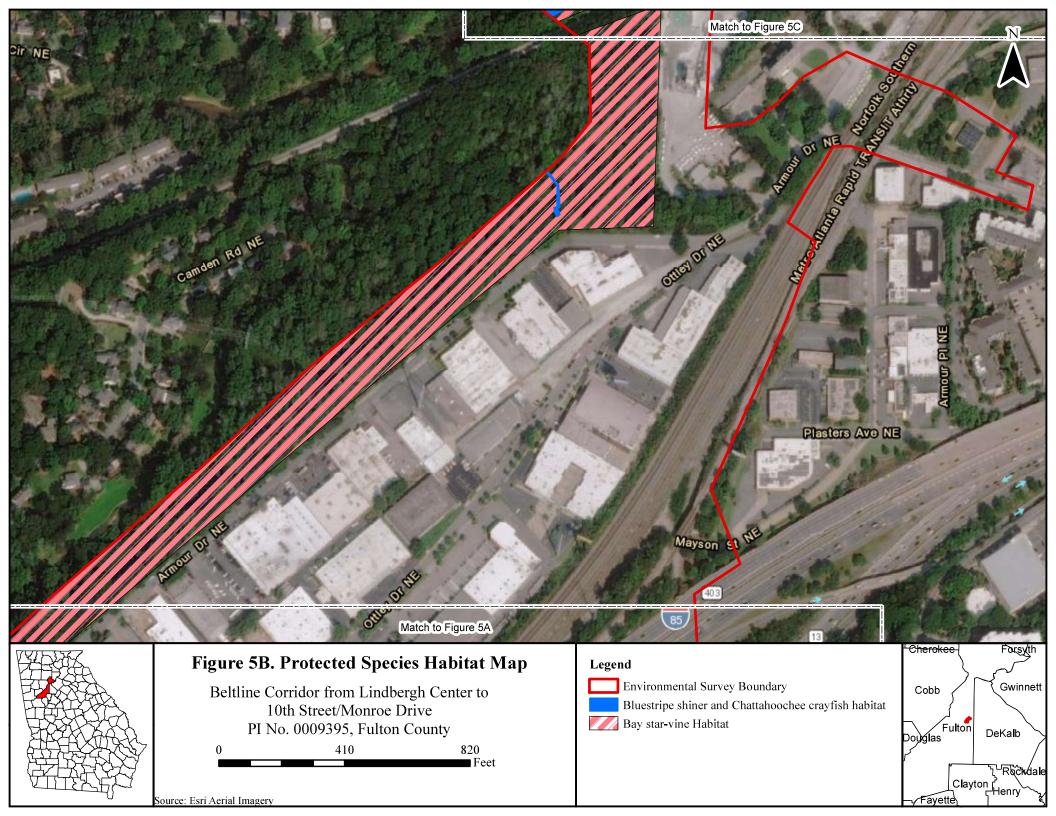

GDOT PI No. 0009395 Fulton County

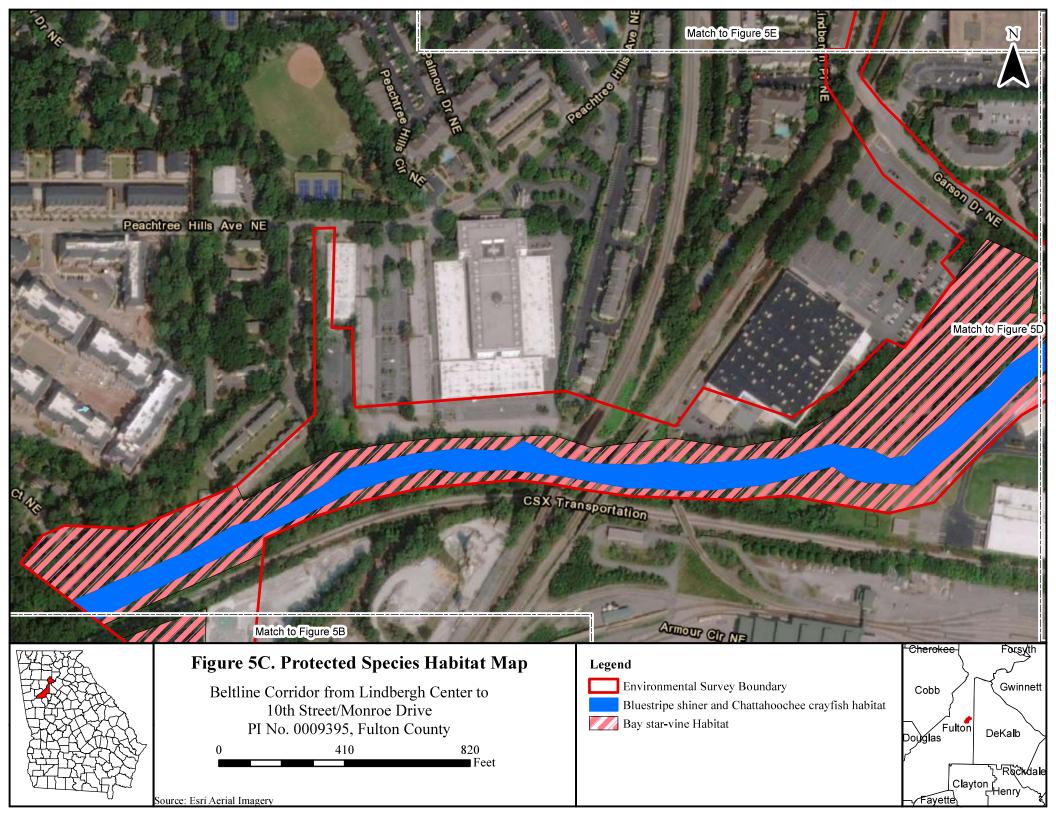


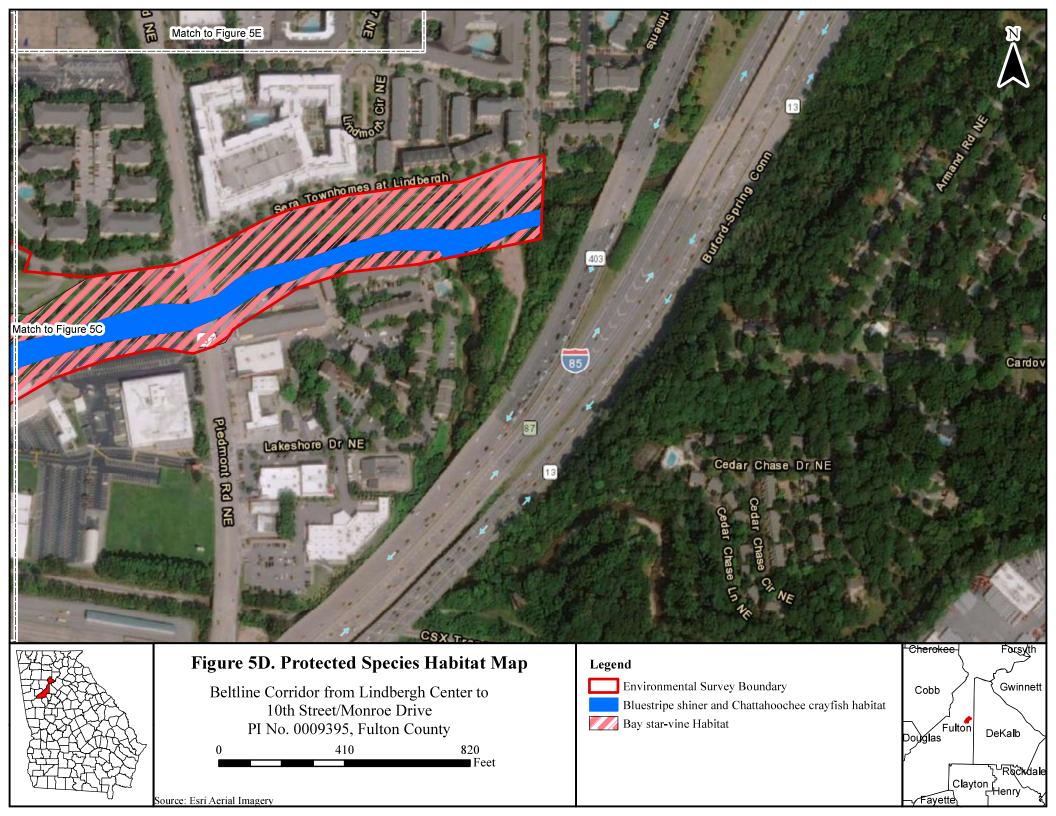


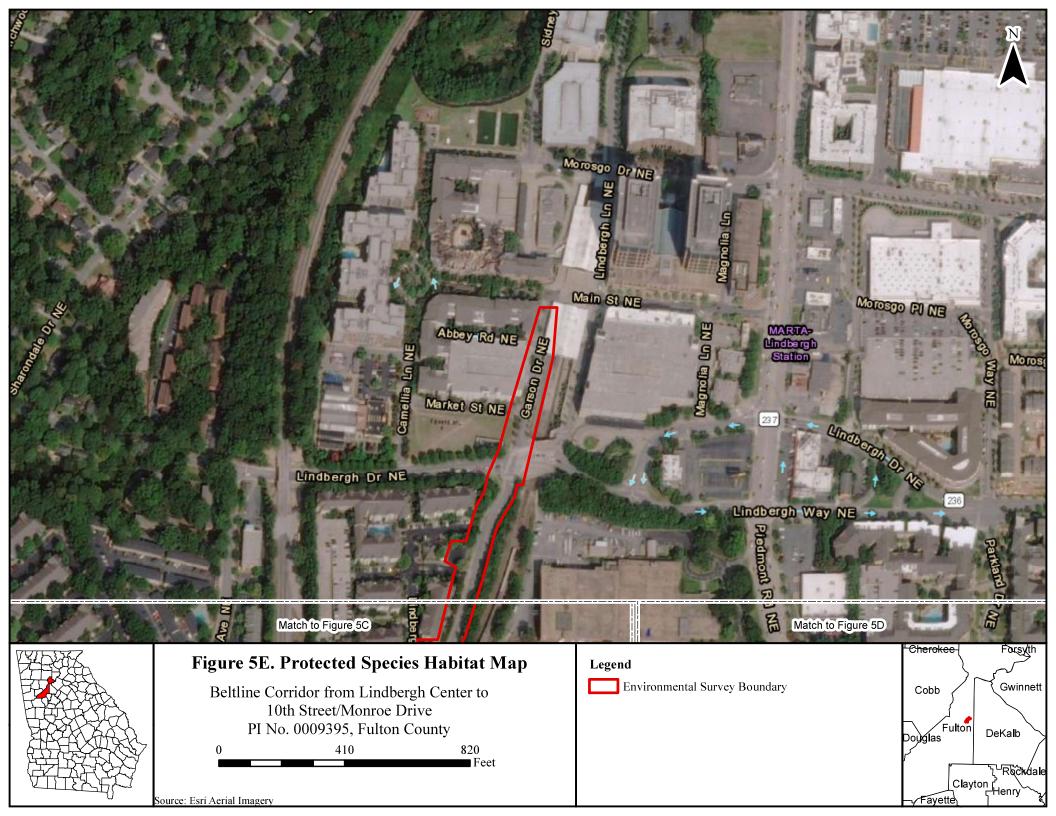


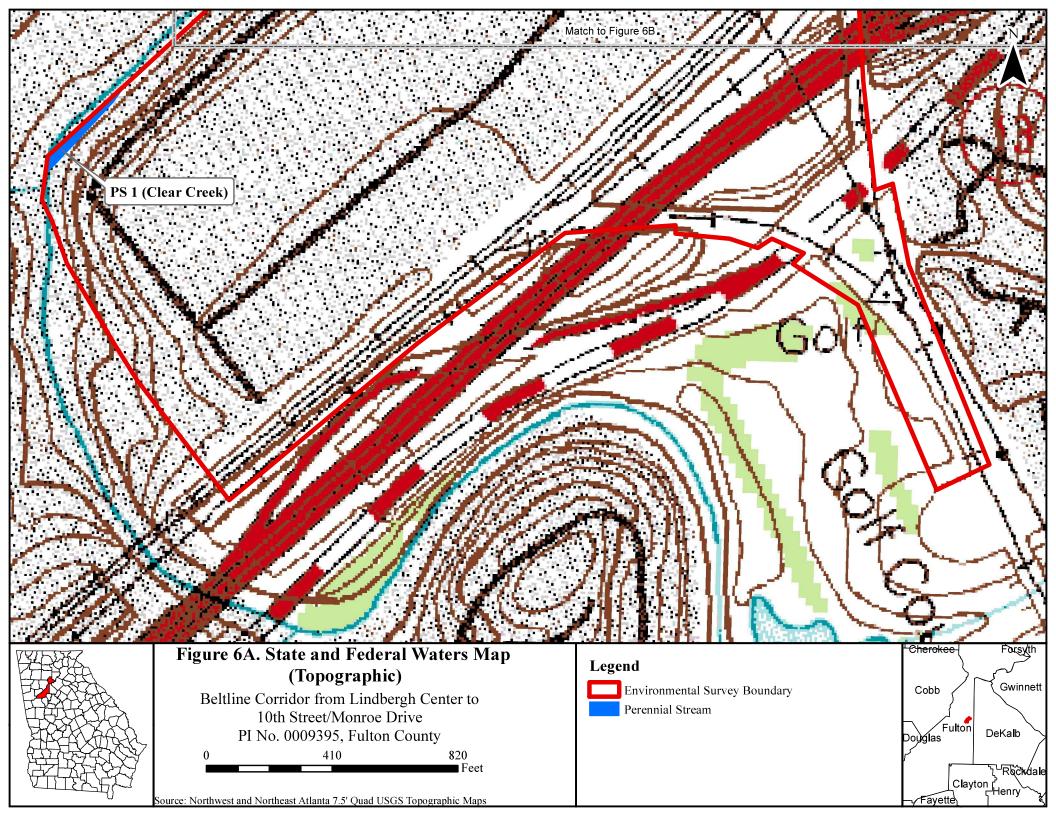


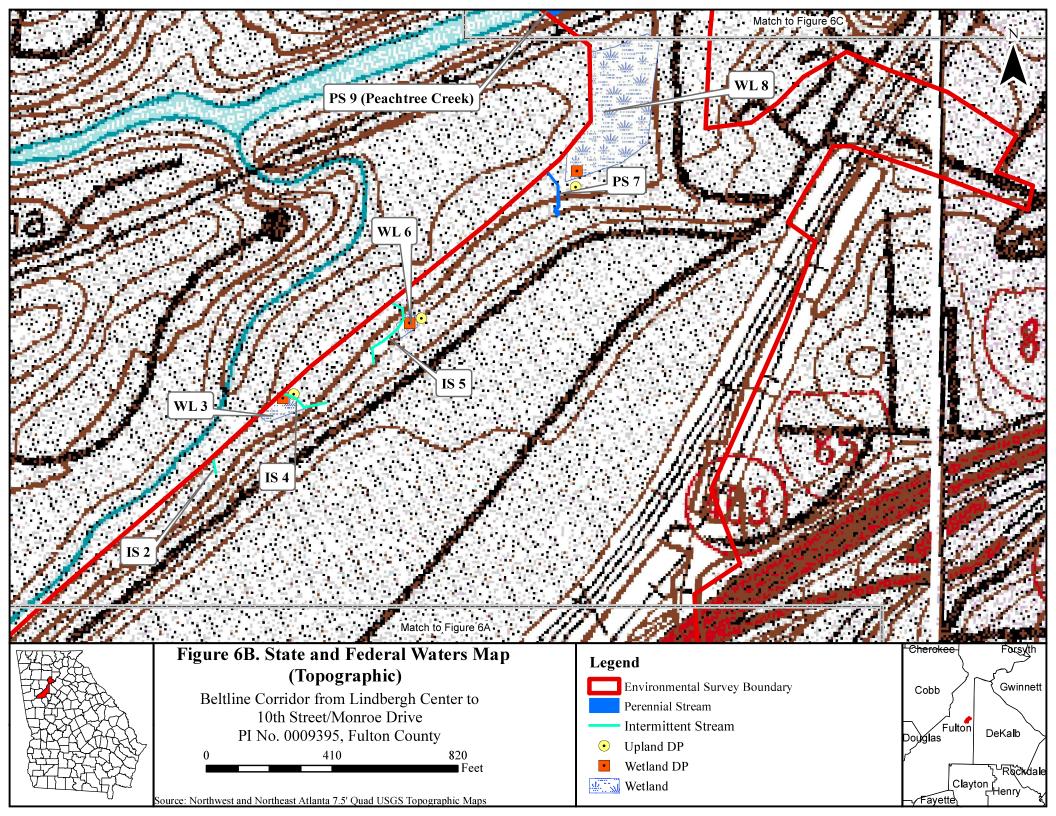


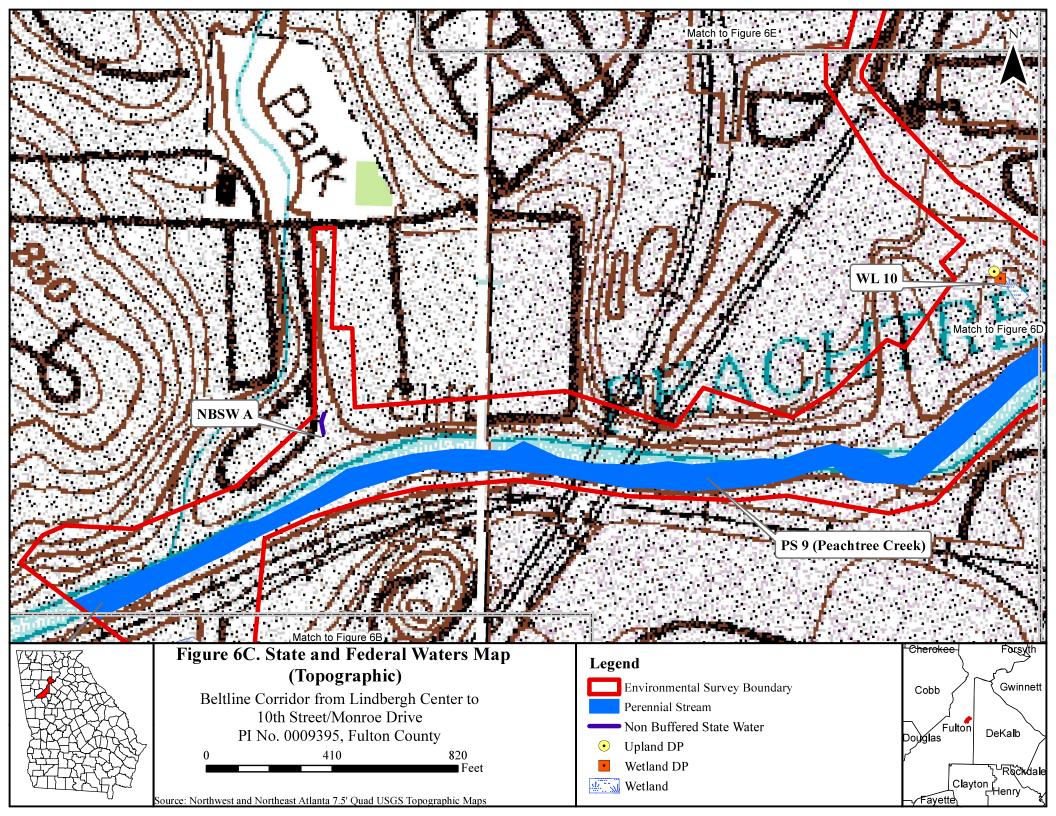


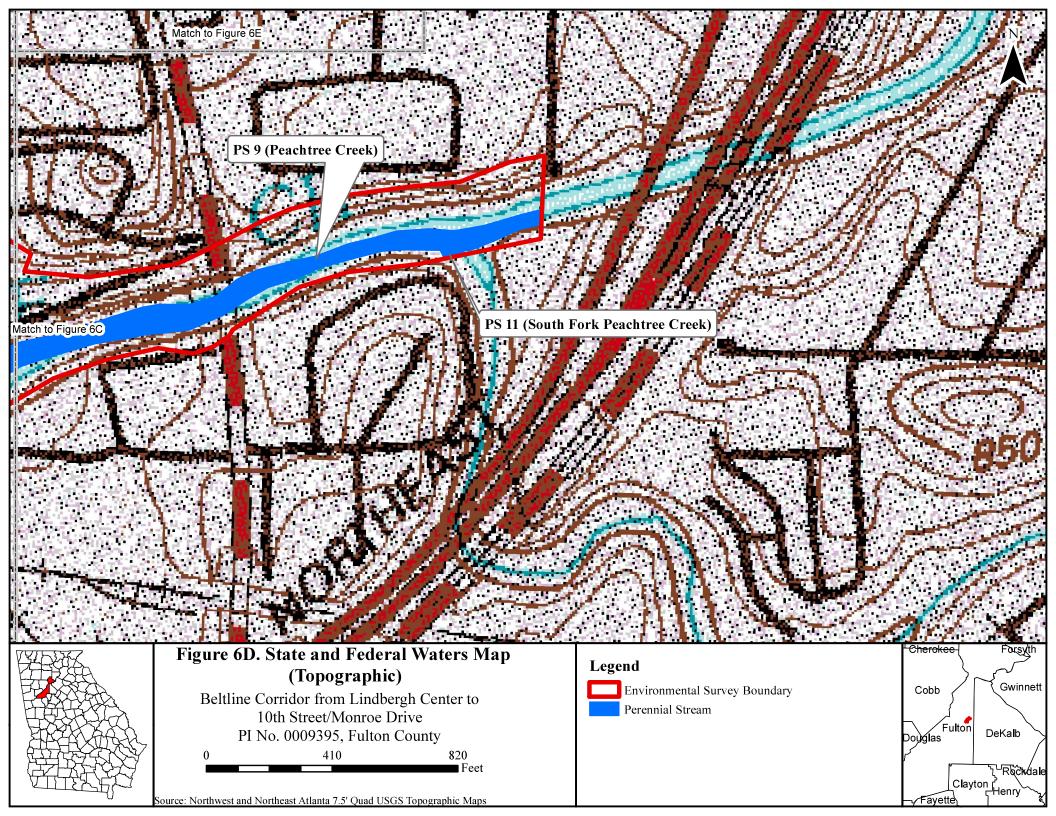


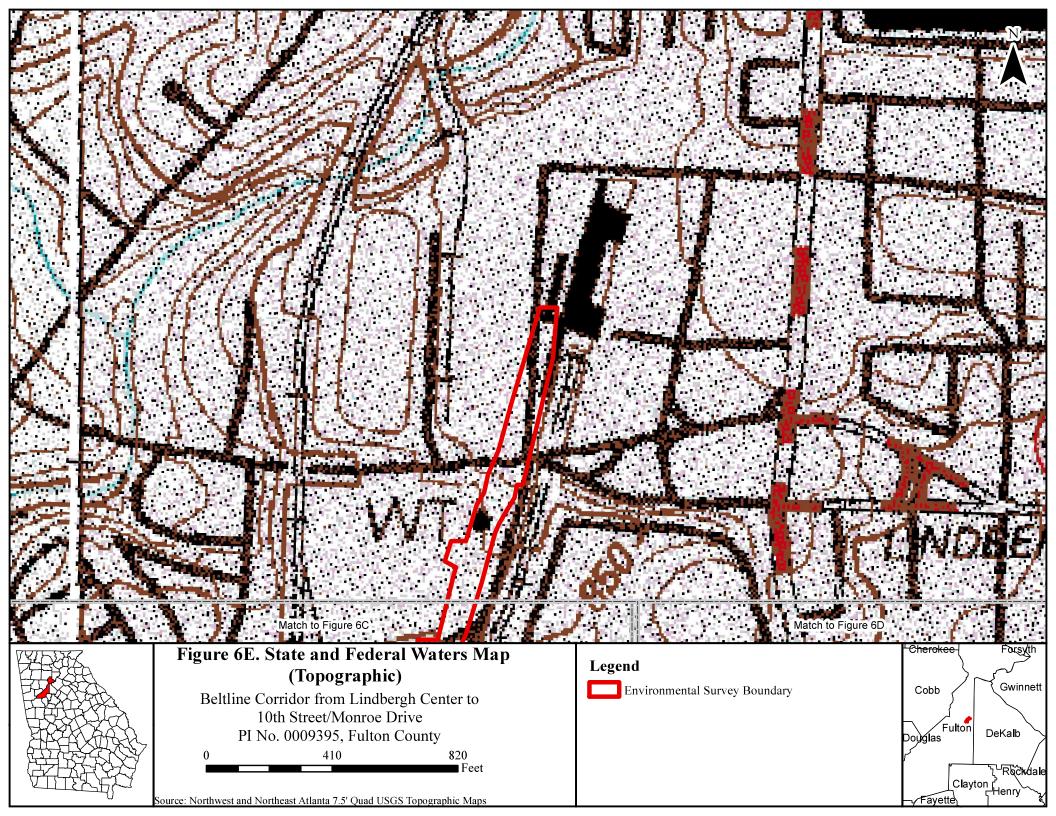


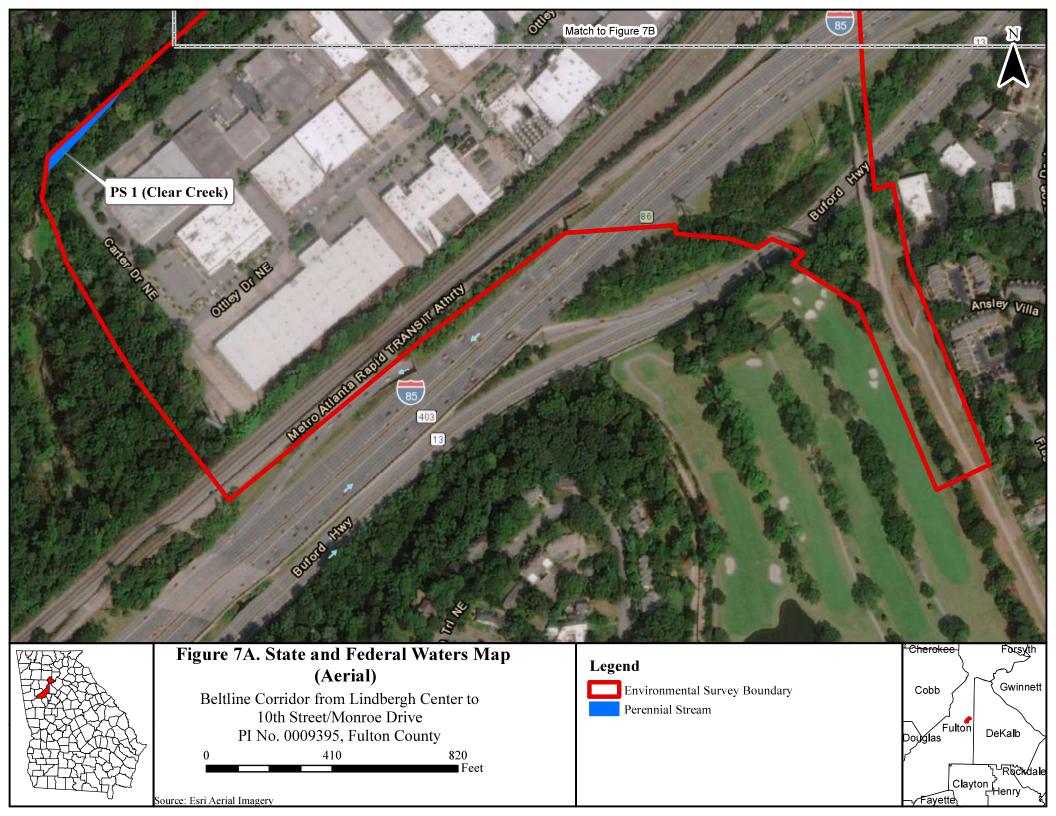


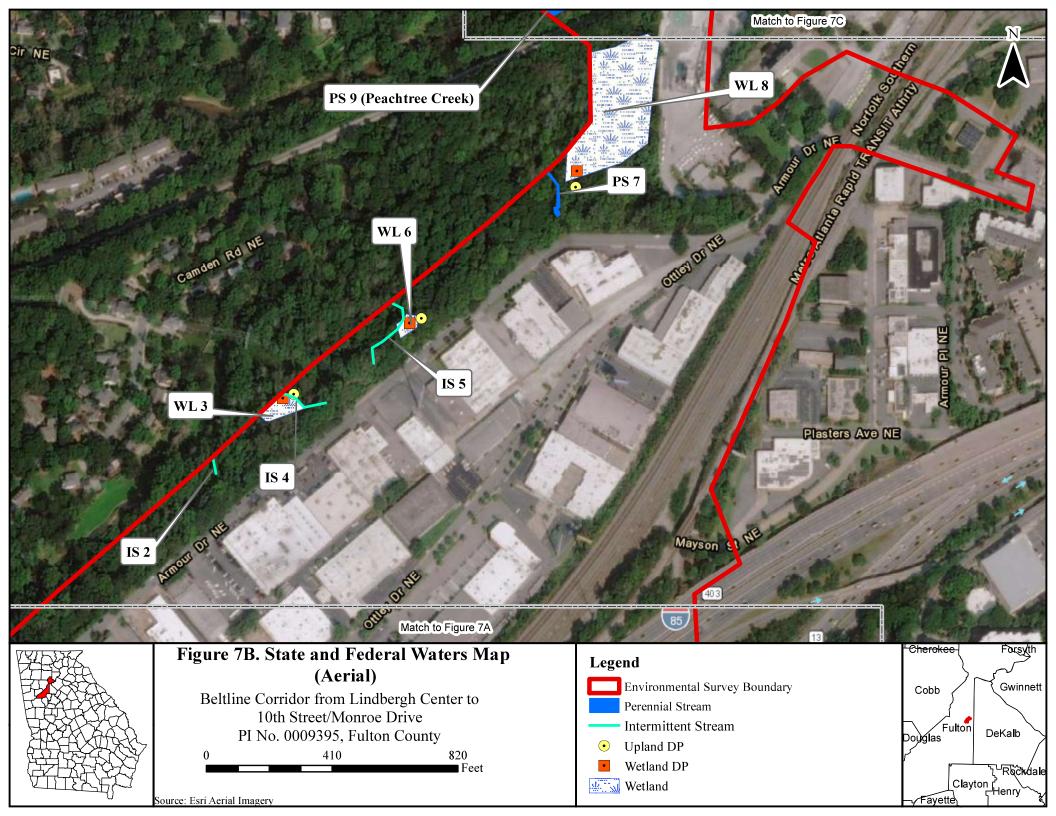


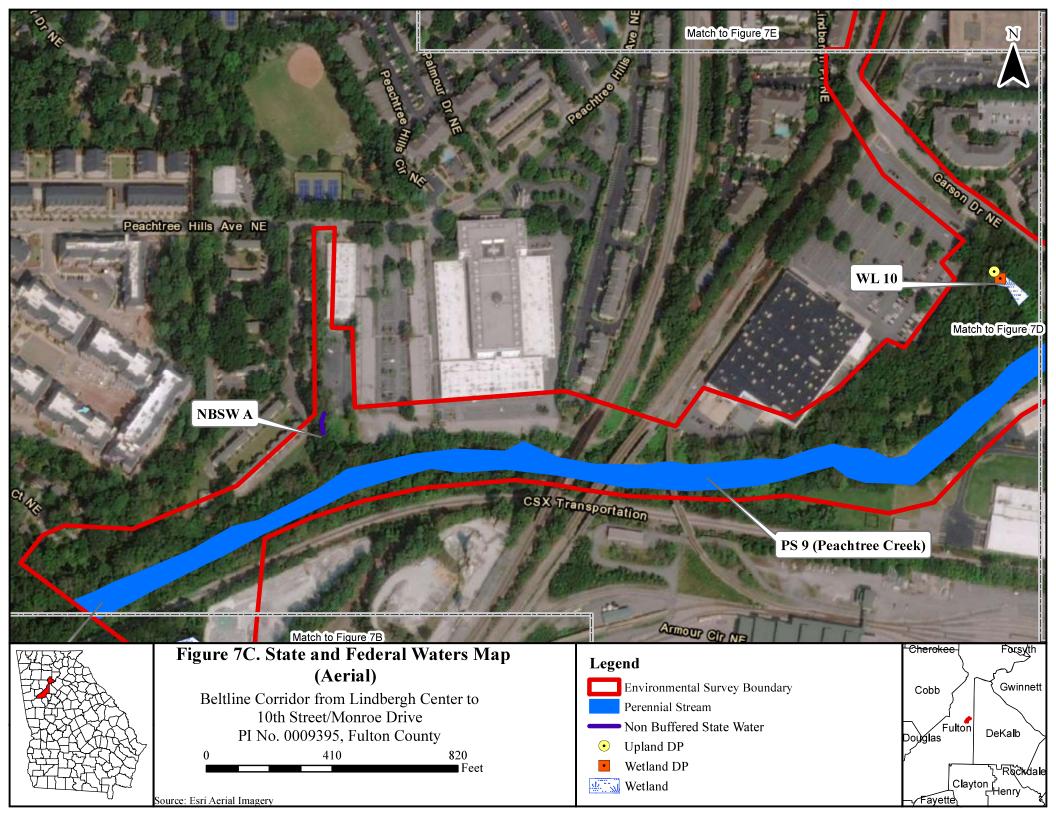


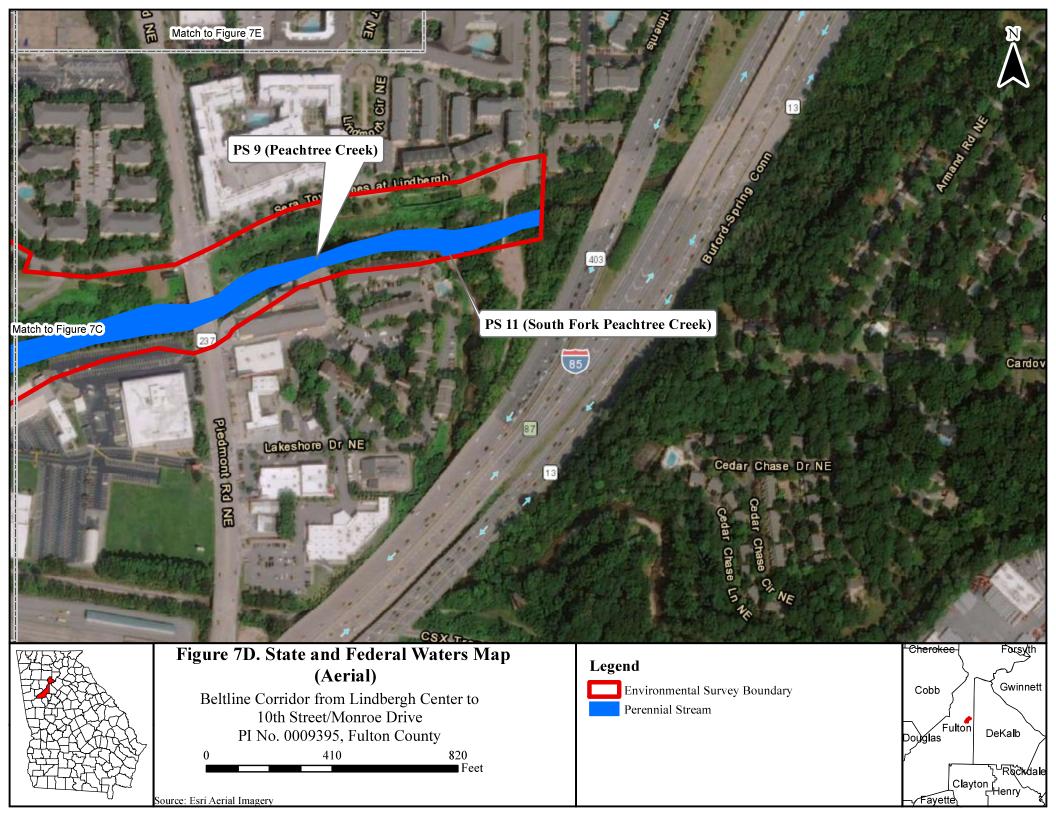


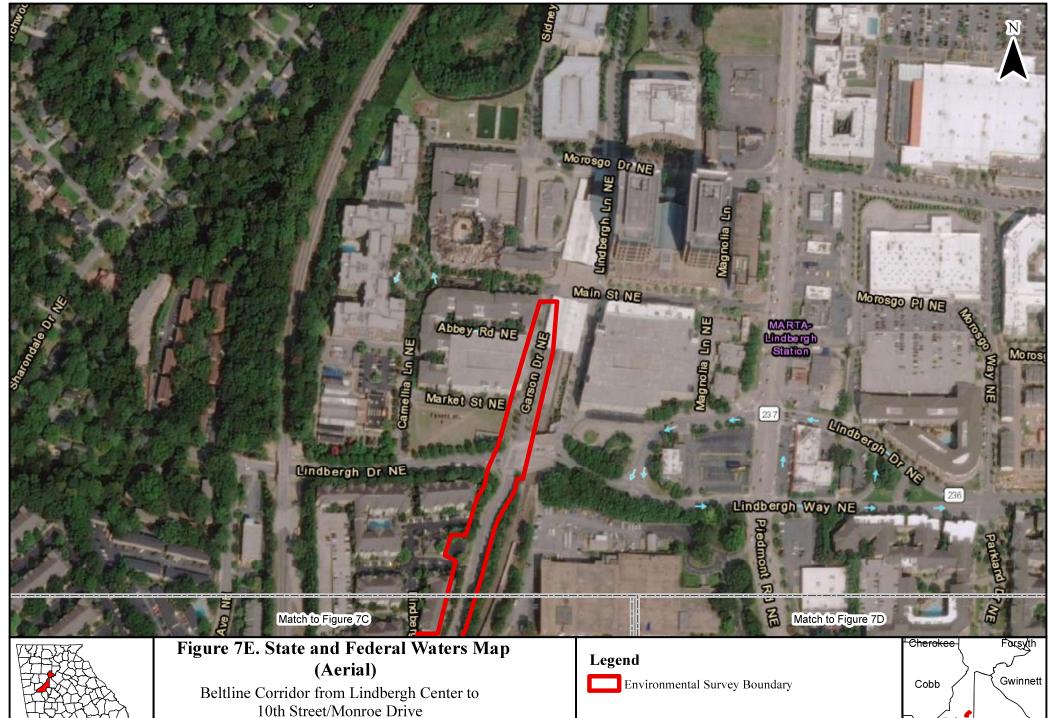


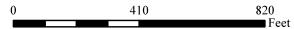


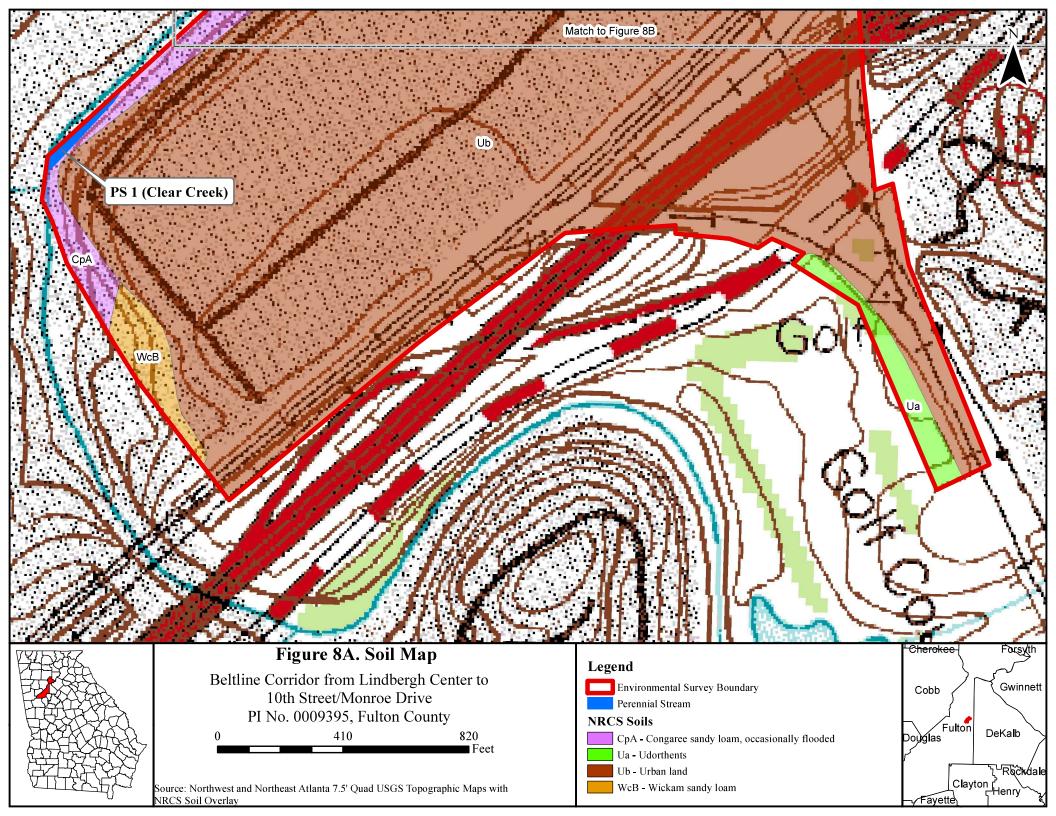


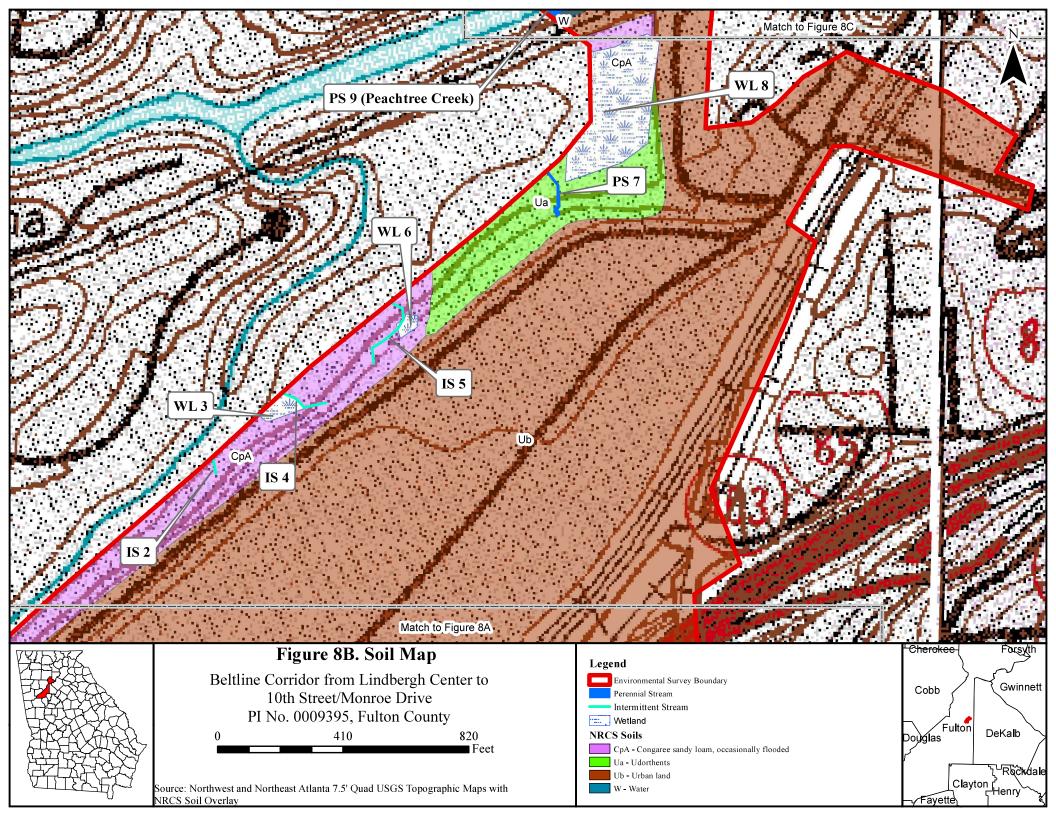


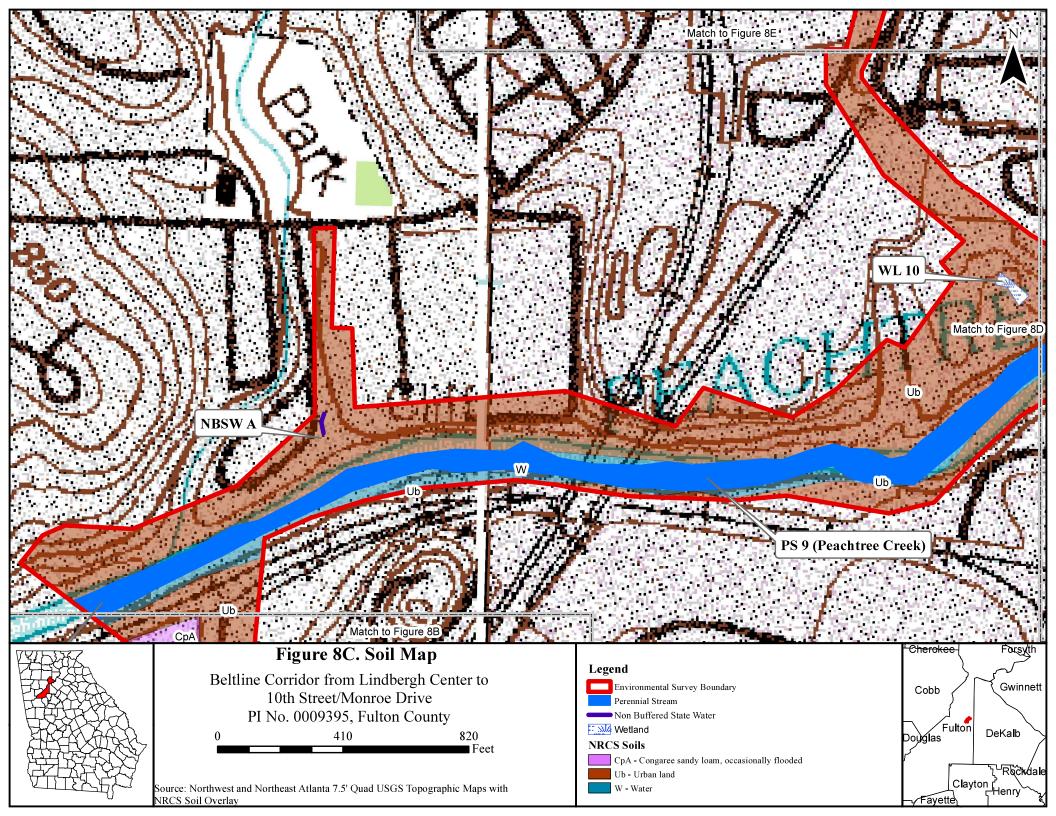


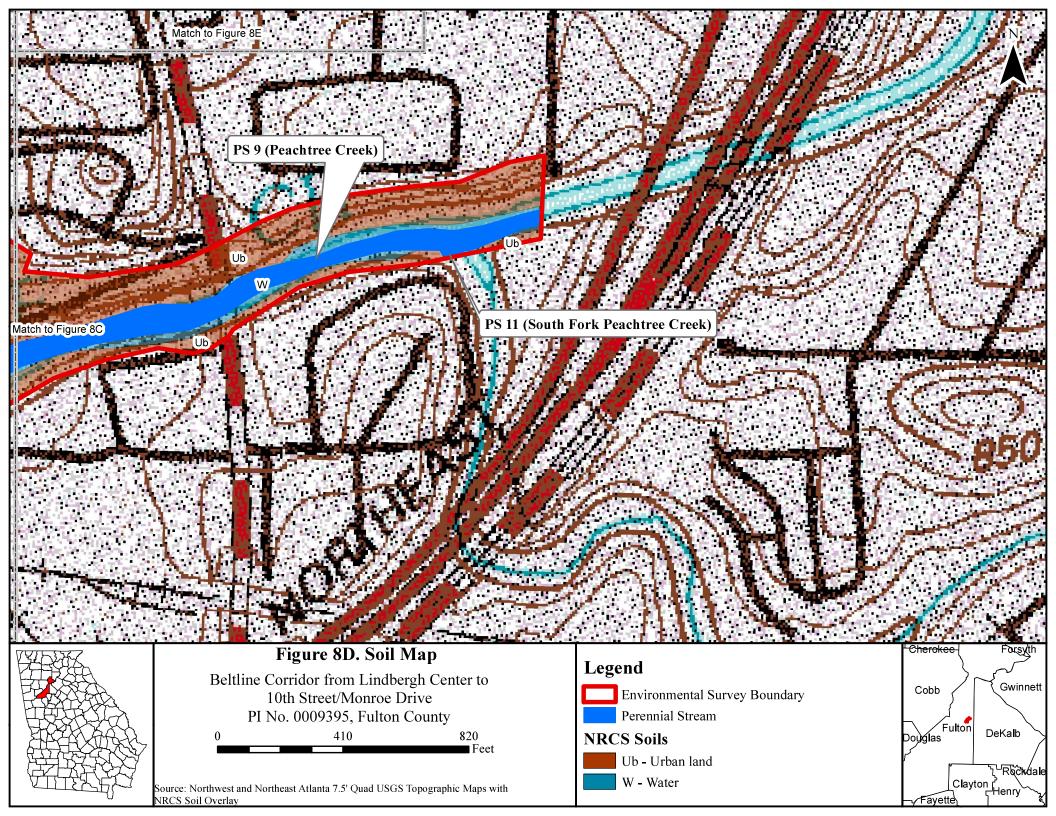


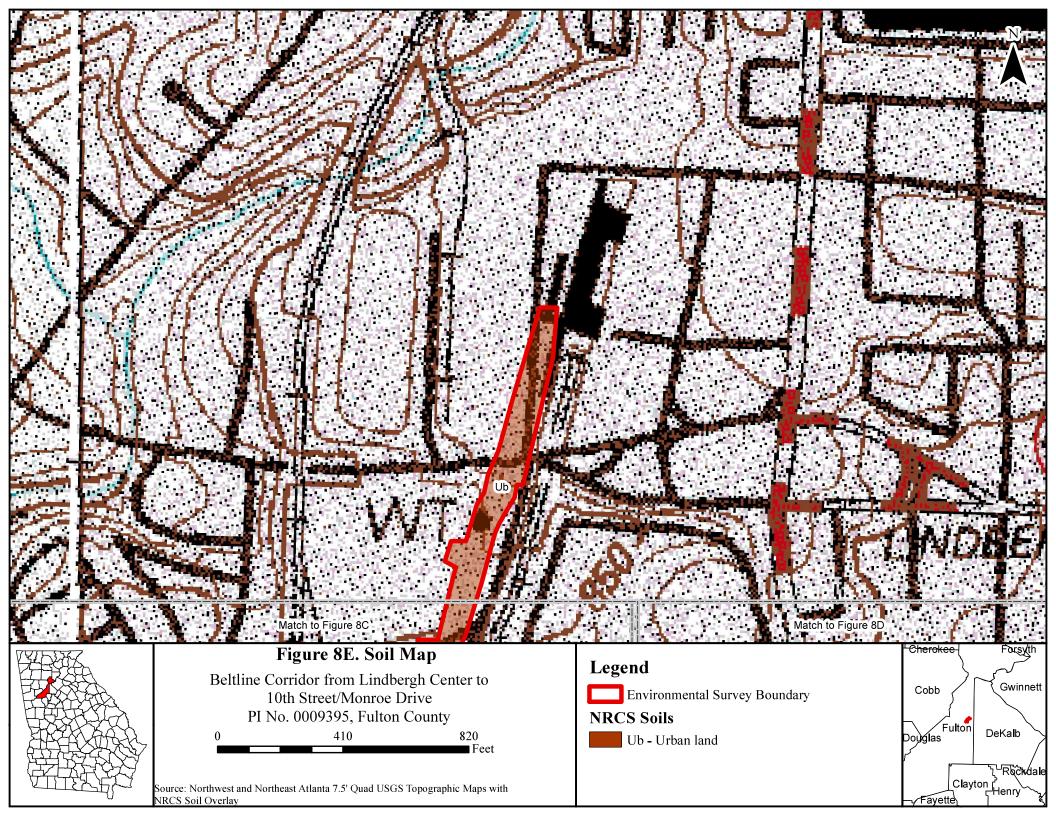





10th Street/Monroe Drive PI No. 0009395, Fulton County




Source: Esri Aerial Imagery



Habitat Use Photographs

Photograph 1. Commercial Habitat, facing west on Ottley Drive NE (1/16/2022)

Photograph 2. Existing ROW Habitat, facing west on Peachtree Hills Avenue NE (1/16/2022)

Photograph 3. Riparian Corridor Habitat, facing west, north of PS 9 (1/16/2022)

Photograph 4. Mixed Hardwood-Pine Habitat, facing east, south of PS 9 (1/16/2022)

Photograph 4. Parkland Habitat, along border (1/16/2022)

Appendix III: Federally Protected Resources

GDOT PI No. 0009395 Fulton County

Appendix III B: Federally Threatened, Endangered, Candidate, and Proposed Species

GDOT PI No. 0009395 Fulton County

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Georgia Ecological Services Field Office 355 East Hancock Avenue Room 320 Athens, GA 30601 Phone: (706) 613-9493 Fax: (706) 613-6059

In Reply Refer To: January 31, 2022

Project Code: 2022-0000751 Project Name: 0016606

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

Thank you for your recent request for information on federally listed species and important wildlife habitats that may occur in your project area. The U.S. Fish and Wildlife Service (Service) has responsibility for certain species of wildlife under the Endangered Species Act (ESA) of 1973 as amended (16 USC 1531 et seq.), the Migratory Bird Treaty Act (MBTA) as amended (16 USC 701-715), and the Bald and Golden Eagle Protection Act (BGEPA) as amended (16 USC 668-668c). We are providing the following guidance to assist you in determining which federally imperiled species may or may not occur within your project area and to recommend some conservation measures that can be included in your project design if you determine those species or designated critical habitat may be affected by your proposed project.

FEDERALLY-LISTED SPECIES AND DESIGNATED CRITICAL HABITAT

Attached is a list of endangered, threatened, and proposed species that may occur in your project area. Your project area may not necessarily include all or any of these species. Under the ESA, it is the responsibility of the Federal action agency or its designated representative to determine if a proposed action "may affect" endangered, threatened, or proposed species, or designated critical habitat, and if so, to consult with the Service further. Similarly, it is the responsibility of the Federal action agency or project proponent, not the Service, to make "no effect" determinations. If you determine that your proposed action will have "no effect" on threatened or endangered species or their respective critical habitat, you do not need to seek concurrence with the Service. Nevertheless, it is a violation of Federal law to harm or harass any federally-listed threatened or endangered fish or wildlife species without the appropriate permit.

If you determine that your proposed action may affect federally listed species, please consult with the Service. Through the consultation process, we will analyze information contained in a

biological assessment or equivalent document that you provide. If your proposed action is associated with Federal funding or permitting, consultation will occur with the Federal agency under section 7(a)(2) of the ESA. Otherwise, an incidental take permit pursuant to section 10(a) (1)(B) of the ESA (also known as a Habitat Conservation Plan) may be necessary to exempt harm or harass federally listed threatened or endangered fish or wildlife species. For more information regarding formal consultation and HCPs, please see the Service's Consultation Handbook and Habitat Conservation Plans at www.fws.gov/endangered/esa-library/index.html#consultations.

Action Area. The scope of federally listed species compliance not only includes direct effects, but also any indirect effects of project activities (e.g., equipment staging areas, offsite borrow material areas, or utility relocations). The action area is the spatial extent of an action's direct and indirect modifications to the land, water, or air (50 CFR 402.02). Large projects may have effects to land, water, or air outside the immediate footprint of the project, and these areas should be included as part of the action area. Effects to land, water, or air outside of a project footprint could include things like lighting, dust, smoke, and noise. To obtain a complete list of species, the action area should be uploaded or drawn in IPaC rather than just the project footprint.

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if

Attachment(s):

- Official Species List
- Migratory Birds

Official Species List

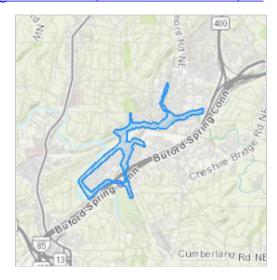
This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Georgia Ecological Services Field Office 355 East Hancock Avenue Room 320 Athens, GA 30601 (706) 613-9493

Project Summary

Project Code: 2022-0000751


Event Code: None Project Name: 0016606

Project Type: Recreation - New Construction

Project Description: Atlanta BeltLine corridor from Lindbergh to 10th St.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@33.81349905,-84.37560931016412,14z

Counties: Fulton County, Georgia

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Insects

NAME

Monarch Butterfly Danaus plexippus

Candidate

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9743

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

0313000112

Peachtree Creek

HUC 8 Watershed: Upper Chattahoochee

Counties:

Dekalb, Fulton, Gwinnett

Major Waterbodies (in GA):

Nancy Creek, South Fork Peachtree Creek, North Fork Peachtree Creek, Peachtree Creek, Burnt Fork Creek

COBB 0313000111 COBB 0

Federal Listed Species:

(historic, known occurrence, or likely to occur in the watershed)

E - Endangered, T - Threatened, C - Candidate, CCA - Candidate Conservation species, PE - Proposed Endangered, PT - Proposed Threatened, Pet - Petitioned, R - Rare, U - Uncommon, SC - Species of Concern.

American Burying Beetle (Nicrophorus americanus) US: E

Historical Occurrence; No habitat assessment is required, this species is currently considered extirpated from Georgia.

Rusty Patched Bumblebee (Bombus affinis) US: E; GA: E

Historical; No habitat assessment is required, this species is currently considered extirpated from Georgia.

Dwarf (Michaux's) Sumac (Rhus michauxii) US: E; GA: E

Potential Range (county); Please consult with GDNR for survey efforts.

<u>Federal Candidate, Candidate Conservation, or Petitioned Species:</u>

(likely or known to occur in the watershed)

Georgia Aster (Symphyotrichum georgianum) US: CCA; GA: T

Occurrence; Survey period: flowering early Sep - early Nov. Use of a nearby reference site to more accurately determine local flowering period is recommended.

State Listed or Other At-risk Species:

(likely or known to occur in the watershed)

Chattahoochee Crayfish (Cambarus howardi) GA: T

Occurrence; Please consult with GDNR for survey efforts.

Bluestripe Shiner (Cyprinella callitaenia) GA: R

Occurrence; Please consult with GDNR for survey efforts.

Updated: 1/28/2020 0313000112 Peachtree Creek

2

Peregrine Falcon (Falco peregrinus) GA: R

Occurrence; Please consult with GDNR for survey efforts.

Bay Star-vine (Schisandra glabra) GA: T

Occurrence; Please consult with GDNR for survey efforts.

Any of the above species may occur in suitable habitat in this HUC 10 watershed. Survey dates are provided for reference only. Please coordinate with your lead federal agency, Georgia Department of Natural Resources, or USFWS to determine if surveys will help assess project impacts to species of concern.

Watershed Specific Concerns:

There are federally listed terrestrial species, but no federally listed aquatic/wetland species that occur or could occur in this watershed. If the project contains suitable habitat for listed species, please contact your lead federal agency to determine the appropriate next step for those species to inform their NEPA and ESA decisions. Coordination with Georgia Department of Natural Resources may also be helpful in those decisions.

<u>Dwarf Sumac</u>: Dwarf Sumac commonly occurs on rocky ridges or river bluffs in open forest patches over mafic bedrock with high levels of calcium, magnesium, or iron. Flowering occurs from June through August and fruiting occurs from August through October. This species can be identified year-round, through its low-growing nature and hairy leaves and stems. If populations are found that are under threat of destruction, please contact our office to organize translocation efforts.

<u>Georgia Aster</u>: There are occurrence records of candidate conservation species Georgia Aster in this watershed. Georgia Aster can be found in open forests or forest edges and right-of-ways. Use of prescribed fire or mowing in winter or early spring to create or maintain sunny openings, avoiding the use of herbicides, and avoiding clear-cutting and soil disturbance can help protect areas where this species occurs.

Species and Habitat Concerns

Bridges / Culverts / Structures: Bridges, culverts, and structures (barns, buildings, etc.) can be used by migratory bird species for nesting and roosting and by federally listed and sensitive bat species for roosting. To comply with the national programmatic agreement between FHWA, FRA, and FWS and to assess risk and potential impacts to species protected under the Endangered Species Act of 1973, as amended (16 U.S.C. § 1531 et seq.), or state protected bat species, inspections of all bridges, culverts, and structures will help determine if there is evidence of roosting bats. If an inspection is conducted, please fill out the "Georgia Bats in Bridges" datasheet and submit the data online to GA DNR (a website address is provided on the datasheet) and a scanned copy with any report to the lead federal agency. Please note that there is an updated version of the datasheet and new link to the website (https://ee.kobotoolbox.org/x/#YVhJ). Please follow any previous coordination with the Service and/or Georgia Department of Natural Resources related to activities impacting roosting bats or nesting migratory birds.

<u>Erosion Control Netting</u>: Monofilament or plastic mesh commonly used for slope stabilization can ensnare snakes and other wildlife, including listed species. The use of alternative natural fibers (e.g., coir, jute, or wood fiber) and moveable mesh strands can reduce impacts to wildlife.

Fish and Wildlife Coordination Act and additional Endangered Species Act Considerations

The Fish and Wildlife Coordination Act (FWCA) requires federal agencies to consider the effects of their water-related actions (that modify or control natural streams or waterbodies) on fish and wildlife resources. Many of the following recommendations are also specific to endangered or threatened aquatic species protected under the Endangered Species Act. The following may be applicable to proposed project actions.

Riparian Buffer, Streambank, and Stream Channel Protection

Minimize disturbance to stream banks and riparian areas during project work. Do not operate equipment in the stream channel or ford the channel during work. Service recommendations for riparian buffer protection are consistent with those of the Metropolitan North Georgia Water Planning District requiring maintenance of a 50 ft. undisturbed buffer and an additional 25 ft. impervious setback on all streams. Any staging areas, the storage of materials and equipment, borrow pits, or waste sites should not occur in buffer areas or other environmentally

Updated: 1/28/2020 0313000112 Peachtree Creek

sensitive areas. Additionally, when impacts to streambanks and/or stream channel occur, the Service recommends a biotechnical approach to streambank and channel stabilization and restoration where feasible. The use of hard armoring of streambanks or channels should be minimized except where necessary for safety or the protection of structures or property.

Wetland Protection

Wetland losses diminish important wetland values including: the provision of habitat which wetland and terrestrial fauna need for reproduction and/or survival, the storage of storm and flood waters with resultant moderation of flow extremes to receiving waters, and the natural filtration processes that enhance water quality. Wetlands along riparian corridors can provide important connectivity for wildlife movement at the landscape-level. Bridge or culvert construction associated with wetland impacts can alter stream hydrology, degrade water quality, create fish passage barriers, and result in the loss of stream bottom habitat. Measures to avoid and reduce impacts to wetlands and wetland hydrology should be considered during project design.

Water Quality Protection

The Service recommends use of erosion control practices, post construction stormwater management, and other best management practices to protect water quality. The Service's recommendations can be found below.

<u>Erosion and Sedimentation</u> Sedimentation from construction sites is regulated through Georgia's Erosion and Sedimentation Act, which in most cases is administered by local jurisdictions that have been delegated enforcement authority. We recommend all projects ensure compliance with the Georgia Erosion and Sedimentation Act and encourage consistent communication with the local issuing authority or Georgia Environmental Protection Division both in the design phase and during construction.

Stormwater Post construction stormwater management recommendations are consistent with performance standards for Water Quality protection (WQv) and Channel Protection (CPv) found in the Georgia Stormwater Management Manual, otherwise known as the Blue Book (https://atlantaregional.org/georgia-stormwater-management-manual/). The Service recommends both the Water Quality and Channel Protection performance standards be met on all projects when applicable under the Blue Book, to minimize impacts to water quality associated with stormwater runoff. For projects that drain to streams or wetlands with federally protected species, we would recommend that additional water quality protection be provided through implementation of the Runoff Reduction performance standard, also found in the Blue Book.

Other Protections For all project types, the Service recommends equipment storage, equipment maintenance, supply storage, and use of pesticides, herbicides, and/or other chemicals not occur within the 100-year floodplain or 200 feet from the stream banks or wetland edge, whichever is greater. All storage and maintenance areas should be protected with secondary containment. Material utilized in, or adjacent to aquatic resources for temporary fill, permanent fill, or bank protection shall consist of suitable material, free from toxic contaminants in other than trace quantities. Materials that contain toxic contaminants, such as used asphalt, pressure treated lumber, and uncured concrete, should not be used because it can alter water quality causing mortality in aquatic organisms and can be harmful to public health. For projects authorized by the U.S. Army Corps of Engineers, please ensure that all permit conditions are followed.

Road Stream Crossings (Bridges, Culverts)

Many road stream crossings, especially where pipe culverts are used, limit aquatic organism passage upstream and downstream, leading to fragmentation of aquatic populations. The construction, repair, and replacement of stream crossings can also increase turbidity and sedimentation downstream of road crossings leading to degradation of aquatic habitat. The Service recommends designs that provide habitat continuity through the crossing by maintaining or recreating natural stream reach geomorphic elements including slope, channel width, bed material, and bedform.

Bridges and arch spans are the preferred option for stream crossings from an aquatic habitat continuity perspective. However, when spanning the stream is prohibitively expensive, use of culverts at stream crossings must be designed and implemented in a way that ensures the structures do not become barriers to aquatic organism passage. Making culverts suitable for aquatic organism passage requires preventing excessive water velocities in culverts at base flow conditions, preventing drops resulting from scour in and around the culvert, and providing adequate depth in the culvert at base flows.

The Service recommends following the U.S. Army Corps of Engineers, Savannah District Regional Conditions for Nationwide Permits when designing culverts. The Regional Conditions contain specific guidelines for designing and constructing culverts to promote the safe passage of fish and other aquatic organisms.

Additional information about regional conditions can be found at the following web address:

Updated: 1/28/2020 0313000112 Peachtree Creek

http://www.sas.usace.army.mil/Missions/Regulatory/Permitting/General-Permits/Regional-General-Permits/

For culvert replacements or extensions involving less than 100 feet of all stream impacts in total, FWCA coordination is not required where no federally listed aquatic species occur. When modifying the design of a culvert that was previously consulted on under FWCA (but excluding those previously exempt from past coordination), new consultation would not be required unless stream impacts have been increased by more than 10% or 50 feet (whichever is less), or the change results in modifications to the morphology or flow of the waterbody.

When bridges or arch spans are the chosen construction method, the Service recommends minimizing the number of in-stream piles or structures and aligning them with the natural stream flow. Additionally, the use of bridge scuppers that directly discharge stormwater to streams should be minimized, except where necessary for safety. For bridge construction activities that require the use of temporary in-stream construction access (e.g., jetties, work bridges, barges, etc.), the Service recommends performing all work in a manner that does not inhibit aquatic organism passage, including minimizing river constriction. For situations where river constriction is greater than 25% of the cross sectional area of the critical flow, we would recommend a flow analysis to evaluate water velocity alterations and development of a contingency plan in the event channel scour, bank erosion, or undesirable conditions occur. Upon completion of activities, temporary fills should be entirely removed and the site restored to pre-existing elevation. Equipment should not be stored on any in-stream structure to reduce equipment loss if flows exceed the height of the in-stream structure and reduce contamination from pollutant leakage during off-use times.

Direct all stormwater runoff from road approaches toward floodplains, letting the runoff discharge as sheet flow across the floodplain or into stormwater management structures. When road approaches are composed of unpaved surfaces, consider paving the road approaches to improve the water quality of stormwater runoff around stream crossing locations. If spread footers, containment structures, or other structures require the use of dry or poured concrete, flowable fill, or similar materials and are elected for use in the construction within any waterway, such methods shall be constructed using cofferdams or similar containment structures. If uncured, dry or wet concrete will be used, the water used for curing shall not be allowed into the waterways. The use of uncured concrete in a waterway can raise the pH of the surrounding water causing mortality in aquatic organisms and potential public health concerns.

The Service also recommends incorporating measures to provide connectivity and reduce mortality to terrestrial wildlife species during project design. Opportunities for terrestrial species to cross under road crossings at stream crossing locations exist both within the banks of the stream along constructed benches, as well as, in the floodplain when additional structures are used to pass flood flows.

<u>Utility Stream Crossings</u> Construction, relocation, and maintenance of powerlines and other utilities can disturb aquatic systems and affect fish and other populations. To minimize impacts from these activities, use best management practices to control stormwater runoff from the project area during construction. Direct runoff via sheetflow to vegetated areas or stormwater treatment basins and utilize rolling dips or water bars to divert water from the utility right-of-way (ROW) into vegetated areas on slopes to minimize erosion.

<u>Underground Utilities</u> Directional boring is preferred when a utility line must be installed across a perennial stream that supports federally protected aquatic species. Bore pits should be located as far away from the stream channel as possible.

Dry open trench pipe installation using isolation crossing diversions, such as coffer dams, are preferred for all other perennial stream crossings. The diversions should not dewater downstream reaches or create excessive water velocity that could scour downstream reaches. Wet open trench construction should be avoided in all perennial streams unless no other method is feasible, or if it can be shown that alternative methods would cause greater sedimentation and environmental harm. For both wet and dry open trench installation, stream banks and channels should be restored to their original contours and the banks stabilized with native vegetation (except in areas where permanent road crossings are to be maintained). In-channel stream restoration techniques should be considered to stabilize the channel elevation and protect buried utility lines. In-channel restoration techniques can also effectively prevent downstream scour or upstream head cutting which can result from open trenching.

Wet open trench installation should not be conducted during the sensitive reproductive periods of federally-listed aquatic species, when eggs and newly-hatched larvae are most likely to be buried or harmed by increased turbidity and sedimentation. Only directional boring or isolation crossing methods should be used during these times of year. Please consult the Service for timing of sensitive reproductive periods for aquatic species in this watershed.

<u>Aerial Utilities</u> Maintain a 100-foot undisturbed riparian buffer within the powerline's ROW on both sides of all streams with endangered or threatened aquatic species. No crossings, either temporary or permanent, via culverts, fords, or other methods should be constructed and all access roads should end at the buffer's edge farthest from the

streambank. The buffer, where possible, should be retained in or planted with native vegetation of at least shrub size.

Within the powerline's ROW, maintain a 50-foot riparian buffer on both sides of other perennial and intermittent streams that will be crossed. Some vegetation within these buffer zones may be temporarily disturbed if culverts, fords, or other stream crossings are necessary, but streambanks should be restored to normal contours and stabilized after the crossing is removed.

Impoundments/Farm Ponds

For proposed impoundments, the Service recommends excavated ponds be constructed where feasible. Though the volume of material requiring excavation is greater to construct an excavated pond, they have fewer problems than dammed ponds, which can be plagued with muddy water, rapid filling with silt, flow rate fluctuations, aquatic weeds, temperature fluctuations, and wild fish invasions.

The Service recommends consulting the county Natural Resources Conservation Service office (https://www.nrcs.usda.gov/wps/portal/nrcs/site/ga/home/) or the Georgia Department of Natural Resources for advice regarding pond construction and avoiding or minimizing downstream impacts from sediment and toxicant input into aquatic systems.

Stream Gage Replacement

If a U.S. Geological Survey (USGS) stream gage will potentially be impacted by a proposed project, the Service recommends assessing what coordination or compensation may need to occur with the USGS related to the disturbance, moving, and recalibration of the gage structure prior to project implementation.

onservation Lands in Georgia and within the Watershed:	
dair Park	
lexander Park	_
nsley Park	_
rdmore Park	_
shford Park	_
tlanta Audubon Society (Johns Sanctuary)	

Atlanta Memorial Park
Auten
Autumn Park
Avery-East Park Lane Triangle
Barclay Median
Bass Recreation Center
Beaverbrook Park
Beckham
Beech Valley Triangle
Benton Place Park
Best Friend Park
Beverly-Avery Circle, Avery Triangle, Montgomery Ferry Triangle, Polo Triangle
Bianchi
Birchwood-Arlene Triangle
Blackburn Park
Bobby Jones Golf Course
Boulevard-Angier Park
Brentwood-Atwood Triangle
Briarwood Recreation Center
Broadland And West Conway Park
Brook Park; Brook Run Park
Brookhaven Park
Bryan Barnes
Burke-Darlington Circle
Callanwolde Park
Candler Park
Castlewood Triangle

Centennial Olympic Park
Central Park
Channing Valley Park
Charles Allen Median
Charlie Loudermilk Park
Chastain Memorial Park
City of Atlanta - Woodward Way Park, Yonah Park, 25th Street Beauty Spot, Zimmer Drive Circle
City Park - 17th Street Park
Clairmont Park
Club Drive-Davidson Triangle
Conifer Circle
Cornish
Coronet Way Park
Daniel Johnson Nature Preserve
Darlington Circle Park
Davidson And Lakehaven Park
Decatur Cemetery
Deepdene/Dellwood Park
DeKalb County - Zonolite Park, Greenspace
Dellwood Park
Delta Park
Dobbs Park
Dresden Park
Easement - Georgia Land Trust (2009078)
Easement / Mitigation - U.S. Army Corps of Engineers (Brookhaven Place)
East Andrews and Roswell Park

Graves Road Park
Greenwood-Charles Allen Triangle
Halpern Bernard Park
Hardy Ivy Park
Haynes Manor Park
Heaton
Helen Drive Park
Henderson Mill School and Park
Henley
Hidden Cove Park
Hillpine Park
Hillside At Northside Dr. Park
Home Park
Homestead Park
Honeysuckle Park
Howell Mill at Beaverbrook Park
Howell Mill-Glenbrook Triangle
Hughes
Hummingbird Park
Huntley Hills Park
Hurt Park
Inman Circle at 17th Street Park
Inman Park and Trolley Barn
Inverness Park
Iverson Park
J. Allen Couch Park
J. D. Sims Recreation Center

John Calhoun Park
John Howell Memorial Park
Johns Sanctuary
Karp
Kate Saks
Kathryn Avenue
Keller
Keswick Park
Kittredge Park
Lafayette-15th Street Triangle
Lake Claire Park
Lakeview-Demorest Triangle
Lanier Boulevard Parkway
Lavista Park
Lazarus
Lenox and Johnson Road Park
Lenox Beauty Spot
Lenox Wildwood Park
Loring Heights Park
Lynwood Recreation Center
Maddox-Avery Triangle
Mantissa St. Park
Margaret Mitchell Square
Mark Clark
Mark Harris
Martin Luther King Jr. National Historic Site
Mason Mill Park

Mayor's Park #1
Mayson Park; Mayson Ravine Greenspace
McClatchey Park
McDaniel School
McKinley-Wilson Triangle
Medlock Park
Merritt
Montgomery Ferry-Golf Circle Triangle
Montreal Park
Moores Mill-northside Parkway Triangle I and II
Morgan-Boulevard Park
Morningside Nature Preserve
Morningside Park
Mornington Circle
Mottley
Mt. Paran and Northside Park
Mt. Paran-Cave Road Triangle
Murphey Candler Park
Needham Park
Noble Park
North Buckhead Park
North Highland Terrace Park
Northcliffe and Brookview Park
Oak Grove Park
Old Fourth Ward Park
Orme Park
Orme Triangle

Parkside Circle, Parkside Park
Parkway-Angier Park, Merritts Park, Wabash Park
Peachtree at 15th St. Triangle
Peachtree Battle Parkway/Median
Peachtree Circle at 15th St Triangle
Peachtree Heights Park
Peachtree Hills Park
Peachtree Park
Pelham Road Park
Pershing Point Park
Peters Park
Pharr Circle Park
Piedmont Heights Park
Piedmont Park
Piedmont Road Triangle
Piedmont-Avery Triangle
Pine Tree and Brentwood Park
Pleasantdale
Potts
Prado at Inman Circle Park
Prado-17th Street Triangle, Maddox Triangle, Peachtree Circle Triangle
Prado-Piedmont Beauty Spot, South Prado Circle, Westminster Triangle
Princeton Park
Ranier Circle
Ray Kluka Memorial Park
Rehoboth School

Reid
Renaissance Park
Ridgemore Road Pr
Ridgeview Park
Robert W. Woodruff Park
Robin Lane Park
Robin Wilson
Ruby Oxford
Rumson and Pinetree Park
Rumson Road Circle
Scott Park
Selena S. Butler Park
Shady Side Park
Shady Valley Park
Shallowford Park
Sibley Park
Sidney Marcus Park
Skyland Park
Smith Park
Spring Valley Jewish Corner
Spring Valley Park
Springdale Park
Standing Peachtree Park
Sunken Garden Park
Sunny Brook
Tanyard Creek Park
Tedoff

Updated: 1/28/2020

Tennyson Circle
The King Center
Todd Street Triangle
Tucker Recreation Center
Tully
Underwood Hills Park
VA Highlands Project
Valley Road-Habersham Triangle
Van Leer
Vanderlyn School
Vedado-Greenwood Triangle
Vermont Road Park
Vernon Springs Park
Villa Park
Village Park
Virgilee Park
Virginia Avenue Circle
Virginia-Highland Triangle
Vodopich
Vroon
W. D. Thompson Park
Waddell Nature Park
Walton Spring Park
Washington Park
West Wesley Park
Westchester Drive
Westminster at Park Lane Circle

Westover Plantation	
Wildwood Gardens Park	
Wildwood Place	
Wilson Park Triangle	
Windwood Hollow Park	
Winn Park	

If your project crosses watershed boundaries, please use the appropriate guidance document for each portion of the project area.

Your agency or lead federal agency may have coordination procedures in place or determination keys for urban areas or activities with classified as having "no effect" on listed species. Please use those guidelines to help determine impacts to federally listed species.

If you have questions relating to this guidance, please contact our office at gaes_assistance@fws.gov or 706-613-9493.

Data provided in this document is for guidance only and applies to portions of the watershed within the Georgia State Boundary. Please contact the appropriate FWS Field Office for coordination outside of the state. This document does not replace any requirements for consultation under the Endangered Species Act.

As written in 50 CFR § 402.16 of the Endangered Species Act, obligations under the Act must be reconsidered if a new species is listed or critical habitat is determined that may be affected by the project, or new information indicates that the project may affect listed species or critical habitat in a manner not previously considered. We will continue to update these documents to help project proponents meet their obligations under the Endangered Species Act.

Appendix V: State Protected Resources

GDOT PI No. 0009395 Fulton County

Appendix V A: State Threatened, Endangered, Rare and Unusual Species

GDOT PI No. 0009395 Fulton County

MARK WILLIAMS
COMMISSIONER
TED WILL
DIRECTOR

February 17, 2022

Collin Lane
Ecology Group Manager
Edwards-Pitman Environmental
2700 Cumberland Pkwy SE
Suite 300
Atlanta, GA 30339

Subject: Known occurrences of natural communities, plants, and animals of highest priority conservation status on or near GDOT P.I. No. 0009395, Beltline Corridor NE Trail, in Fulton County, GA

Dear Collin Lane:

This is in response to your request on January 31, 2022. The following Georgia natural heritage database element occurrences (EOs) were selected for the current site using the local Hydrologic Unit Code (HUC) 10 watershed for elements whose range distribution is limited by aquatic systems and within 3 miles for all other EOs:

Beltline Corridor NE Trail Point 1 (Site Center: -84.378069, 33.811281, WGS84)

- GA *Cambarus howardi* (Chattahoochee Crayfish) 1.9 miles SE of site in Peachtree Creek and tributaries
- GA Cyprinella callitaenia (Bluestripe Shiner) 3.8 miles W of site in Nancy Creek Micropterus cataractae (Shoal Bass) 1.4 miles NW of site in Peachtree Creek Micropterus cataractae (Shoal Bass) 3.6 miles NW of site in Nancy Creek Amblyscirtes alternata (Dusky Roadside-Skipper) [HISTORIC?] 2.6 miles S of site Amblyscirtes belli (Bell's Roadside-Skipper) [HISTORIC] 1.1 miles S of site Autochton cellus (Golden-banded Skipper) [HISTORIC] 1.9 miles S of site
- US Bombus affinis (Rusty-patched bumblebee) [EXTIRPATED?] 2.7 miles S of site Caecidotea hobbsi (Hobb's Cave Isopod) [HISTORIC] 1.9 miles SE of site Erynnis martialis (Mottled Duskywing) [HISTORIC] 1.2 miles S of site
- GA Falco peregrinus (Peregrine Falcon) 2.8 miles S of site

 Isoetes valida (Mountain Bog Quillwort) [HISTORIC] 1.7 miles SE of site

 Lampropeltis rhombomaculata (Mole Kingsnake) [HISTORIC] 1.9 miles SE of site

 Nicrophorus americanus (American Burying Beetle) [HISTORIC] 1.1 miles S of site

 Panax quinquefolius (American Ginseng) 2.3 miles SE of site

 Perimyotis subflavus (Tri-colored Bat) [HISTORIC] 1.7 miles S of site

 Satyrium edwardsii (Edwards' Hairstreak) [HISTORIC] 0.5 miles SW of site

Satyrium kingi (King's Hairstreak) [HISTORIC] 2 miles SE of site

GA Schisandra glabra (Bay Star-vine) [HISTORIC] on site

GA Schisandra glabra (Bay Star-vine) [HISTORIC] 2.7 miles W of site

GA Schisandra glabra (Bay Star-vine) [HISTORIC] 2.3 miles SE of site

Symphyotrichum novi-belgii var. elodes (Seashore New York Aster) [HISTORIC] 1.3 miles W of site

17th Street Park 0.7 miles S of site

25th Street Beauty Spot 0.7 miles SW of site

Alexander Park 0.4 miles NW of site

Ansley Park 0.6 miles S of site

Ardmore Park 0.7 miles W of site

Atlanta Memorial Park 1.5 miles NW of site

Avery-East Park Lane Triangle 0.6 miles S of site

Barclay Median 1.4 miles E of site

Beaverbrook Park 2 miles W of site

Beech Valley Triangle 1.8 miles SE of site

Beverly-Avery Circle 0.5 miles S of site

Beverly-Avery Triangle 0.5 miles S of site

Beverly-Montgomery Ferry Triangle 0.5 miles S of site

Beverly-Polo Triangle 0.5 miles S of site

Birchwood-Arlene Triangle 0.4 miles NW of site

Bobby Jones Golf Course 0.7 miles NW of site

Boulevard-Angier Park 2.7 miles S of site

Brentwood-Atwood Triangle 0.6 miles N of site

Briarwood Recreation Center 2.8 miles NE of site

Burke-Darlington Circle 0.9 miles N of site

Callanwolde Park 2.3 miles SE of site

Castlewood Triangle 2.2 miles NW of site

Centennial Olympic Park 3 miles S of site

Central Park 2.4 miles S of site

Channing Valley Park 1.3 miles W of site

Charles Allen Median 1.8 miles S of site

Charlie Loudermilk Park 1.3 miles NW of site

Chastain Memorial Park 3 miles N of site

Conifer Circle 2.4 miles N of site

Cornish 1 miles SE of site

Daniel Johnson Nature Preserve 1.7 miles SE of site

Darlington Circle Park 0.7 miles N of site

East Andrews and Roswell Park 1.6 miles N of site

East Rock Springs Triangle 1.1 miles SE of site

Ellsworth Park 1.5 miles W of site

Emma Lane Greenspace 2.8 miles N of site

Eubanks Park 0.8 miles S of site

Fernwood Park 2.9 miles NE of site

Folk Art Park (Courtland St) 2.7 miles S of site

Folk Art Park (Piedmont Ave) 2.9 miles S of site

Frankie Allen Park 0.7 miles N of site

Freedom Park 2.3 miles SE of site

Freedom Park 2.8 miles SE of site

Gandy 0.8 miles NW of site

Garden Hills Park 0.6 miles NW of site

Goldsboro Park 3 miles SE of site

Greenwood-Charles Allen Triangle 1.9 miles S of site

Hardy Ivy Park 2.9 miles S of site

Haynes Manor Park 1.5 miles NW of site

Helen Drive Park 1.8 miles SE of site

Hillpine Park 0.9 miles SE of site

Home Park 1.7 miles SW of site

Homestead Park 1.4 miles SE of site

Howell Mill at Beaverbrook Park 1.8 miles W of site

Howell Mill-Glenbrook Triangle 1.8 miles W of site

Inman Circle at 17th Street Park 0.8 miles S of site

Inverness Park 1.5 miles SE of site

J. Allen Couch Park 2 miles SW of site

J. D. Sims Recreation Center 2.6 miles S of site

John Howell Memorial Park 1.8 miles SE of site

Johns Sanctuary 2 miles E of site

Kittredge Park 2 miles E of site

Knight Park 2.8 miles SW of site

Lafayette-15th Street Triangle 1.1 miles S of site

Lakeview-Demorest Triangle 0.6 miles NW of site

Lanier Boulevard Parkway 1.7 miles SE of site

Lavista Park 1.2 miles E of site

Lenox and Johnson Road Park 1.6 miles SE of site

Lenox Beauty Spot 2.1 miles NE of site

Lenox Wildwood Park 1.3 miles E of site

Lenox-Wildwood Park 1.2 miles SE of site

Loring Heights Park 0.9 miles SW of site

Maddox-Avery Triangle 0.6 miles S of site

Mantissa St. Park 1.9 miles W of site

Mayor's Park #1 2.7 miles S of site

McClatchey Park 0.6 miles S of site

McKinley-Wilson Triangle 1.4 miles W of site

Montgomery Ferry-Golf Circle Triangle 0.3 miles S of site

Moores Mill-northside Parkway Triangle I 2.7 miles NW of site

Moores Mill-northside Parkway Triangle II 2.7 miles NW of site

Morgan-Boulevard Park 2.5 miles S of site

Morningside Nature Preserve 0.7 miles SE of site

Morningside Park 1.4 miles SE of site

Mornington Circle 2.3 miles NW of site

Noble Park 1.5 miles SE of site

North Buckhead Park 2.3 miles N of site

North Highland Terrace Park 1.5 miles SE of site

Northcliffe and Brookview Park 2 miles W of site

Oak Grove Park 2.9 miles SE of site

Old Fourth Ward Park 2.6 miles S of site

Orme Park 1.5 miles SE of site

Orme Triangle 1.4 miles SE of site

Parkway-Angier Park 2.6 miles S of site

Parkway-Merritts Park 2.5 miles S of site

Parkway-Wabash Park 2.7 miles S of site

Peachtree at 15th St. Triangle 1.1 miles S of site

Peachtree Battle Parkway/Median 0.7 miles NW of site

Peachtree Circle at 15th St Triangle 1.1 miles S of site

Peachtree Heights Park 0.6 miles NW of site

Peachtree Hills Park 0 miles N of site

Pelham Road Park 0.6 miles SE of site

Pershing Point Park 0.7 miles S of site

Pharr Circle Park 1.4 miles NW of site

Piedmont Heights Park 0.4 miles SE of site

Piedmont Park 0.8 miles S of site

Piedmont Road Triangle 0.8 miles N of site

Piedmont-Avery Triangle 0.8 miles S of site

Pine Tree and Brentwood Park 0.6 miles NW of site

Pine Tree and Brentwood Park 1.9 miles NW of site

Pine Tree-Brentwood Triangle 0.6 miles NW of site

Prado at Inman Circle Park 0.7 miles S of site

Prado-17th Street Triangle 0.8 miles S of site

Prado-Maddox Triangle 0.7 miles S of site

Prado-Peachtree Circle Triangle 0.7 miles S of site

Prado-Piedmont Beauty Spot 0.9 miles S of site

Prado-South Prado Circle 0.9 miles S of site

Prado-Westminster Triangle 0.9 miles S of site

Ray Kluka Memorial Park 1.9 miles S of site

Reid 0.8 miles NW of site

Renaissance Park 2.5 miles S of site

Robin Lane Park 1 miles SE of site

Ruby Oxford 0 miles NW of site

Rumson and Pinetree Park 0.7 miles NW of site

Rumson Road Circle 1 miles NW of site

Shady Valley Park 0.9 miles NE of site

Sibley Park 1.2 miles NW of site

Sidney Marcus Park 1 miles SE of site

Smith Park 0.7 miles SE of site

Spring Valley Jewish Corner 1.7 miles SE of site

Spring Valley Park 1.1 miles W of site

Springdale Park 2.7 miles SE of site

Springlake Park 1.3 miles W of site

Sunken Garden Park 1.3 miles E of site Sunny Brook 0.6 miles NW of site Tanyard Creek Park 0.8 miles W of site Tedoff 1.1 miles SE of site Tennyson Circle 2.2 miles W of site Todd Street Triangle 2 miles SE of site Underwood Hills Park 1.7 miles W of site VA Highlands Project 2.4 miles SE of site Valley Road-Habersham Triangle 2.1 miles NW of site Vedado-Greenwood Triangle 1.9 miles S of site Vermont Road Park 2.6 miles N of site Villa Park 2.1 miles SE of site Virgilee Park 2.8 miles SE of site Virginia Avenue Circle 2.2 miles SE of site Virginia-Highland Triangle 2 miles SE of site Vodopich 0.9 miles NW of site Vroon 0 miles NW of site W. D. Thompson Park 2.7 miles E of site West Wesley Park 1 miles NW of site Westminster at Park Lane Circle 0.8 miles S of site Wildwood Gardens Park 0.7 miles E of site Wildwood Place 0.7 miles S of site Wilson Park Triangle 0.9 miles SE of site Winn Park 0.9 miles S of site Woodward Way Park 1.2 miles NW of site Yonah Park 1 mile S of site Zimmer Drive Circle 2 miles SE of site

Recommendations:

Zonolite Park 1.2 miles SE of site

Federally listed species have been documented within three miles or within the watershed(s) of the proposed project. To minimize potential impacts to federally listed species, we recommend consultation with the United States Fish and Wildlife Service. Please refer to the Districts and Agency Contacts map available on the GDOT Ecology webpage to determine the appropriate contact. The contacts include: Meg Hedeen (meghan_hedeen@fws.gov), Eric Prowell (Eric_Prowell@fws.gov), Laci Pattavina (Laci_Pattavina@fws.gov), or Chris Coppola (Christopher_Coppola@fws.gov).

Please be aware that state protected species have been documented near the proposed project. For information about these species, including survey recommendations, please visit our webpage at http://georgiawildlife.com/conservation/species-of-concern#rare-locations. Please refer to the State of Georgia Protected Species Habitat & Presence/Absence Survey Methodologies Manual available on the GDOT Ecology webpage for further survey guidance. Surveys for species of conservation concern should be conducted prior to commencement of construction.

Species listed above that have no "GA" or "US" status are considered Georgia species of concern. Locations of these species are tracked until enough information is gathered to determine if they should be added to the state list or if their populations do not warrant tracking. It is important to consider these species when planning projects. Please let us know if you have any questions regarding Georgia species of concern.

We are glad to see multi-use path construction, which will provide additional recreation opportunities for the surrounding communities. We have the following recommendations for the applicant to consider. We are concerned about streams and other sensitive habitats that could be impacted by the proposed project. Please keep erosion to a minimum during construction and leave as much vegetation intact as possible. In seepage or wetland areas please use boardwalks, when possible, to prevent degradation and destruction of these sensitive habitats. If the path is paved, we strongly recommend using a porous pavement that provides some degree of infiltration to mitigate stormwater runoff. Please plan the path carefully and provide for adequate parking and access areas. These measures will help protect water quality, protect sensitive habitats and native species, and provide for a more enjoyable recreational experience for the users.

Disclaimer:

Please keep in mind the limitations of our database. The data collected by the Wildlife Conservation Section comes from a variety of sources, including museum and herbarium records, literature, and reports from individuals and organizations, as well as field surveys by our staff biologists. In most cases the information is not the result of a recent on-site survey by our staff. Many areas of Georgia have never been surveyed thoroughly. Therefore, the Wildlife Conservation Section can only occasionally provide definitive information on the presence or absence of rare species on a given site. Our files are updated constantly as new information is received. Thus, information provided by our program represents the existing data in our files at the time of the request and should not be considered a final statement on the species or area under consideration.

If you know of populations of highest priority species that are not in our database, please fill out the appropriate data collection form and send it to our office. Forms can be obtained through our website (http://georgiawildlife.com/conservation/species-of-concern#rare-locations) or by contacting our office. If we can be of further assistance, please let us know.

Sincerely,

Maggie Aduddell Hunt, Wildlife Biologist maggie.hunt@dnr.ga.gov, (706) 557-3228

Data Available on the Wildlife Conservation Section Website

- Georgia protected plant and animal species profiles are available on our website. These profiles cover basics such as species physical descriptions, preferred habitat, and life history, as well as threats, management recommendations, and conservation status. To view these profiles, visit: http://georgiawildlife.com/conservation/species-of-concern#rare-locations
- Rare species and natural community information can be viewed by Quarter Quad, County, and HUC 8 Watershed. To access this information, please visit our GA Rare Species and Natural Community Information page at: http://georgiabiodiversity.org/
- Downloadable files of rare species and natural community data by Quarter Quad and County are also available. These can be downloaded at: http://georgiabiodiversity.org/natels/natural-element-locations.html

Appendix V B: Bats in Bridges Data Form

GDOT PI No. 0009395 Fulton County

GA DNR, Nongame Conservation Section, 2065 US HWY 278 SE, Social Circle, GA 30025 Ph: 770-918-6411 GEORGIA BATS IN BRIDGES DATASHEET

Investigat	tor Name(s):	Kayla Theilig a	nd Evan Sea	ıl				
Phone:				Email:				
Date:	6/11/2020		County:	Fulton				
Lat:	33.812710°		Long:	-84.377960°				
Bridge Lo	Bridge Location: Piedmont Road NE over Peachtree Creek							
GDOT St	ructure ID#_	121-0111-0			GDOT PI. No	000939	5	
Bridge Typ	e: (check one)					Underdeck Material:	
☐ Parallel	Box Beam		☐ Steel I-	-beam	III		☐ Concrete	
☐ Pre-stre	ssed Girder	HHHH	☐ Flat Sla	ab / Box			☐ Corrugated Steel	
X Cast in	Place —		☐ Trapez	oidal Box			X Other:	
☐ Culvert	– Box	9 6 6 6 6	☐ Culver	t – Pipe/Ro	und			
Road Type: (check one)			Iighway	☐ State Road	X Cou	inty Road		
Surroundi	ng Habitat: (c	heck all that app	ly)					
☐ Residen	tial 🗆 Agricu	lture X Commer	cial 🗆 Wo	odland 🗆 (Grassland Ranch	ing 🗵 Rip	parian Mixed Wetland	
Conditions	Under Bridg	e: (check all that	apply)					
X Bare gro	ound /sedimen	t 🗆 Con	crete	☐ Rip rap	X Flowing wa	ater	☐ Standing water	
☐ Open ve	egetation (not o	obstructing flight p	path)		Closed vegetation (r	nay obstru	ct flight path)	
☐ Two lar	ne road	☐ Four (or more	e) lane high	way	☐ Dirt road ☐		☐ Railroad	
Bat indicators: (check all that apply) ☐ Visual ☐ Smell ☐ Sound ☐ Staining ☐ Guano Bats Present: ☐ YES ☒ NO								
Species Present Myotis septentrionalis (Northern long-eared) Lasiurus cinereus (Hoary) Myotis sodalis (Indiana) Lasiurus noctivagans (Silver-haired) Myotis leibii (Eastern small-footed) Perimyotis subflavus (Tri-colored) Myotis lucifugus (Little brown) Eptesicus fuscus (Big brown) Myotis grisescens (Gray) Nycticeius humeralis (Evening) Myotis austroriparius (Southeastern) Tadarida brasiliensis (Braz. free-tailed) Lasiurus borealis (Eastern red) Corynorhinus rafinesquii (Rafinesque's) Lasiurus seminolus (Seminole)								

^{*}Please submit this data via the Georgia Bats in Bridges cell phone application (Free for Apple and Android devices)

Number of roosts 0
Roost design: (check all that apply)
☐ Crack/crevice/expansion joint: underside of bridge ☐ Crack/crevice/expansion joint: top side of bridge
□ Plugged drain □ Under/along the main bridge structure □ Rail □ Other:
Human disturbance or traffic under bridge or at structure? ☐ High ☐ None
Evidence of bats using bird nests? Yes No (if yes, please describe and photograph nest location)
Areas Inspected: (check all that apply)
☑ Vertical surfaces on I-beams ☑ Vertical surfaces between concrete end walls and bridge deck
☐ Expansion joints ☐ Rough surfaces ☐ Guardrails ☐ Crevices ☐ Other:
Areas NOT Inspected because of safety or inaccessibility:
Additional Comments / Sketch:
Is there evidence of migratory birds using the structure? \Bigs \text{Yes} \text{\overline{\text{No}}} \ If yes, what species (excluding pigeons) are present, what evidence is there, and locations (check all that apply)? # nests Barn Swallow \Bigs \text{Old Nest} \Bigs \text{Adults} \Bigs \text{Building} \Discrete \text{Complete Nest} \Bigs \Discrete \text{Young} \Discrete \text{Unkn Stage}
□ concrete beam □ steel beam □ cap □ pile/bent □ rails □ under deck, exterior sides □ under deck, interior
Cliff Swallow
Eastern Phoebe
Other:

^{*}Please submit this data via the Georgia Bats in Bridges cell phone application (Free for Apple and Android devices)

GA DNR, Nongame Conservation Section, 2065 US HWY 278 SE, Social Circle, GA 30025 Ph: 770-918-6411

GEORGIA BATS IN BRIDGES DATASHEET

Sara Carey Smith and Jackson Peyton **Investigator Name(s):** Scareysmith@edwards-pitman.com and Jpeyton@edwards-pitman.com 678-932-2246 Phone: Email: Date: 1/16/2022 **County:** Fulton -84.377960° Lat: 33.812710° Long: **Bridge Location:** At I-85 Northeast Expressway **GDOT PI. No** 0009395 **GDOT Structure ID** # 121-0670-0 **Bridge Type: (check one)** Underdeck Material: ☐ Steel I-beam ☐ Parallel Box Beam ☐ Concrete ☐ Pre-stressed Girder X Flat Slab / Box ☐ Corrugated Steel ☐ Cast in Place < ☐ Trapezoidal Box Other: ☐ Culvert – Box ☐ Culvert – Pipe/Round ☐ Other: ____ **Road Type: (check one)** Interstate ☐ U.S. Highway ☐ State Road ☐ County Road **Surrounding Habitat: (check all that apply)** ☐ Residential ☐ Agriculture ☒ Commercial ☒ Woodland ☐ Grassland ☐ Ranching ☒ Riparian ☐ Mixed ☐ Wetland **Conditions Under Bridge: (check all that apply)** X Bare ground /sediment ☐ Concrete ☐ Rip rap ☐ Flowing water ☐ Standing water ☐ Open vegetation (not obstructing flight path) ☐ Closed vegetation (may obstruct flight path) ☐ Railroad ☐ Two lane road ☐ Four (or more) lane highway ☐ Dirt road **Bat indicators:** (check all that apply) \square Visual \square Smell \square Sound \square Staining \square Guano **Bats Present**: ☐ YES ☒ NO **Species Present** ____ Myotis septentrionalis (Northern long-eared) Lasiurus cinereus (Hoary) ____ Myotis sodalis (Indiana) _____ Lasiurus noctivagans (Silver-haired) ____ Myotis leibii (Eastern small-footed) Perimyotis subflavus (Tri-colored) ____ Myotis lucifugus (Little brown) ____ Eptesicus fuscus (Big brown) ____ Myotis grisescens (Gray) _____ Nycticeius humeralis (Evening) Myotis austroriparius (Southeastern) Tadarida brasiliensis (Braz. free-tailed) Lasiurus borealis (Eastern red) Corynorhinus rafinesquii (Rafinesque's) Lasiurus seminolus (Seminole) **UNKNOWN** Lasiurus intermedius (Northern yellow) **Roost description** (If known, check all that apply): ☐ Day Roost ☐ Nursery Roost ☐ Night Roost ☐ Unknown

^{*}Please submit this data via the Georgia Bats in Bridges cell phone application (Free for Apple and Android devices)

Number of roosts 0
Roost design: (check all that apply)
☐ Crack/crevice/expansion joint: underside of bridge ☐ Crack/crevice/expansion joint: top side of bridge
☐ Plugged drain ☐ Under/along the main bridge structure ☐ Rail ☐ Other:
Human disturbance or traffic under bridge or at structure? ☐ High ☐ Low ☐ None
Evidence of bats using bird nests? \square Yes \boxtimes No (if yes, please describe and photograph nest location)
Areas Inspected: (check all that apply)
☐ Vertical surfaces on I-beams ☐ Vertical surfaces between concrete end walls and bridge deck
☐ Expansion joints ☐ Rough surfaces ☐ Guardrails ☐ Crevices ☐ Other:
Areas NOT Inspected because of safety or inaccessibility: This bridge is under I-85; areas along I-85 were not inspected due to safety.
Additional Comments / Sketch:
Is there evidence of migratory birds using the structure? ☐ Yes ☒ No If yes, what species (excluding pigeons) are present, what evidence is there, and locations (check all that apply)? # nests Barn Swallow ☐ Old Nest ☐ Adults ☐ Building ☐ Complete Nest ☐ Eggs ☐ Young ☐ Unkn Stage ☐ concrete beam ☐ steel beam ☐ cap ☐ pile/bent ☐ rails ☐ under deck, exterior sides ☐ under deck, interior
Cliff Swallow
Eastern Phoebe
Other:

^{*}Please submit this data via the Georgia Bats in Bridges cell phone application (Free for Apple and Android devices)

VII. CONSTRUCTION PLANS

Construction plans will be included in the Assessment of Effects Report

VIII. SUPPORTING DOCUMENTATION

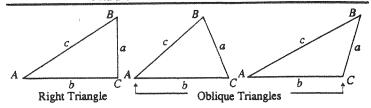
Qualification Statements

Collin Lane is the Ecology Group Manager with EPEI. Mr. Lane has 13 years of experience in conducting Georgia Department of Transportation ecological surveys, protected species surveys, reporting, and environmental permitting and coordination. He has over 19 years of professional experience in the environmental field. Mr. Lane has a Bachelor of Science in General Biology from Presbyterian College and a Master of Science in Soil and Water Science from the University of Florida.

Charlotte Estes is a Senior Ecologist with Edwards-Pitman Environmental, Inc. Ms. Estes has approximately 20 years of experience working in the ecological and environmental sciences. She has conducted surveys for state and federal waters, state and federal protected plants, animals, and aquatic surveys. Ms. Estes has a Bachelor of Science and Master of Science in Biology from Tennessee Technological University.

Jackson Peyton is an Ecologist with EPEI. Mr. Peyton is in his first year working with EPEI and has experience conducting wetland delineations, protected species surveys, and the completion of ecological reports. Mr. Peyton has an Associate of Science in Environmental Resources and a Bachelor of Science in Biology, both from Gordon State College.

Sara Carey Smith is an Ecologist with EPEI. Ms. Carey Smith is in her first year working with EPEI and has 1 year of experience in environmental consulting, conducting protected plant species surveys, and the completion of ecological reports. Ms. Carey Smith has a Bachelor of Science in Biology from the University of North Georgia and a Master of Science in Biology from Georgia College and State University.


At the time of the survey, Evan Seal was an Ecologist with EPEI. Mr. Seal was an ecologist with Edwards-Pitman Environmental, Inc. Mr. Seal has 4 year of experience in conducting wetland and stream delineations and preparing and writing ecological reports. Mr. Seal has a Bachelor of Science in Wildlife and Fisheries Science (2015) from Tennessee Technological University.

At the time of the survey, Kayla Theilig was an Ecologist with EPEI. Ms. Theilig has over five years of experience in conducting wetland and stream delineations, conducting protected species surveys, and preparing and writing ecological reports. Ms. Theilig has a Bachelor of Science in Environmental Science from Emory University.

HNL201PU & Coff WIT 60xolder 446 Om west 13 Vine

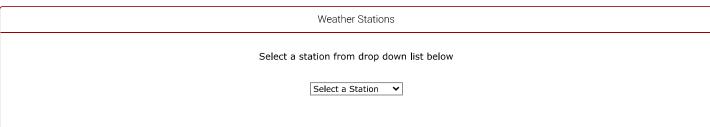
WD Gmit 0-4 4-16+ Hod oak 86, 8 hokory yine: of Perohtree (reck BV 75081 WW 10-20ff 60 Wet 5-10ff WILL free: Cot proh, TP, Sycamore, Silver maple, mimora, boxelder Smel: privet, maple, brich vme: Kudzy, P. I., smily WD 1-57+ BW 750ft 108+

Solution of Right Triangles

For Angle A.
$$\sin = \frac{a}{c}$$
, $\cos = \frac{b}{c}$, $\tan = \frac{a}{b}$, $\cot = \frac{b}{a}$, $\sec = \frac{c}{b}$, $\csc = \frac{c}{a}$

Given	Required	1.2
a, b	A, B, c	$\tan A = \frac{a}{b} = \cot B, c = \sqrt{a^2 + b^2} = a\sqrt{1 + \frac{b^2}{a^2}}$
a, c	A, B, b	$\sin A = \frac{a}{c} = \cos B, b = \sqrt{(c+a)(c-a)} = c\sqrt{1 - \frac{a^2}{c^2}}$ $B = 90^\circ - A, b = a \cot A, c = \frac{a}{\sin A}.$ $B = 90^\circ - A, a = b \tan A, c = \frac{b}{\cos A}.$
A, a	B, b, c	$B = 90^{\circ} - A, b = a \cot A, c = \frac{a}{\sin A}.$
A, b	В, а, с	$B = 90^{\circ} - A$, $a = b \tan A$, $c = \frac{b}{\cos A}$.
A, c	B, a, b	$B = 90^{\circ} - A, a = c \sin A, b = c \cos A,$

Solution of Oblique Triangles


Given	Required	i m
A, B, a		$b = \frac{a \sin B}{\sin A}$, $C = 180^{\circ} - (A + B)$, $c = \frac{a \sin C}{\sin A}$
A, a, b		$\sin B = \frac{b \sin A}{a}$, $C = 180^{\circ} - (A + B)$, $c = \frac{a \sin C}{\sin A}$
a, b, C	A, B, c	$A + B = 180^{\circ} - C$, $\tan \frac{1}{2} (A - B) = \frac{(a-b) \tan \frac{1}{2} (A+B)}{a+b}$,
a, b, c	A, B, C	$c = \frac{a \sin C}{\sin A}$ $s = \frac{a+b+c}{2}, \sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{b c}},$ $\sin \frac{1}{2}B = \sqrt{\frac{(s-a)(s-c)}{a c}}, C = 180^{\circ} - (A+B)$
a, b, c	Area	$s = \frac{a+b+c}{2}, \text{ area } = \sqrt{s(s-a)(s-b)(s-c)}$
A, b, c	Area	$area = \frac{b c \sin A}{2}$
A, B, C, a	Area	$area = \frac{a^2 \sin B \sin C}{2 \sin A}$

MADE IN CHINA

Jackson Peyton Sara Carey Smith 1/0/2022 9:45 my 1+100 Magnolia a auvert - Oninese privet West side of the HMUNICAN SUCAMORE Smilax Emalli

Station Status

Cherokee Town and Country Club

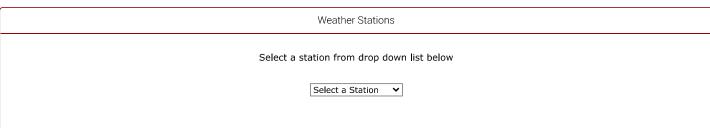
Dunwoody, Fulton County, Georgia Historical Data

(Tmin,Tmax and Precipitation amount)

Date	Max Temperature [°F]	Min Temperature [°F]	Rain (in)
May 09	60	41.5	0
May 10	69.5	36.9	0
May 11	63.9	46.2	0
May 12	68.8	41.3	0

May 13	72.3	50.8	0
May 14	78	58.9	0
May 15	78	59.3	0
May 16	81.8	58	0
May 17	83.6	61.6	0.12
May 18	76.9	64.7	0.78
May 19	71.2	60.5	0.1
May 20	60.5	53.6	0.05
May 21	72.2	53.3	0.01
May 22	80.7	59.5	0.01
May 23	83.1	63.1	0.02
May 24	85.6	65.4	0.05
May 25	81.7	66.4	0.23
May 26	73.9	67.1	0
May 27	71.5	64	0.59
May 28	81.4	64.5	0.02
May 29	82.2	66.3	0.05
May 30	81.9	62.8	0
May 31	83.7	57.3	0
Jun 01	79.2	60.7	0
Jun 02	83.4	62	0
Jun 03	85.9	64.4	0
Jun 04	86.5	66.7	0
Jun 05	79.4	68.8	0.54
Jun 06	86.5	65.4	0
Jun 07	87	68.3	0
Jun 08	82.9	72.8	0

<u>UGA (http://www.uga.edu)</u> | <u>CAES (http://www.caes.uga.edu/)</u> | <u>Site map (mindex.php?content=sitemap&title=Site%20Map)</u> | <u>Privacy Policy (mindex.php?content=policy&title=Privacy%20Policy)</u>


The University of Georgia is not responsible for content, products, or services offered via external web page links.

Griffin Campus, University of Georgia, Copyright © 1997-2022

(Page updated on 09/17/2020)

Station Status

Cherokee Town and Country Club

Dunwoody, Fulton County, Georgia

Historical Data

(Tmin,Tmax and Precipitation amount)

Date	Max Temperature [°F]	Min Temperature [°F]	Rain (in)
May 12	68.8	41.3	0
May 13	72.3	50.8	0
May 14	78	58.9	0
May 15	78	59.3	0

May 16	81.8	58	0
May 17	83.6	61.6	0.12
May 18	76.9	64.7	0.78
May 19	71.2	60.5	0.1
May 20	60.5	53.6	0.05
May 21	72.2	53.3	0.01
May 22	80.7	59.5	0.01
May 23	83.1	63.1	0.02
May 24	85.6	65.4	0.05
May 25	81.7	66.4	0.23
May 26	73.9	67.1	0
May 27	71.5	64	0.59
May 28	81.4	64.5	0.02
May 29	82.2	66.3	0.05
May 30	81.9	62.8	0
May 31	83.7	57.3	0
Jun 01	79.2	60.7	0
Jun 02	83.4	62	0
Jun 03	85.9	64.4	0
Jun 04	86.5	66.7	0
Jun 05	79.4	68.8	0.54
Jun 06	86.5	65.4	0
Jun 07	87	68.3	0
Jun 08	82.9	72.8	0
Jun 09	85.2	71.3	0.96
Jun 10	82.6	71.6	0.85
Jun 11	79.1	64.7	0.1

<u>UGA (http://www.uga.edu)</u> | <u>CAES (http://www.caes.uga.edu/)</u> | <u>Site map (mindex.php?content=sitemap&title=Site%20Map)</u> | <u>Privacy Policy (mindex.php?content=policy&title=Privacy%20Policy)</u>

The University of Georgia is not responsible for content, products, or services offered via external web page links.

Griffin Campus, University of Georgia, Copyright © 1997-2022

(Page updated on 09/17/2020)

Weather Stations

Select a station from drop down list below

Select a Station

✓

Station Status

Cherokee Town and Country Club

Dunwoody, Fulton County, Georgia Historical Data

(Tmin,Tmax and Precipitation amount)

Date	Max Temperature [°F]	Min Temperature [°F]	Rain (in)
Dec 17	68	56.6	0
Dec 18	65.7	60.5	0.91
Dec 19	61.1	38.4	0.04
Dec 20	45.6	36.2	0

College of Agricultural of www.weather.ug		Sciences	38.1	0.26	
UNIVERSITY OF GE			33.6	0	
<i></i>			27.6	0	
	Dec 24	62.3	31.7	0	
	Dec 25	67.9	52.8	0	
	Dec 26	73.4	55.7	0	
	Dec 27	69	57.2	0	
	Dec 28	69.9	62.3	0	
	Dec 29	71	61.7	0.79	
	Dec 30	63.6	59.9	1.69	
	Dec 31	67.5	56.9	0.01	
	Jan 01	75.8	66.5	0.01	
	Jan 02	72	49.2	1.06	
	Jan 03	49.3	29	0.14	
	Jan 04	47.8	26.8	0	
	Jan 05	54.4	37.9	0	
	Jan 06	57.6	32	0.23	
	Jan 07	36.2	24	0	
	Jan 08	49	26	0	
	Jan 09	58.8	40.2	0.22	
	Jan 10	47.8	32.8	0	
	Jan 11	48.1	29.4	0	
	Jan 12	52.2	26.4	0	
	Jan 13	55.6	30.9	0	
	Jan 14	51.7	35.4	0	
	Jan 15	44.2	35.2	0.11	
	Jan 16	37.4	30.9	0.87	

<u>UGA (http://www.uga.edu)</u> | <u>CAES (http://www.caes.uga.edu/)</u> | <u>Site map (mindex.php?content=sitemap&title=Site%20Map)</u> | <u>Privacy Policy (mindex.php?content=policy&title=Privacy%20Policy)</u>

The University of Georgia is not responsible for content, products, or services offered via external web page links.

Griffin Campus, University of Georgia, Copyright © 1997-2022

(Page updated on 09/17/2020)

NORMALS 1981-2010	YRS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
13873,ATHENS, GA	30,	4.05,	4.48,	4.43,	3.15,	3.00,	4.18,	4.47,	3.53,	3.94,	3.55,	3.82,	3.73,	46.33
13874,ATLANTA, GA	30,	4.20,	4.67,	4.81,	3.36,	3.67,	3.95,	5.27,	3.90,	4.47,	3.41,	4.10,	3.90,	49.71
13837,AUGUSTA,GA	30,	4.21,	4.03,	4.31,	2.95,	3.18,	4.29,	5.27,	4.92,	3.37,	3.23,	3.17,	3.62,	46.55
93842,COLUMBUS, GA	30,	3.85,	4.44,	5.46,	3.55,	3.19,	3.72,	4.76,	3.77,	3.06,	2.58,	4.10,	4.27,	46.75
03813,MACON, GA	30,	4.24,	4.36,	4.55,	2.96,	2.72,	4.06,	4.95,	4.10,	3.59,	2.79,	3.32,	4.04,	45.68
03822,SAVANNAH, GA	30,	3.69,	2.79,	3.73,	3.07,	2.98,	5.95,	5.60,	6.56,	4.58,	3.69,	2.37,	2.95,	47.96

https://www1.ncdc.noaa.gov/pub/data/ccd-data/nrmpcp.txt