SECTION 00 14 00 - QUALITY ASSURANCE/QUALITY CONTROL

PART 1 - GENERAL

1.1 SCOPE

This section includes requirements for the implementation of the Contractor’s quality assurance and quality control program.

1.2 SITE INVESTIGATION AND CONTROL

A. Contractor shall check and verify all dimensions and conditions in the field continuously during construction. Contractor shall be solely responsible for any inaccuracies built into the Work due to Contractor’s (including subcontractor’s) failure to comply with this requirement.

B. Contractor shall inspect related and appurtenant Work and report in writing to the Owner’s Representative any conditions that will prevent proper completion of the Work. Failure to report and such conditions shall constitute acceptance of all Site conditions, and any required removal, repair, or replacement caused by unsuitable conditions shall be performed by the Contractor solely and entirely at Contractor’s expense.

1.3 INSPECTION OF THE WORK

A. All work performed by the Contractor and subcontractors shall be inspected by the Contractor and non-conforming Work and any safety hazards in the work area shall be noted and promptly corrected. The Contractor is responsible for the Work to be performed safely and in conformance to the Agreement Documents.

B. The Work shall be conducted under the general observation of the Owner's Representative and is subject to inspection by representatives of the Owner to ensure strict compliance with the requirements of the Agreement Documents. Such inspection may include mill, plant, shop, or field inspection, as required. The Owner’s Representative or any inspector(s) shall be permitted access to all parts of the Work, including plants where materials or equipment are manufactured or fabricated.

C. The presence of the Owner’s Representative, or any inspector(s), however, shall not relieve the Contractor of the responsibility for the proper execution of the Work in accordance with all requirements of the Agreement Documents. Compliance is the responsibility of the Contractor. No act or omission on the part of the Owner's Representative, or any inspector(s) shall be construed as relieving Contractor of this responsibility. Inspection of Work later determined to be non-conforming shall not be cause or excuse for acceptance of the non-conforming Work. The Owner’s Representative may accept non-conforming Work when adequate compensation is offered and it is in the Owner’s best interest as determined solely by the Owner.
D. All materials and articles furnished by the Contractor or subcontractors shall be subject to rigid documented inspection, by qualified personnel, and no materials or articles shall be used in the Work until they have been inspected and accepted by the Contractor's Quality Control representative and the Owner's Representative or other designated representative. No Work shall be backfilled, buried, cast in concrete, covered, or otherwise hidden until it has been inspected. Any Work covered in the absence of inspection shall be subject to uncovering. Where uninspected Work cannot be easily uncovered, such as in concrete cast over reinforcing steel, all such Work shall be subject to demolition, removal, and reconstruction under proper inspection at the Contractor's expense.

E. All materials, equipment and/or articles furnished to the Contractor by the City shall be subject to rigid inspection by Contractor's Quality Control representative before being used or placed by Contractor. Contractor shall inform Owner's Representative, in writing, of the results of said inspections within one working day after completion of inspection. In the event Contractor believes any material or articles provided by City to be of insufficient quality for use in the Work, Contractor shall immediately notify Owner's Representative.

1.4 TIME OF INSPECTION AND TESTS

A. Samples and test specimens required under these Specifications shall be furnished and prepared for testing in ample time for the completion of the necessary tests and analyses before said articles or materials are to be used. The Contractor shall furnish and prepare all required test specimens at Contractor's own expense.

B. With the exception of emergency-response situations, whenever the Contractor is ready to backfill, bury, cast in concrete, hide, or otherwise cover any Work under this Contract, the Owner's Representative shall be notified not less than three Work Days in advance to request inspection before beginning any such Work of covering. Failure of the Contractor to notify the Owner's Representative at least three Work Days in advance of any such inspections shall be reasonable cause for the Owner's Representative to order a sufficient delay in the Contractor's schedule to allow time for such inspection. In the event of emergency response situations, Contractor shall provide Owner's Representative as much advance notice of schedule and upcoming activities as is feasible. Failure of the Contractor to provide advanced requests for normal inspections shall not constitute an “Emergency Situation”. The costs of any remedial or corrective work required, and all costs of such delays, including its impact on other portions of the Work, shall be borne by the Contractor.
1.5 SAMPLING AND TESTING

A. The Contractor shall retain and pay for an independent materials testing agency approved by the Owner’s Representative and the Owner. This independent testing agency will develop and submit a testing plan for quality assurance on each type of work activity. The testing agency will document the processes and procedures utilized to verify and maintain quality work. When not otherwise specified, all sampling and testing shall be in accordance with the methods prescribed in the most current standards, as applicable to the class and nature of the article or materials considered. However, the Owner’s Representative reserves the right to use any generally accepted system of inspection which, in the opinion of the Owner's Representative, will ensure the Owner’s Representative that the quality of the workmanship is in full accord with the Agreement Documents.

B. The Owner’s Representative reserves the right to abbreviate, modify the frequency of or waive tests or quality assurance measures, but waiver of any specific testing or other quality assurance measure, whether or not such waiver is accompanied by a guarantee of substantial performance as a relief from the specified testing or other quality assurance requirements as originally specified, and whether or not such guarantee is accompanied by a performance bond to assure execution of any necessary corrective or remedial work, shall not be construed as a waiver of any technical or qualitative requirements of the Agreement Documents.

C. Notwithstanding the existence of such waiver, the Owner and the Owner’s Representative shall reserve the right to make independent investigations and tests as specified in the following paragraph and failure of any portion of the Work to meet any of the qualitative requirements of the Agreement Documents, shall be reasonable cause for the Owner or the Owner’s Representative to require the removal or correction and reconstruction of any such Work.

D. In addition to any other inspection or quality assurance provisions that may be specified, the Owner’s Representative shall have the right to independently select, test, and analyze, at the expense of the Owner, additional test specimens of any or all of the materials to be used. Results of such tests and analyses shall be considered along with the tests or analyses made by the Contractor to determine compliance with the applicable specifications for the materials so tested or analyzed provided that wherever any portion of the Work is discovered, as a result of such independent testing or investigation by the Owner’s Representative, which fails to meet the requirements of the Agreement Documents, all costs of such independent inspection and investigation and all costs of removal, correction, reconstruction, or repair of any such Work shall be borne by the Contractor.

1.6 CONTRACTOR’S QUALITY ASSURANCE/QUALITY CONTROL REQUIREMENTS

A. The Contractor shall establish and execute a Quality Assurance/Quality Control (QA/QC) program for the services that are being procured from the Contractor. The program shall provide the Contractor with adequate measures for verification and conformance to defined requirements by his personnel and lower-tier subcontractors (including fabricators, suppliers, and sub-subcontractors). This program shall be described in a plan responsive to this Section. It shall utilize the services of an independent testing agency/company that is industry certified to provide quality assurance and compliance with the standards specified.
B. The Contractor shall furnish the Owner’s Representative a project specific QA/QC Plan. The Plan shall contain a comprehensive account of Contractor's QA/QC procedures as applicable to this job. The Contractor shall furnish for review by the Owner and the Owner’s Representative, no later than 14 days after receipt of a Notice to Proceed, the QA/QC plan proposed to be implemented. The plan shall identify personnel, procedures, control, instructions, tests, records, and forms to be used. Construction will be permitted to begin only after acceptance of the QA/QC Plan. The detailed requirements for this Plan are delineated in the following paragraphs. No payments will be made to the Contractor until the QA/QC Plan is fully accepted by the Owner’s Representative.

C. The QA/QC Plan shall describe and define the personnel requirements described herein. The Contractor shall designate an on-site Field QA/QC Manager per section 1100 of these specifications to manage, address and resolve all quality control issues.

1. QA/QC Manager shall be as identified by the Contractor and agreed to by the Owner. A QA/QC Manager shall be onsite at all times during while work is being performed by the contractor, to remedy and demonstrate that work is being performed properly and to make multiple observations of all Work in progress.

2. The Contractor shall provide additional personnel who are assigned to assist the QA/QC Manager as required to fulfill the requirements of the QA/QC Plan. The Contractor shall provide authority to the QA/QC Manager to adequately perform the functions of the QA/QC Manager, including authority to stop work which is not in compliance with the contract.

D. The Contractor's QA/QC program shall ensure the achievement of adequate quality throughout all applicable areas of the contract. A customized QA/QC Plan shall be developed that discusses each type of work that the Contractor is responsible for within the Project. The QA/QC Plan shall describe the program and include procedures, work instructions and records and a description of the quality control organization.

1. This plan shall require a preparatory installation training, follow-up monitoring and on going observation of the work.

 a. The preparatory installation training class attendance will be required by the Contractor’s and/or sub-contractor’s crews before the start of each new construction activity. The Owner’s Representative will attend and monitor the training.

 b. The follow-up monitoring will take place no later then 10 days after the preparatory installation training. The follow-up monitoring will require the work crews to continue to demonstrate the proper means and methods of construction as performed in the preparatory installation training class. If in the sole judgment of the Owner’s Representative that work is not being performed as per the QA/QC plan and/or the Agreement Documents, the crews shall discontinue the work and will be required to attend the preparatory training class, again. Any retraining will be at no cost to the City.
c. Ongoing monitoring will be taken place throughout the duration of the project. The ongoing monitoring will require the work crews to demonstrate the proper means and methods of construction as performed in the preparatory class. If in the judgement of the Owner's Representative that work is not being performed as per the QA/QC plan and/or the Agreement Documents the crews shall be required to attend the preparatory training class, again. Any retraining will be at no cost to the City.

E. Identification and Control of Items and Materials: Procedures to ensure that items or materials that have been accepted at the site are properly used and installed shall be described in the QA/QC Plan.

F. The procedures shall provide for proper identification and storage, and prevent the use of incorrect or defective materials.

G. Inspection and Tests: The Contractor shall have written procedures defining a program for control of inspections performed and these procedures shall be described in the QA/QC Plan.

1. Inspections and tests shall be performed and documented by qualified individuals. At a minimum, "qualified" shall mean having performed similar QA/QC functions on similar type projects for a minimum of five (5) years. Records of personnel experience, training and qualifications shall be submitted to the Owner's Representative for review and approval.

2. The Contractor shall maintain and provide to the Owner's Representative, within two working days of completion of each inspection and test, adequate records of all such inspections and tests. Inspection and test results shall be documented and evaluated to ensure that requirements have been satisfied.

3. Procedures shall include:
 a. Specific instructions defining procedures for observing all Work in process and comparing this Work with the Contract requirements.

 b. Maintaining and providing Daily QA/QC Inspection Reports. Such reports shall, at a minimum, include the following:
 i. Dated list of Item(s) inspected
 ii. Location of the test sample(s)
 iii. Logs, detailed locational drawings and confirmation reports
 iv. Quality characteristics in compliance
 v. Quality characteristics not in compliance
 vi. Corrective/remedial actions taken
 vii. Statement of certification
 viii. QC Manager's signature

 c. Specific instructions for recording all observations and requirements for demonstrating through the reports that the Work observed was in compliance or a deficiency was noted and action to be taken.

 d. Procedures to preclude the covering of deficient or rejected Work.

 e. Procedures for halting or rejecting Work.
f. Procedures for resolution of differences between the QA/QC representative(s) and the production representative(s).

g. Method of documenting QA/QC process and results including:
 i. Automatic exception reporting
 ii. Resolution tracking
 iii. Quality Confirmation Test reports
 iv. Sample retention index and storage

4. The QA/QC Plan shall identify all contractual hold/inspection points as well as any Contractor imposed hold/inspections points.

5. The QA/QC Plan shall include procedures to provide verification and control of all testing provided by Contractor including:

 a. Individual test records will contain the following information:
 i. Item tested – item number and description
 ii. Test results
 iii. Test designation
 iv. Test work sheet including location sample was obtained
 v. Acceptance or rejection
 vi. Date sample was obtained
 vii. Retest information, if applicable
 viii. Control requirements
 ix. Tester signature
 x. Testing QC staff initials

 b. Maintaining and providing to the Owner’s Representative Daily Testing Records. Such records shall, at a minimum, contain the following:
 i. Dated list of item(s) inspected
 ii. Location of the test sample(s)
 iii. Logs, detailed locational drawings and confirmation reports
 iv. Quality characteristics in compliance
 v. Quality characteristics not in compliance
 vi. Corrective/remedial actions taken
 vii. Statement of certification

 c. QC Manager’s signature providing for location maps/drawings (i.e. lift drawings, laying schedules, etc.) for all tests performed or location of Work covered by the tests.

 d. Maintaining copies of all test results.

 e. Ensuring Owner’s Representative receives independent copy of all tests.

 f. Ensuring testing lab(s) are functioning independently and in accordance with the specifications.

 g. Ensuring re-tests are properly taken and documented.
H. Control of Measuring and Test Equipment: Measuring and/or testing instruments shall be adequately maintained, calibrated, certified and adjusted to maintain accuracy within prescribed limits. Calibration shall be performed at specified periods against valid standards traceable to nationally recognized standards and documented.

I. Supplier Quality Assurance: The QA/QC Plan shall include procedures to ensure that procured products and services conform to the requirements of the Specifications. Requirements of these procedures shall be applied, as appropriate, to lower-tier suppliers and/or subcontractors. QA/QC inspections and certifications may not be deferred to the Contractor’s subs or suppliers.

J. Deficient, Defective, and Non-conforming Work; Corrective Action:

1. The QA/QC Plan shall include procedures for handling of deficiencies and non-conformances. Deficiencies and non-conformances are defined as documentation, drawings, material, and equipment or Work not conforming to the specified requirements or procedures. The procedure shall prevent non-conformances by identification, documentation, evaluation, separation, disposition and corrective action to prevent recurrence. Conditions having adverse effects on quality shall be promptly identified and reported to the senior level management. The cause of conditions adverse to quality shall be determined and documented and measures implemented to prevent recurrence. In addition, at a minimum, this procedure shall address:

 a. Personnel responsible for identifying deficient and non-complying items within the work.
 b. How and by whom deficient and non-compliant items are documented “in the field”.
 c. The personnel and process utilized for logging deficient and non-compliant work at the end of each day onto a Deficiency Log.
 d. Tracking processes and tracking documentation for Deficient and Non-Compliant items.
 e. Personnel responsible for achieving resolution of outstanding deficiencies.
 f. Once resolved, how are the resolutions documented and by whom.

K. Special Processes And Personnel Qualifications

1. The QA/QC Plan shall include detailed procedures for the performance and control of special process (e.g. welding, soldering, heat treating, cleaning, plating, nondestructive examination, etc.).
2. Personnel performing special process tasks shall have the experience, training and certifications commensurate with the scope, complexity, or nature of the activity. They shall be approved by the Owner’s Representative before the start of Work on the Project.
L. Audits: The Contractor’s QA/QC program shall provide for documented audits to verify that QA/QC procedures are being fully implemented by the Contractor as well as its sub tiers. Audit records shall be made available to the Owner’s Representative upon request and will provide to the Owner, reports indicating any outstanding and unresolved exceptions to the QA/QC program or Agreement Documents. This will include documentation on any standards modifications, corrections, failed tests and a review of field procedures and checks and balances effectiveness.

M. Documented Control/Quality Records

1. The Contractor shall establish methods for control of Agreement Documents that describe how Drawings and Specifications are received and distributed to assure the correct issue of the document being used. The methods shall also describe how as-built data are documented and furnished to the Owner’s Representative.

2. The Contractor shall maintain evidence of activities affecting quality, including operating logs, records of inspections and tests, audit reports, material analyses, personnel qualification and certification records, procedures, and document review records.

3. Quality records shall be maintained in a manner that provides for timely retrieval, and traceability. Quality records shall be protected from deterioration, damage, and destruction. The Contractor shall maintain an automated exceptions list of any non-conforming or defective or substandard work.

4. The Contractor shall provide a list with specific records as specified in the Agreement Documents which will be furnished to the Owner’s Representative at the completion of activities and in conjunction with logs and locational drawings.

N. Acceptance of QA/QC Plan: Owner’s Representative’s review and acceptance of the Contractor’s QA/QC Plan shall not relieve the Contractor from any of its obligations for the performance of the Work. The Contractor’s QA/QC staffing is subject to the Owner’s Representative’s review and continued acceptance. The City, at its sole option, without cause, may direct the Contractor to remove and replace the QA/QC representative. No Work covered by the QA/QC Plan shall start until Owner’s Representative’s acceptance of Contractor’s QA/QC plan has been obtained.

O. Owner’s Representative may perform independent quality assurance audits to verify that actions specified in Contractor’s QA/QC Plan have been implemented. No Owner’s Representative audit finding or report shall in any way relieve Contractor from any requirements of this Contract.

1.7 TESTING SERVICES

A. All tests which require the services of a laboratory to determine compliance with the Agreement Documents shall be performed by an independent commercial testing firm acceptable to Owner’s Representative. The testing firm’s laboratory shall be staffed with experienced technicians, properly equipped and fully qualified to perform the tests in accordance with the specified standards. All standard quality assurance testing and installation verification testing will be at the expense of the Contractor.
B. Contractor’s independent testing laboratory shall be accredited by the American Association of State Highway and Transportation Officials (AASHTO) for the tests they will perform and as appropriate to the construction work being performed. The Contractor’s laboratory shall also be AASHTO accredited in: ASTM C1077-92, “Practice for Laboratories Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Laboratory Evaluation”; ASTM D3740, “Practice for Evaluation of Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Owner’s Design/Construction”; and ASTM D3666, “Specifications for Minimum Requirements for Agencies Testing and Inspecting Bituminous Paving Materials”; ACI, American Concrete Institute standards and specified industry standards for sewers, waterlines, sidewalks, curbs and other applicable work.

C. Testing, when required, will be in accordance with all pertinent codes and regulations and with procedures and requirements of the American Society for Testing and Materials (ASTM).

D. The Owner’s Representative shall have the right to inspect work performed by the independent testing laboratory both at the project and at the laboratory. This shall include inspection of the independent testing laboratory’s internal quality assurance records (quality assurance manual, equipment calibrations, proficiency sample performance, etc.).

E. Contractor shall obtain Owner’s Representative’s acceptance of the testing firm before having services performed, and shall pay all costs for these testing services.

F. Testing services provided by City, if any, are for the sole benefit of City, however, test results shall be available to Contractor. Testing necessary to satisfy Contractor’s internal quality control procedures shall be the sole responsibility of Contractor.

G. LABORATORY DUTIES

1. Cooperate with Owner’s Representative and Contractor.
2. Provide qualified personnel promptly on notice.
3. Perform specified inspections, sampling and testing of materials and methods of construction.
4. Comply with specified standards, ASTM, other recognized authorities and as specified.
5. Ascertain compliance with requirements of Agreement Documents.
6. Promptly notify Owner’s Representative and Contractor of irregularity or deficiency of work, which are observed during performance of services.
7. Perform additional services as required.
8. Promptly submit two written copies and one electronic copy of the report for each test to the Owner’s Representative. Transmit to the Owner’s Representative within three workdays after each test is completed. Each report for each type of test shall be consecutively numbered. Each report shall include:
 a. Date issued
 b. Project title and number
 c. Testing laboratory name and address
 d. Name and signature of inspector
 e. Date of inspection or sampling
 f. Record of temperature and weather
 g. Date of test
 h. Identification of product and Specification section
 i. Location of Project
 j. Type of inspection or test
 k. Results of test
 l. Observations regarding compliance with Agreement Documents

9. Laboratory is not authorized to:
 a. Release, revoke, alter or enlarge on requirements of Agreement Documents.
 b. Approve or accept any portion of Work.

H. TESTING SERVICES FURNISHED BY CONTRACTOR

1. Unless otherwise specified, and in addition to all other specified testing requirements, Contractor shall provide all testing services as required for Owner’s Representative’s review:
 a. Concrete strength tests. Include Slump, Air Content, Temperature, and Unit Weight.
 b. Moisture-density and relative density tests on embankment, fill, and backfill materials.
 c. In-place field density test on embankments, fills, and backfill.
 d. Other materials and equipment as specified herein.
 e. Concrete materials and mix designs
 f. Embankment, fill, and backfill materials, density, optimum moistures and compaction.
 g. QC testing of all precast and/or pre-stressed concrete
 h. All other tests and Owner’s Representative data required for Owner’s Representative’s review of materials and equipment proposed to be used in the Work
 i. Foundation Bearing Test.

2. In addition, the following QC tests shall be performed by Contractor:
 a. Holiday testing of pipeline or other coatings.
 b. Slumps, air bucket tests, compression tests and other confirmation tests
c. Air testing of field-welded joints for steel pipe or pipe cylinders and fabricated specials.
d. All testing and inspection of welding work including, but not limited to, welding procedure qualifications, welder operator qualifications, all work performed by the certified welding inspector, all appropriate nondestructive testing of welds and all repair and retest of weld defects.

3. Testing, including sampling, shall be performed by Contractor's testing firm's laboratory personnel, in general manner and frequency indicated in the Specifications. The Owner's Representative and/or the City of Atlanta's representative shall have the right to stipulate the location of the confirmation tests. Contractor shall provide preliminary representative samples of materials to be tested to laboratory, in required quantities.

4. The testing firm's laboratory shall perform all laboratory tests within a reasonable time consistent with the specified standards and will furnish a written report of each test.

5. Contractor shall furnish all sample materials and cooperate in the testing activities, including sampling. Contractor shall interrupt the Work when necessary to allow testing, including sampling to be performed. Contractor shall have no claim for an increase in Contract Price or Contract Times due to such interruption. The Contractor shall be responsible for transporting all samples, except those taken by testing laboratory personnel, to the testing laboratory.

6. When testing activities, including sampling are performed in the field by the test firm's laboratory personnel, Contractor shall furnish required labor and facilities.
 a. To provide access to Work to be tested
 b. To obtain and handle samples at the site
 c. To facilitate inspections and tests
 d. Build or furnish a holding box for concrete cylinders or other samples as required by the laboratory.

7. Where such inspection and testing are to be conducted by an independent laboratory agency, the sample or samples shall be selected by such laboratory or agency or the Owner's Representative and shipped to the laboratory by the Contractor at Contractor's expense.

8. Notify laboratory sufficiently in advance of operation to allow for the assignment of personnel and schedules of tests.

9. The Contractor shall be responsible for furnishing all materials necessary for testing.

I. Transmittal of Test Reports: Written reports of tests and Owner's Representative data furnished by Contractor for Owner's Representative's review of materials and equipment proposed to be used in the Work shall be submitted as specified for Shop Drawings. Final transmittal of all Project testing records will be required as a final close-out submittal for the release of retainage.
1. Promptly process and distribute all required copies of test reports and related instructions to insure all necessary retesting or replacement of materials with the least possible delay in progress of the Work.

J. Copies of all correspondence between the Contractor and testing agencies shall be provided to the Owner’s Representative.

K. Inspections and tests required by codes or ordinances or by a plan approval authority, and made by a legally constituted authority, shall be the responsibility of and shall be paid for by the Contractor, unless otherwise provided in the Agreement Documents.

L. Inspection or testing performed exclusively for the Contractor’s convenience shall be the sole responsibility of the Contractor.

M. Schedules For Testing

1. Establishing Schedule

 a. The Contractor shall, by advance discussion with the testing laboratory determine the time required for the laboratory to perform its tests and to issue each of its findings, and make all arrangements for the testing laboratory to be on site to provide the required testing.

 b. Provide all required time within the construction schedule.

 c. When changes of construction schedule are necessary during construction, coordinate all such changes of schedule with the testing laboratory as required.

END OF SECTION 00 14 00
PART 1 - GENERAL

1.1 SCOPE

A. The Contractor shall provide all temporary facilities necessary for the proper completion of the Work, as necessary and as specified.

B. Maintain temporary facilities in proper and safe condition through the progress of the Work. In the event of loss or damage, immediately make all repairs and replacements necessary subject to approval of the Engineer and at no additional cost to Owner. At completion of the Work remove all such temporary facilities or as directed by the Engineer.

1.2 REQUIREMENTS

A. General

 1. Make all provisions, and pay all costs of furnishing, entrance steps and decks, installation, maintenance, utilities, professional services, permit fees, and site work for the temporary facilities.

B. Construction

 1. Temporary buildings shall be structurally sound, weather tight, with floors raised above ground. All mobile/modular buildings shall comply with GA-DCA/SBCC/ADA requirements, shall be Williams-Scottsman or equal, and shall be acceptable to the Engineer.

1.3 CONTRACTOR'S FACILITIES

A. Contractor's Plant: Submit a plan of the plant layout to Engineer for approval within 15 days of the Notice to Proceed. Contractor's plant, for purposes of this Section, is defined to include but not limited to its field offices, temporary water, sewer, underground and overhead utility locations, first aid stations, storage facilities, staging and stockpiling areas, access roads, parking areas, Port-O-Let locations, temporary pumping and dewatering equipment locations. Sufficient construction plant shall be provided and maintained at all points where work is in progress to meet adequately demands of the Work and with margin for emergencies or overload.

B. The plant shall be of sufficient capacity and reliability to permit a rate of progress, which will insure completion of the Work within the time stipulated in the Contract. Insufficient, inadequate, improper plant or equipment shall be brought to acceptable condition or shall be removed from the site.
C. The location of stationary and mobile equipment shall be subject to the Engineer's approval.

D. First Aid: Contractor shall provide for first aid on-site in compliance with their Safety Plan. Not less than two qualified first aid trained persons shall be on site during each working shift in the event that a First Aid trained person is themselves injured. Contractor shall have standing arrangements for the removal and hospital treatment of any injured person. The information reflecting this arrangement shall be clearly posted. All first aid facilities and emergency ambulance service shall be made available by the Contractor to the Owner's and Engineer's personnel, site visitors who have Work-related business at the property, and any other individuals on-site for the purposes of performing, monitoring, or testing any aspect of the work, or for making deliveries to the site.

1.4 OWNER’S REPRESENTATIVE FACILITIES

A. Engineer's Project Office

1. Contractor shall provide a single office facility which has dedicated space for the Owner’s Representative. Such facilities shall be a 40'x12' (minimum) mobile office trailer INCLUSIVE OF SPACE FOR Project meetings dedicated to the use of the Owner’s Representative. The Office Facility shall have one individual office and a common work area, storage closet and shall be acceptable to the Owner’s Representative. If internal toilet facilities cannot be accommodated, external Port-o-Let style facilities shall be located adjacent to the office trailer. Internal trailer offices shall have locking doors, and locking file cabinets at each work station for security. Contractor to provide two work desks with a four-drawer locking file cabinet each, and a meeting table with eight chairs in the common area. Office-style chairs shall be provided at each of the workstations. Contractor shall provide one multi-function color printer capable of printing up to 11x17 documents, scanning up to 8 ½” x 11” (minimum) and sending / receiving faxes. The Owner's Representative may store sensitive documents or equipment at the work station and Contractor shall therefore provide for a secure office space which may include as appropriate: security systems, expanded metal mesh window guards, dead bolt locks, exterior alarm horns and strobe lights, perimeter security lighting and fenced parking area. The Contractor will provide whatever other measures that are deemed necessary to secure the premises.

2. Local Area Network: The Contractor shall provide adequate computer system capability to allow the Owner’s Representative acceptable connectivity to their server. Provide Cable Modems, and, if necessary, T1 connections to allow high speed internet connection. No dial-up modems will be allowed. The Contractor shall pay the monthly charges for these services for the duration of their contract.

3. The Contractor shall be responsible for all office setup and removal costs, electrical, water and sewer costs, telephone costs, all service, and maintenance costs for the field office. The facilities for the Owner’s Representative’s field staff shall be in-place as soon as practicable following installation of initial erosion and sediment controls and prior to initiating other site work.
1.5 TELEPHONE SERVICES

A. General
 1. Make all necessary arrangements for outside telephone service to Contractor's and
 Engineer's office.
 2. All expenditures for installation costs of hardware, lines, line extensions, service
 changes, and recurring service charges for telephone service shall be paid by the
 Contractor. The Engineer will reimburse the Contractor for long distance charges
 made by the Engineer.

1.6 PARKING FACILITIES

A. General
 1. Provide ample parking graveled or paved, adjacent to Project Office. The parking
 surfaces shall be promptly and adequately maintained by the Contractor for the
 duration of the Contract.
 2. The parking facilities within the confines of the Site of the Work will be limited to the
 contract limits shown on the plans. The storage and work facilities provided by the
 Owner shall not be used for parking by the Contractor or its personnel. Additional
 parking facilities required by the Contractor shall be the Contractor's responsibility.

1.7 SECURITY AND MAINTENANCE

A. General
 1. Provide periodic indoor and outdoor maintenance and cleaning for temporary
 structures, furnishings, equipment and services as specified herein above.
 2. Contractor to be solely responsible for the security of the Site Offices. No claims for
 loss or damage shall be made against the Owner or the Owner's Representative
 arising from the failure of the Contractor to adequately secure the site.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 PREPARATION
 A. Fill and grade sites for temporary structures to provide surface drainage.

3.2 FIELD OFFICE INSTALLATION
 A. Construct temporary field offices, first aid stations, and storage facilities on proper
 foundations and provide connections for utility all services.
 B. Locate construction office facilities at locations within the Project approved by the
 Engineer.
 C. Provide an outside standpipe equipped with a non-freeze hose bib at Project Office.
 The hose bib is to be sized for a standard ½” garden hose connection.
3.3 ACCESS ROAD MAINTENANCE
 A. Construct access roads as shown and within easements, rights-of-way, or Project limits. Utilize existing roads where feasible. Alignments for new routes must be approved by Engineer.
 B. Maintain drainage ways. Install and maintain culverts to allow water to flow beneath access roads. Provide corrosion-resistant culvert pipe of adequate strength to resist construction loads.
 C. Provide gravel, crushed rock, or other stabilization material to permit access by all motor vehicles at all times. Maintain road grade and crown to eliminate potholes, rutting, and other irregularities that restrict access.
 D. Coordinate with Engineer detours and other operations affecting traffic and access to Engineer's facilities. Provide at least 72 hours' notice to Engineer of operations that will alter access to or within the site.
 E. Where access roads cross existing fences, install and maintain gates.

3.4 PARKING AREA MAINTENANCE
 A. Control vehicular parking to preclude interference with public traffic or parking, access by emergency vehicles, Owner's operations, or construction operations.
 B. Provide graveled or paved parking facilities for personnel working on the Project in the location shown. No employee or equipment parking will be permitted on existing paved areas, except as specifically designated for Contractor's use.

3.4 MAINTENANCE AND CLEANING
 A. Repair and clean the offices, parking areas and access routes and provide complete janitorial services, including toilet paper and paper towels, in the Site facilities for the duration of the project. Provide approved containers for collection and disposal of waste materials, debris, and rubbish. At least at weekly intervals, dispose of such waste materials, debris, and rubbish offsite.
 B. Brush sweep the entry drive and roadways, and all other streets and walkways affected by Work and where adjacent to Work as required to maintain a clean work site.

3.5 REMOVAL
 A. Remove temporary field offices, contents and services at a time when no longer needed.
 B. Remove foundations and debris; grade site to required elevations; clean and restore areas to Engineer's satisfaction.

3.6 TEMPORARY UTILITIES
 A. Make all arrangements with utility companies and governmental agencies to secure such services. Such services shall be provided at no additional cost to the Owner. Temporary utility services shall be furnished, installed, connected, and maintained by Contractor in a workmanlike manner, satisfactory to the Engineer, and shall be removed in like manner prior to final acceptance.
B. Power:

1. Electric power will be available at or near the site. The Contractor shall determine the type and capacity required and shall make the necessary arrangements for obtaining temporary power metering equipment, pay for all installation costs and usage costs.

2. **Cost of electric power will be borne by the Contractor.**

3. All temporary electric power installations shall meet the safety requirements of all federal, state, and local codes and regulations.

C. Lighting: Provide temporary site lighting at least to meet all applicable safety requirements to allow erection, application or installation of materials and equipment, and observation or inspection of the Work.

D. Heating, Cooling, and Ventilating:

1. Provide as required to maintain adequate environmental conditions to facilitate progress of the Work, to meet specified minimum conditions for the installation of materials, and to protect materials, equipment, and finishes from damage due to temperature or humidity. Costs for temporary heat shall be borne by the Contractor.

2. Provide adequate forced air ventilation of enclosed areas to cure installed materials, to dispense humidity, and to prevent hazardous accumulations of dust, fumes, vapors, or gases.

3. Pay all costs of installation, maintenance, operation, removal, and fuel consumed.

4. Provide portable unit heaters, complete with controls, oil- or gas-fired, and suitably vented to outside as required for protection of health and property.

5. If permanent natural gas piping is used for temporary heating units, do not modify or reroute gas piping without approval of utility company. Provide separate gas metering as required by utility.

E. Water:

1. Contractor shall provide a place of temporary connection for construction and drinking water. The Contractor shall provide temporary facilities and piping required to bring water to the point of use at each site, and remove them when no longer needed. Install an acceptable metering device at each site and pay for water used at the City's current rate.

2. **Provide and bear costs of necessary water required for testing equipment, and piping prior to Project Completion, unless otherwise specifically stated in the Specifications for the equipment, systems, or facilities to be tested.**

F. Sanitary and Personnel Facilities:

Provide and maintain clean and sanitary enclosed toilet facilities for Contractor's employees, Subcontractors, and all other onsite employer's employees. Contractor agrees to supply, service, clean, and maintain facilities and enclosures for the duration of the Agreement Term.
G. Telephone Service:

Arrange and provide onsite telephone service for Contractor's and Engineer's use during construction. Pay all costs of installation and monthly bills.

END OF SECTION 00 15 00
SECTION 00 15 40 - SECURITY AND SAFETY

PART 1 - GENERAL

1.1 SCOPE
A. This section includes requirements for the Contractor's security and safety programs, insurance and Health Safety and Security Plan, safety and security related staff.

1.2 GENERAL
A. The Contractor shall maintain a safe and secure work area throughout the duration of the Project. The Owner considers the safety and security of the public; property; and the Contractor's, subcontractor's, the Owner's and the Owner's Representative's personnel as the number one priority of the Contractor. The Contractor agrees to actively conform to these requirements and to provide any assistance necessary to the Owner's or the Owner's Representative's safety and security personnel.
B. Job site safety and security shall be maintained in accordance with laws, regulations, standards, and requirements established by authorities having jurisdiction including the Occupational Safety and Health Administration (OSHA) and Homeland Security Administration.

1.3 SECURITY PROGRAM
A. The Contractor shall protect the Work, including all field office trailers and their contents from theft, vandalism, and unauthorized entry. This security program includes all measures up to and including the provision of guard services and the use of off-duty police to actively patrol the Project site.
B. The Contractor shall initiate and maintain a site security program at the time of mobilization onto the Site of the Work, which provides adequate security for stored and installed material; facilities and equipment; for any property under their control while pursuing the work.
C. The Contractor shall maintain the security program throughout the duration of the Agreement.
D. The Contractor and subcontractors are wholly responsible for the security of their storage compound, staging areas and lay-down areas, and for all their plant, material, equipment, and tools at all times.
E. The Contractor shall provide the Engineer with a complete list of twenty-four (24) hour emergency contact phone numbers including chain of command.

1.4 ENTRY CONTROL
A. The Contractor shall restrict entry of unauthorized personnel and vehicles onto the Site of the Work.
B. The Contractor shall allow entry only to authorized persons with proper identification.
C. The Contractor shall maintain an Employee Log and Visitor Log and make the logs available upon request. These logs shall be submitted to the Engineer bi-weekly or as requested.

D. The Contractor shall require all visitors to sign the Visitor Acknowledgment of the Project Site Rules/Visitor Log, which includes a release form. Copies of these forms shall be submitted to the Engineer bi-weekly and maintained in the Contractor's security files on the Site of the Work.

E. The Contractor shall require all employees to sign the Employee Acknowledgment of Project Site Rules Log included at the end of this Section. All Contractor employees, subcontractor employees, and lower tier subcontractor employees will receive a new employee orientation. Signing the Employee Log by the employee is certifying that the orientation training has been received.

F. The Owner’s Representative has the right to refuse access to the Site of the Work or request that a person or vehicle be removed from the Site of the Work if found violating any of the Project safety, security, and conduct rules.

1.5 BARRICADES, LIGHTS, AND SIGNALS
A. The Contractor shall furnish and erect such barricades, fences, lights, and danger signals and shall provide such other precautionary measures for the protection of persons or property and of the Work as necessary. Barricades shall be painted in a color that will be visible at night. From sunset to sunrise, the Contractor shall furnish and maintain at least one (1) light at each barricade and sufficient numbers of barricades shall be erected to keep vehicles from being driven on or into any Work under construction.

B. The Contractor shall be responsible for all damage to the Work and any resulting injuries due to failure of barricades, signs, and lights and whenever evidence is found of such damage, the Contractor shall immediately remove the damaged portion of the Work and replace it at Contractor's cost and expense. The Contractor's responsibility for the maintenance of barricades, signs, and lights shall not cease until the Work has been accepted by the Owner.

1.6 RESTRICTIONS
A. The Contractor shall not allow cameras on the Site of the Work or photographs taken except with approval of the Owner or the Owner’s Representative.

1.7 CONTRACTOR SAFETY, HEALTH, AND SECURITY PLAN
A. Prior to the performance of any work the Contractor shall prepare a contract specific Safety, Health, and Security Plan signed by an officer of the Contractor's organization. Safety, health, and security at the Site of the Work is the responsibility of the Contractor.

B. The Owner’s Representative will not review the Contractor's safety plan for the adequacy of the plan. The plan shall:
1. Identify the person(s) responsible for implementation and enforcement of safety, health, and security rules and regulations for this Project.

2. Generally address safe work procedures for the activities within the Contractor's scope of work.

3. Include a new employee orientation program, which addresses job and site specific rules, regulations, and hazards.

4. Include the Contractor's Drug Free Work Place Policy including substance abuse prevention and testing program.

5. Include provisions to protect all of the Contractor's employees, other persons and organizations who may be affected by the Work from injury, damage, or loss.

6. Comply with current federal, state, and local safety, health, and security rules, regulations, and practices including those promulgated by the OSHA.

7. Include a site specific emergency action and evacuation plan.

8. Include Hazard Communication/Right To Know Program.

9. Include security procedures for the Contractor's work, tools, and equipment.

10. Include the provision for providing the Engineer with documentation to show compliance with the safety, health, and security plan including accidents and investigation reports.

11. Address any other contract-specific safety, health, and security requirements.

C. The Contractor shall provide a Job Safety Analysis (JSA) for the Work, prior to the starting of the Work. The Contractor shall designate a Project Safety Coordinator (per section 1100 of these specifications) who is on-site during work hours and will perform site safety inspections at least once a day. Owner shall agree to the designated person. This position may be filled by a person who has other simultaneous operational or construction duties provided that Safety related functions are not adversely impacted.

D. Review of the Contractor's Safety, Health, and Security Plan by the Engineer or their assignees shall not impose any duty or responsibility upon the Engineer for the Contractor's performance of the Work in a safe manner.

E. The Contractor shall be fully responsible for the safety and health of its employees, its subcontractors and lower tier contractors during performance of the Work.

F. The Contractor shall provide the Engineer with all safety reports, training records, competent person list, certifications in first aid, etc. and accident reports prepared in compliance with Safety, Health, and Security Plan.
1.8 PROJECT SAFETY COORDINATOR

A. The Contractor shall be responsible for the safety of the Contractor’s, Engineer’s employees, the Owner’s personnel, the Owner’s Representatives and all other personnel at the Site of the Work. The Contractor shall have a Project Safety Coordinator on the Site of the Work with an appropriate office to maintain and keep available safety records and up-to-date copies of all pertinent safety rules and regulations.

B. The Project Safety Coordinator shall:

1. Ensure compliance with all applicable health and safety requirements of all governing legislation.

2. Schedule and conduct safety meetings and safety training programs and inspections for compliance as required by the specifications and the law for all personnel engaged in the Work.

3. Post all appropriate notices regarding safety and health regulations at locations that afford maximum exposure to all personnel at the Site of the Work.

4. Post the name, addresses, and hours of the nearest medical doctor; names and addresses of nearby clinics and hospitals; and the telephone numbers of the fire and police departments.

5. Post appropriate instructions and warning signs with regard to all hazardous areas or conditions.

6. Have proper safety and rescue equipment adequately maintained and readily available for any contingency. This equipment shall include such applicable items as: proper fire extinguishers, first aid kits, safety ropes and harnesses, stretcher, life savers, oxygen breathing apparatus, resuscitators, gas detectors, oxygen deficiency indicators, explosion meters, and any other equipment mandated by law.

7. Make inspections at least once daily in accordance with an inspection checklist report form to ensure that all machines, tools, and equipment are in safe operating condition; that all Work methods are safe; and that all work methods are free of hazards.

8. Submit to the Owner’s Representative upon request copies of all inspection checklist report forms, safety records, and all safety inspection reports and certifications from regulatory agencies and insurance companies.

9. Notify the Owner’s Representative of a serious accident immediately, followed by a detailed written report within twenty-four (24) hours. “Serious accident” is defined as that requiring an absence of work of more than two (2) days and/or hospitalization.
10. Notify the Owner and the Owner’s Representative immediately in the event of a fatal accident.

11. Notify the Owner’s Representative of any accident claim against the Contractor or any subcontractor immediately, followed up by a detailed written report on the claim and its resolution.

12. Review safety aspects of the Contractor’s submittals as applicable.

1.9 SUBSURFACE / SHAFT SAFETY

A. All work shall be performed in accordance with OSHA rules, regulations, and requirements with particular reference to 29 CFR §1926.800, Subpart S entitled "Underground Construction." Should there be any conflict between these Specifications and OSHA rules, regulations, and requirements, the more restrictive shall apply.

B. All personnel whenever entering the Site of the Work, any shaft, manhole, trench, sewer or tunnel, shall be required to wear approved safety hats as well as protective clothing, footwear, eyewear, ear protectors, and other equipment as required by OSHA. The Contractor shall maintain, on the Site of the Work, a sufficient number of safety hats and other personal protective equipment for the use of visitors.

C. Where work is in progress in a tunnel or for excavations and trenches more than ten (10) feet in depth, the Contractor shall also provide as a minimum the following safety equipment:

1. Adequate stretcher units placed in convenient locations adjacent to the Work.

2. Oxygen deficiency indicators.

3. Carbon Monoxide testers.

4. Hydrogen Sulfide detectors.

5. Portable explosimeter for the detection of explosive gases such as methane, petroleum, vapors, etc.

D. All personnel entering the underground works shall have access to a Self Contained Self Rescuer, such as the Oxyboks series manufactured by Drager Safety or OSHA approved equal.

E. In shaft and tunnel work, an additional explosimeter shall be provided at the heading at all times which will continuously monitor for the presence of explosive gases. This explosimeter shall be the type that automatically provides both visual and audible alarms.
F. No employees will be allowed to work, in areas where concentrations of airborne contaminants exceed federal threshold limits. Respirators shall not be substituted for environmental control measures and shall be used only as prescribed by OSHA.

G. The Contractor shall provide lighting in accordance with OSHA regulations and requirements for the entire length of the tunnel. Light shall be adequate to permit proper inspection of all operations at all times. Minimum lighting consisting of 100-Watt light bulb at forty (40) feet spacing will be maintained during all working hours. The intensity of the lighting required by applicable regulations for tunnel excavating operations shall be increased as required by the Engineer for concrete placement and for final cleanup.

H. The Contractor shall maintain the subsurface air in a condition suitable for the health of the workers at all times. Ventilating plants shall be of ample capacity as a minimum in conformance with OSHA requirements, and shall be installed and operated while the work is going on in the tunnels and at other times as may be necessary.

I. The entire ventilating system shall be maintained in a good condition and shall be under the direction of an employee experienced in tunnel ventilation operation and maintenance. A supply of fresh air shall be furnished for the quick removal of fumes and dust generated by tunnel operations.

J. The Contractor is advised to maintain backup generators to insure the continued operation of the ventilation system in the event of power outages.

K. The Contractor shall periodically inspect sewer surfaces and installed support daily for signs of deterioration and/or distress. Qualified employees shall perform the inspection. The Contractor shall implement any remedial action deemed necessary immediately after identifying the same by inspection; including but not limited to, installation of additional supports, welded wire fabric, mine straps, and in the case of drilled and blasted sections application of shotcrete to exposed rock surfaces. Such remedial actions shall be approved in advance by the Owner’s Representative and the Owner.

L. The Contractor shall install temporary covers on shafts during extended periods of construction inactivity at the shaft sites. The shaft covers may be grated where the shaft is to be used as a ventilation inlet, and shall be designed by the Contractor to prevent accidental entry of personnel, debris, etc., into the shafts.

M. All shafts shall be enclosed with a security fence which shall be secure at any time the site is unattended by Contractor’s personnel. All storage areas and workshops shall be so segregated so that their use during times of site inactivity does not compromise the security of the shaft area. The fence shall have all necessary gates and entrances with keys furnished to the Engineer for all locking devices. In addition, the Contractor shall provide barricades at the top of shafts in accordance with OSHA requirements, and shaft covers as specified in this section.

N. Lights, barricades, signs, and watchmen shall be provided and maintained to properly protect the public, the workers, and the Work against injury or damage.
O. Internal combustion engines other than mobile diesel powered equipment shall not be used underground. All diesel powered mobile equipment used underground shall be as prescribed by the OSHA and be operated in compliance with OSHA regulations and requirements. The Contractor, upon request, shall submit proof of certification to the Owner’s Representative. All internal combustion equipment allowed under this paragraph shall be operated in such a manner as to prevent health hazards to personnel from exhaust fumes.

P. All haulage equipment such as hoists, cages, and elevators in operation in excavations and shafts shall conform to all OSHA regulations and requirements. They will be inspected at the beginning of each shift and at the completion of that shift to ensure that all hoisting and hydraulic systems and appliances are in safe operating order. Any frayed, torn, pinched or damaged slings, chokers or other lifting appliances are to be removed from the Project immediately.

Q. Fire Prevention and Control: All underground construction shall be performed in accordance with the applicable fire prevention and control requirements of OSHA and Local fire department ordinances.

R. Noise and Dust Control: The Contractor shall control noise and dust in accordance with applicable federal, state and local laws, safety codes, regulations, and ordinances and in accordance with the requirements of Section 01560 - Dust Control, and Section 01563 - Noise Control. Contractor will clean the streets and adjacent areas of dust and mud at the end of each shift and will minimize the negative impacts of the work on surrounding property including the storm drains.

S. VISITOR ACKNOWLEDGMENT OF THE SITE OF THE WORK RULES

By signing this Visitor's Log, I acknowledge that I understand and agree to abide by the Site of the Work rules outlined below.

In consideration of my receipt of a visitor’s pass as issued by the Owner's Representative directly or indirectly from the City of Atlanta, I waive on behalf of myself, my heirs, employer, legal representatives, and assigns and hereby release and discharge the City, the Owner’s Representative, the Designer, and their subcontractors and consultants and each of their directors, officers, employees, representatives, and agents from any and all claims, actions, causes of action, or any charge of any kind whatsoever which may arise or could arise in the future as a result of my being present at the facility including injury, death, or property damage whether or not caused by the fault or negligence of any of the parties released hereunder.

I further acknowledge that I have been briefed on specific hazards, and hazardous substances that are on site and the site emergency action procedure.
PROHIBITED ACTIVITIES

A. Unauthorized removal or theft of Owner’s, Owner’s Representative’s or Designer’s property.
B. Violation of safety or security rules or procedures.
C. Possession of firearms or lethal weapons on the Site of the Work.
E. Destruction or defacing property.
F. Failure to use sanitary facilities.
G. Failure to report accidents or job related injuries.
H. Being under the apparent influence of drugs, alcohol, or other intoxicants or in possession of drugs, alcohol, or other intoxicants on the property.
I. Wearing shorts or tennis shoes on the Site of the Work.
J. Failure to wear a hardhat/safety glasses.
K. Gambling at any time on the Site of the Work.
L. Fighting, threatening behavior, or engaging in horseplay on the Site of the Work.
M. Smoking in unauthorized areas on the Site of the Work.
N. Open fire cooking or making unauthorized fires on Site of the Work.
O. Selling items or raffles without authorization.
P. Use of unauthorized cameras on the Site of the Work.
Q. Use of radio or television in the Site of the Work
R. Failure to park personal vehicle in authorized parking areas.
S. Failure to wear designated identification which is Site of the Work Specific
T. Failure to use designated gates.

I have read, understand, and agree to abide by the SITE OF THE WORK RULES. Furthermore, I understand that failure to abide by these rules is grounds for being denied access to the Site of the Work. I have received a personal copy for my use and reference.
VISITOR LOG

THE SIGNING OF THIS LOG ACKNOWLEDGES I HAVE READ AND UNDERSTAND AND AGREE TO ABIDE BY THE SITE OF THE WORK RULES OUTLINED ABOVE. THIS IS NOT A VEHICLE ACCESS PERMIT.

<table>
<thead>
<tr>
<th>VISITOR’S NAME PRINT</th>
<th>SIGNATURE</th>
<th>COMPANY VISITED</th>
<th>DATE</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Atlanta Beltline Inc.
Security and Safety
EMPLOYEE LOG

SIGNING THIS LOG IS ACKNOWLEDGMENT THAT I HAVE READ AND UNDERSTAND AND AGREE TO ABIDE BY THE SITE OF THE WORK RULES OUTLINED ABOVE AND ALL STATE, FEDERAL, LOCAL, OR ANY OTHER CONTRACT OBLIGATIONS THAT MAY APPLY. I FURTHER ACKNOWLEDGE THAT I HAVE BEEN ORIENTATED AS TO THE SITE SPECIFIC HAZARDS, ANY HAZARDOUS SUBSTANCES I MAY BE EXPOSED TO WHILE ON THE SITE AND THE SITE/COMPANY EMERGENCY ACTION PROCEDURES, BY A REPRESENTATIVE OF THE COMPANY.

<table>
<thead>
<tr>
<th>EMPLOYEES (PRINT)</th>
<th>SIGNATURE</th>
<th>COMPANY NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION 00 15 40
SECTION 01 56 39 - TEMPORARY TREE AND PLANT PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general protection and pruning of existing trees and plants that are affected by execution of the Work, whether temporary or permanent construction.

B. Related Sections:

1. Section 015000 "Temporary Facilities and Controls" for temporary site fencing.
2. Section 311000 "Site Clearing" for removing existing trees and shrubs.

1.3 DEFINITIONS

A. Caliper: Diameter of a trunk measured by a diameter tape at 6 inches above the ground for trees up to, and including, 4-inch size; and 12 inches above the ground for trees larger than 4-inch size.

B. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction, and indicated on Drawings.

C. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and indicated on Drawings.

D. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples for Verification: For each type of the following:

2. Protection-Zone Fencing: Assembled Samples of manufacturer's standard size made from full-size components.
3. **Protection-Zone Signage**: Full-size Samples of each size and text, ready for installation.

C. **Tree Pruning Schedule**: Written schedule detailing scope and extent of pruning of trees to remain that interfere with or are affected by construction.
 1. Species and size of tree.
 2. Location on site plan. Include unique identifier for each.
 3. Reason for pruning.
 4. Description of pruning to be performed.
 5. Description of maintenance following pruning.

1.5 INFORMATIONAL SUBMITTALS

A. **Qualification Data**: For qualified arborist and tree service firm.

B. **Certification**: From arborist, certifying that trees indicated to remain have been protected during construction according to recognized standards and that trees were promptly and properly treated and repaired when damaged.

C. **Maintenance Recommendations**: From arborist, for care and protection of trees affected by construction during and after completing the Work.

D. **Existing Conditions**: Documentation of existing trees and plantings indicated to remain, which establishes preconstruction conditions that might be misconstrued as damage caused by construction activities.
 1. Use sufficiently detailed photographs or videotape.
 2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plants designated to remain.

1.6 QUALITY ASSURANCE

A. **Arborist Qualifications**: **Certified Arborist as certified by ISA**

B. **Tree Service Firm Qualifications**: An experienced tree service firm that has successfully completed temporary tree and plant protection work similar to that required for this Project and that will assign an experienced, qualified arborist to Project site during execution of the Work.

C. **Preinstallation Conference**: Conduct conference at **Project site**.
 1. Review methods and procedures related to temporary tree and plant protection including, but not limited to, the following:
 a. Construction schedule. Verify availability of materials, personnel, and equipment needed to make progress and avoid delays.
 b. Enforcing requirements for protection zones.
c. Arborist's responsibilities.
d. Field quality control.

1.7 PROJECT CONDITIONS

A. The following practices are prohibited within protection zones:

1. Storage of construction materials, debris, or excavated material.
2. Parking vehicles or equipment.
3. Foot traffic.
4. Erection of sheds or structures.
5. Impoundment of water.
6. Excavation or other digging unless otherwise indicated.
7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

B. Do not direct vehicle or equipment exhaust toward protection zones.

C. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones and organic mulch.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Topsoil: Natural or cultivated top layer of the soil profile or manufactured topsoil; containing organic matter and sand, silt, and clay particles; friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 1 inch in diameter; and free of weeds, roots, and toxic and other nonsoil materials.

1. Obtain topsoil only from well-drained sites where topsoil is 4 inches deep or more; do not obtain from bogs or marshes.

B. Topsoil: **Imported or manufactured topsoil complying with ASTM D 5268**

C. Organic Mulch: Free from deleterious materials and suitable as a top dressing for trees and shrubs, consisting of one of the following:

1. Type: **Shredded hardwood**
2. Size Range: **3 inches maximum**

D. Protection-Zone Fencing: Fencing fixed in position and meeting one of the following requirements.
1. Plastic Protection-Zone Fencing: Plastic construction fencing constructed of high-density extruded and stretched polyethylene fabric with 2-inch (50-mm) maximum opening in pattern and weighing a minimum of 0.4 lb/ft. (0.6 kg/m); remaining flexible from minus 60 to plus 200 deg F (minus 16 to plus 93 deg C); inert to most chemicals and acids; minimum tensile yield strength of 2000 psi (13.8 MPa) and ultimate tensile strength of 2680 psi (18.5 MPa); secured with plastic bands or galvanized-steel or stainless-steel wire ties; and supported by tubular or T-shape galvanized-steel posts spaced not more than 8 feet (2.4 m) apart.

 a. Height: 4 feet.
 b. Color: High-visibility orange, nonfading.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Erosion and Sedimentation Control: Examine the site to verify that temporary erosion-and sedimentation-control measures are in place. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.

B. For the record, prepare written report, endorsed by arborist, listing conditions detrimental to tree and plant protection.

3.2 PREPARATION

A. Locate and clearly identify trees, shrubs, and other vegetation to remain. Tie a 1-inch blue-vinyl tape around each tree trunk at 54 inches above the ground.

B. Protect tree root systems from damage caused by runoff or spillage of noxious materials while mixing, placing, or storing construction materials. Protect root systems from ponding, eroding, or excessive wetting caused by dewatering operations.

C. Tree-Protection Zones: Mulch areas inside tree-protection zones and other areas indicated.

 1. Apply 4-inch average thickness of organic mulch. Do not place mulch within 6 inches of tree trunks.

3.3 TREE- AND PLANT-PROTECTION ZONES

A. Protection-Zone Fencing: Install protection-zone fencing along edges of protection zones before materials or equipment are brought on the site and construction operations begin in a manner that will prevent people from easily entering protected area except by entrance gates. Construct fencing so as not to obstruct safe passage or
visibility at vehicle intersections where fencing is located adjacent to pedestrian walkways or in close proximity to street intersections, drives, or other vehicular circulation.

1. Chain-Link Fencing: Install to comply with ASTM F 567 and with manufacturer's written instructions.
2. Posts: Set or drive posts into ground one-third the total height of the fence without concrete footings. Where a post is located on existing paving or concrete to remain, provide appropriate means of post support acceptable to Architect.

B. Maintain protection zones free of weeds and trash.

C. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations, in a manner approved by Architect.

D. Maintain protection-zone fencing and signage in good condition as acceptable to Architect and remove when construction operations are complete and equipment has been removed from the site.

1. Do not remove protection-zone fencing, even temporarily, to allow deliveries or equipment access through the protection zone.
2. Temporary access is permitted subject to preapproval in writing by arborist if a root buffer effective against soil compaction is constructed as directed by arborist. Maintain root buffer so long as access is permitted.

3.4 EXCAVATION

A. General: Excavate at edge of protection zones and for trenches indicated within protection zones according to requirements in Section 31 20 00 "Earth Moving."

B. Trenching near Trees: Where utility trenches are required within protection zones, hand excavate under or around tree roots or tunnel under the roots by drilling, auger boring, or pipe jacking. Do not cut main lateral tree roots or taproots; cut only smaller roots that interfere with installation of utilities. Cut roots as required for root pruning.

C. Redirect roots in backfill areas where possible. If encountering large, main lateral roots, expose roots beyond excavation limits as required to bend and redirect them without breaking. If encountered immediately adjacent to location of new construction and redirection is not practical, cut roots approximately 3 inches (75 mm) back from new construction and as required for root pruning.

D. Do not allow exposed roots to dry out before placing permanent backfill. Provide temporary earth cover or pack with peat moss and wrap with burlap. Water and maintain in a moist condition. Temporarily support and protect roots from damage until they are permanently relocated and covered with soil.
3.5 ROOT PRUNING

A. Prune roots that are affected by temporary and permanent construction. Prune roots as follows:

1. Cut roots manually by digging a trench and cutting exposed roots with sharp pruning instruments; do not break, tear, chop, or slant the cuts. Do not use a backhoe or other equipment that rips, tears, or pulls roots.

2. Cut Ends: Coat cut ends of roots more than 1-1/2 inches in diameter with an emulsified asphalt or other coating formulated for use on damaged plant tissues and that is acceptable to arborist.

3. Temporarily support and protect roots from damage until they are permanently redirected and covered with soil.

4. Cover exposed roots with burlap and water regularly.

5. Backfill as soon as possible according to requirements in Section 312000 "Earth Moving."

B. Root Pruning at Edge of Protection Zone: Prune roots 12 inches outside of the protection zone, by cleanly cutting all roots to the depth of the required excavation.

C. Root Pruning within Protection Zone: Clear and excavate by hand to the depth of the required excavation to minimize damage to root systems. Use narrow-tine spading forks, comb soil to expose roots, and cleanly cut roots as close to excavation as possible.

3.6 CROWN PRUNING

A. Prune branches that are affected by temporary and permanent construction. Prune branches as follows:

1. Prune trees to remain to compensate for root loss caused by damaging or cutting root system. Provide subsequent maintenance during Contract period as recommended by arborist.

2. Pruning Standards: Prune trees according to ANSI A300 (Part 1).

3. Cut branches with sharp pruning instruments; do not break or chop.

4. Do not apply pruning paint to wounds.

B. Chip removed branches and dispose of off-site.

3.7 REGRADING

A. Lowering Grade: Where new finish grade is indicated below existing grade around trees, slope grade beyond the protection zone. Maintain existing grades within the protection zone.
B. Lowering Grade within Protection Zone: Where new finish grade is indicated below existing grade around trees, slope grade away from trees as recommended by arborist unless otherwise indicated.

1. Root Pruning: Prune tree roots exposed by lowering the grade. Do not cut main lateral roots or taproots; cut only smaller roots. Cut roots as required for root pruning.

C. Raising Grade: Where new finish grade is indicated above existing grade around trees, slope grade beyond the protection zone. Maintain existing grades within the protection zone.

D. Minor Fill within Protection Zone: Where existing grade is 2 inches or less below elevation of finish grade, fill with topsoil. Place topsoil in a single uncompacted layer and hand grade to required finish elevations.

3.8 FIELD QUALITY CONTROL

A. Inspections: Engage a qualified arborist to direct plant-protection measures in the vicinity of trees, shrubs, and other vegetation indicated to remain and to prepare inspection reports.

3.9 REPAIR AND REPLACEMENT

A. General: Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations, in a manner approved by Architect.

1. Submit details of proposed root cutting and tree and shrub repairs.
2. Have arborist perform the root cutting, branch pruning, and damage repair of trees and shrubs.
3. Treat damaged trunks, limbs, and roots according to arborist's written instructions.
4. Perform repairs within 24 hours.
5. Replace vegetation that cannot be repaired and restored to full-growth status, as determined by Architect.

B. Trees: Remove and replace trees indicated to remain that are more than 25 percent dead or in an unhealthy condition before the end of the corrections period or are damaged during construction operations that Architect determines are incapable of restoring to normal growth pattern.

1. Provide new trees of same size and species as those being replaced for each tree that measures 4 inches or smaller in caliper size.
2. Provide new trees in accordance with City standards.

 a. Species: Species selected by Architect
3. Plant and maintain new trees as specified in Section 329300 "Plants."

3.10 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove excess excavated material, displaced trees, trash and debris, and legally dispose of them off Owner's property.

END OF SECTION 01 56 39
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 1. Substantial Completion procedures.
 2. Final completion procedures.
 3. Warranties.
 4. Final cleaning.
 5. Repair of the Work.
B. Related Requirements:

1.3 ACTION SUBMITTALS
A. Product Data: For cleaning agents.
B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
C. Certified List of Incomplete Items: Final submittal at Final Completion.

1.4 CLOSEOUT SUBMITTALS
A. Certificates of Release: From authorities having jurisdiction.
B. Certificate of Insurance: For continuing coverage.
C. Field Report: For pest control inspection.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.
1.6 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.

2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.

3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.

4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Owner's Representative. Label with manufacturer's name and model number where applicable.
 a. Schedule of Maintenance Material Items: Prepare and submit schedule of maintenance material submittal items, including name and quantity of each item and name and number of related Specification Section. Obtain Owner's Representative's signature for receipt of submittals.

5. Submit test/adjust/balance records.

6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Advise Owner of pending insurance changeover requirements.

2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.

3. Complete startup and testing of systems and equipment.

4. Perform preventive maintenance on equipment used prior to Substantial Completion.

5. Advise Owner of changeover in heat and other utilities.

6. Participate with Owner in conducting inspection and walkthrough with local emergency responders.

7. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
8. Complete final cleaning requirements, including touchup painting.
9. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, the Owner’s Representative will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor’s list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.
2. Results of completed inspection will form the basis of requirements for final completion.

1.7 FINAL COMPLETION PROCEDURES

A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:

1. Submit a final Application for Payment
2. Certified List of Incomplete Items: Submit certified copy of Architect’s Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
4. Submit pest-control final inspection report.

B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, the Owner’s Representative will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.8 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction

1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor.
2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
3. Include the following information at the top of each page:
 a. Project name.
 b. Date.
 c. Name of Owner’s Representative
 d. Name of Contractor.
 e. Page number.
4. Submit list of incomplete items in the following format:
 a. MS Excel electronic file. Owner’s Representative will return annotated file.
 b. PDF electronic file. Owner’s Representative will return annotated file.
 c. Three paper copies. Owner’s Representative will return two copies.

1.9 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated, or when delay in submittal of warranties might limit Owner's rights under warranty.

B. Partial Occupancy: Submit properly executed warranties within [15] <Insert number> days of completion of designated portions of the Work that are completed and occupied or used by Owner during construction period by separate agreement with Contractor.

C. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.

1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.
2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.
3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.
4. Warranty Electronic File: Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide bookmarked table of contents at beginning of document.

D. Provide additional copies of each warranty to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

1. Use cleaning products that comply with Green Seal's GS-37, or if GS-37 is not applicable, use products that comply with the California Code of Regulations maximum allowable VOC levels.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:

 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Remove snow and ice to provide safe access to building.
 f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 h. Sweep concrete floors broom clean in unoccupied spaces.
i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.

j. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Polish mirrors and glass, taking care not to scratch surfaces.

k. Remove labels that are not permanent.

l. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.

m. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.

n. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.

o. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.

p. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.

q. Leave Project clean and ready for occupancy.

C. Pest Control: Comply with pest control requirements in Section 015000 "Temporary Facilities and Controls." Prepare written report.

D. Construction Waste Disposal: Comply with waste disposal requirements in Section 015000 "Temporary Facilities and Controls.

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.

1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.

2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.

3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.

4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

3.3. As-Built Drawings
The Contractor will provide the owner with as-built drawings that meet the following requirements:

A. Final close-out drawings to be in the latest version of AutoCAD and PDF plus 2 FS hard copies (for other agencies)

B. Final locations of the following appurtenances shall be by a licensed GA surveyor

C. Trail/Walks/Pads
 1. Outer edges – every 100’, and at all corners
 2. At intersection of trail with existing or proposed paving
 3. Sleeves

D. Site Furnishings
 1. Each Bench, Bike Rack, Trash Receptacle, and Water Bottle Filler install
 2. Each workout equipment install

E. Relocated water line, valves, meters, and fire Hydrants (including service lines and cleanouts)

F. Site topo- Reference the level of accuracy from the front end specs, and require 2’ contours shown on the hard copies.

G. Location of the Floodplain line

H. Light poles- top of base elevation,

I. Walls
 1. TW & BW at each end and every 50’ (including both existing and proposed walls)
 2. Extents of footing

J. Steps
 1. Elevations at top & bottom of each run

K. Ramps (including existing ramps)
 1. Elevations at top and bottom of each run

L. Safety Rails and Hand Rails

M. Relocated or new utilities, including but not limited to fire hydrants, sewer/storm drainage lines (rim elevation, inverts and outlet elevations), electrical cabinets, pull boxes, security, cameras, irrigation lines, backflow preventer structures, duct bank manholes, conduit location, and depth to top of structure, and water line valves and meters.

N. Parking Lots, Drives, and Streets
 a. Curbing
 i. TC and BC every 50’
 b. Elevations at top and bottom of each curb ramp
 c. Location and depth to top of any utilities installed by Project
 d. Highway(MUTCD) Signs
 e. Entrance Sign

O. Fencing not on walls or bridges

P. Location of the Building
a. Finish Floor Elevation
b. Location of terraces and building extensions
c. Overhang
d. Interior layout denoting final location of walls, partitions, and interior materials including lighting, bathroom materials, and mechanical equipment (including water, sewer, and power connections)

Q. Any other site elements/appurtenances not on this list but that would normally be included as standard

END OF SECTION 01 77 00
SECTION 02 41 19 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Demolition and removal of selected portions of building or structure.
 2. Demolition and removal of selected site elements.
 3. Salvage of existing items to be reused or recycled.

1.2 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.

B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstone and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.

 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.3 PREINSTALLATION MEETINGS

A. Predemolition Conference: Conduct conference at Project site.

1.4 INFORMATIONAL SUBMITTALS

B. Proposed Protection Measures: Submit report, including Drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control and for noise control. Indicate proposed locations and construction of barriers.

C. Schedule of selective demolition activities with starting and ending dates for each activity.

D. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician.

1.5 CLOSEOUT SUBMITTALS

A. Inventory of items that have been removed and salvaged.
1.6 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.7 FIELD CONDITIONS

A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.

B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.

1. Before selective demolition, Owner will remove the following items:

 a. All loose items stored in basement.

C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.

1. Hazardous materials will be removed by Owner before start of the Work.
2. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.

E. Storage or sale of removed items or materials on-site is not permitted.

F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.

G. Arrange selective demolition schedule so as not to interfere with Owner's operations.

1.8 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials and using approved contractors so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting selective demolition operations.

B. Coordinate with structural engineer to perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.

C. Inventory and record the condition of items to be removed and salvaged.

3.2 PREPARATION

A. Refrigerant: Before starting demolition, remove refrigerant from mechanical equipment according to 40 CFR 82 and regulations of authorities having jurisdiction.

B. Verification: Verify with Owner items to be removed prior to commencement of work.

C. Compliance: Proceed with demolition in an orderly and careful manner, in compliance with local codes and ordinances.

D. Disposal: Legally dispose of demolished materials off site unless otherwise directed by Owner.

3.3 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.

B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off utility services and mechanical/electrical systems serving areas to be selectively demolished.

1. Owner will arrange to shut off indicated services/systems when requested by Contractor.

2. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
3. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated on Drawings to be removed.

 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material and leave in place.
 c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
 f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material and leave in place.

3.4 PROTECTION

A. Temporary Protection: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.

B. Temporary Shoring: Design, provide, and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

C. Remove temporary barricades and protections where hazards no longer exist.

3.5 SELECTIVE DEMOLITION

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:

1. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping. Temporarily cover openings to remain.
2. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
3. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
4. Maintain fire watch during and for at least 1 hour after flame-cutting operations.
5. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
6. Dispose of demolished items and materials promptly.

B. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

C. Removed and Salvaged Items:
 1. Clean salvaged items.
 2. Pack or crate items after cleaning. Identify contents of containers.
 3. Store items in a secure area until delivery to Owner.
 4. Transport items to Owner's storage area designated by Owner.
 5. Protect items from damage during transport and storage.

D. Removed and Reinstalled Items:
 1. Clean and repair items to functional condition adequate for intended reuse.
 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
 3. Protect items from damage during transport and storage.
 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

E. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.6 CLEANING

A. Remove demolition waste materials from Project site and dispose of them in an EPA-approved construction and demolition waste landfill acceptable to authorities having jurisdiction.
 1. Do not allow demolished materials to accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 4. Comply with requirements specified in Section 017419 "Construction Waste Management and Disposal."

B. Burning: Do not burn demolished materials.

C. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.
END OF SECTION 02 41 19
SECTION 03 30 00 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:

1. Footings.
2. Foundation walls.
3. Slabs-on-grade.
4. Concrete toppings.
5. Building frame members.

B. Related Sections:
1. Refer to industry standards and requirements for additional information regarding general building applications of specially finished formed concrete.
2. Refer to industry standards and requirements for additional information regarding emery- and iron-aggregate concrete floor toppings.
3. Section 31 20 00 "Earth Moving" for drainage fill under slabs-on-grade.
4. Refer to industry standards and requirements for additional information regarding decorative concrete pavement and walks.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
1. Indicate amounts of mixing water to be withheld for later addition at Project site.

C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.

D. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer detailing fabrication, assembly, and support of formwork.

1. Shoring and Reshoring: Indicate proposed schedule and sequence of stripping formwork, shoring removal, and reshoring installation and removal.

E. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.

1. Location of construction joints is subject to approval of the Engineer.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, manufacturer, and testing agency.

B. Welding certificates.

C. Material Certificates: For each of the following, signed by manufacturers:

1. Cementitious materials.
2. Admixtures.
3. Form materials and form-release agents.
4. Steel reinforcement and accessories.
5. Fiber reinforcement.
6. Waterstops.
7. Curing compounds.
8. Floor and slab treatments.
10. Adhesives.
11. Vapor retarders.
12. Semirigid joint filler.

D. Material Test Reports: For the following, from a qualified testing agency, indicating compliance with requirements:

1. Aggregates.

E. Floor surface flatness and levelness measurements indicating compliance with specified tolerances.

F. Field quality-control reports.
G. Minutes of preinstallation conference.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.

B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."

C. Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.

 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
 2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician - Grade I. Testing Agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician - Grade II.

D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.

E. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M, "Structural Welding Code - Reinforcing Steel."

F. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:

 1. ACI 301, "Specifications for Structural Concrete"
 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

G. Concrete Testing Service:

 1. Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.
 2. The following tests shall be made at the work site prior to placement of concrete:

 a. Slump tests: ASTM C 143
 b. Air content: ASTM C 173 or C 231
 c. Test cylinders: ASTM C 31
H. Mockups: Cast concrete slab-on-grade and formed-surface panels to demonstrate typical joints, surface finish, texture, tolerances, floor treatments, and standard of workmanship.

1. Build panel approximately 200 sq. ft. for slab-on-grade and 100 sq. ft. for formed surface in the location indicated or, if not indicated, as directed by Engineer.
2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1. Before submitting design mixtures, review concrete design mixture and examine procedures for ensuring quality of concrete materials. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:

 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete subcontractor.
 e. Special concrete finish subcontractor.

2. Review special inspection and testing and inspecting agency procedures for field quality control, concrete finishes and finishing, cold- and hot-weather concreting procedures, curing procedures, construction contraction and isolation joints, and joint-filler strips, semirigid joint fillers, forms and form removal limitations, shoring and reshoring procedures, vapor-retarder installation, anchor rod and anchorage device installation tolerances, steel reinforcement installation, floor and slab flatness and levelness measurement, concrete repair procedures, and concrete protection.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage. Avoid damaging coatings on steel reinforcement.

B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

C. Deliver ready-mixed concrete in compliance with requirements of ASTM C 94.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
1. Plywood, metal, or other approved panel materials.
2. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 a. High-density overlay, Class 1 or better.
 b. Medium-density overlay, Class 1 or better; mill-release agent treated and edge sealed.
 c. Structural 1, B-B or better; mill oiled and edge sealed.
 d. B-B (Concrete Form), Class 1 or better; mill oiled and edge sealed.

B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

C. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that will produce surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.

D. Pan-Type Forms: Glass-fiber-reinforced plastic or formed steel, stiffened to resist plastic concrete loads without detrimental deformation.

F. Rustication Strips: Wood, metal, PVC, or rubber strips, kerfed for ease of form removal.

G. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

H. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.

1. Furnish units that will leave no corrodible metal closer than 1 inch to the plane of exposed concrete surface.
2. Furnish ties that, when removed, will leave holes no larger than 1 inch in diameter in concrete surface.
3. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing.

I. Concrete formwork should be approved by Owner’s Representative prior to placement of any concrete.

2.2 STEEL REINFORCEMENT

A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
B. Reinforcing Bars: ASTM A 615, Grade 60, deformed.

C. Low-Alloy-Steel Reinforcing Bars: ASTM A 706, deformed.

D. Galvanized Reinforcing Bars: ASTM A 615, Grade 60, ASTM A 706, deformed bars, ASTM A 767, Class I and Class II zinc coated after fabrication and bending.

E. Steel Bar Mats: ASTM A 184, fabricated from ASTM A 615, Grade 60 ASTM A 706, deformed bars, assembled with clips.

F. Plain-Steel Wire: ASTM A 82, galvanized.

G. Deformed-Steel Wire: ASTM A 496.

H. Epoxy-Coated Wire: ASTM A 884, Class A, Type 1 coated, deformed-steel wire, with less than 2 percent damaged coating in each 12-inch wire length.

I. Plain-Steel Welded Wire Reinforcement: ASTM A 185, plain, fabricated from as-drawn steel wire into flat sheets.

K. Galvanized-Steel Welded Wire Reinforcement: ASTM A 185, plain, fabricated from galvanized-steel wire into flat sheets.

2.3 REINFORCEMENT ACCESSORIES

A. Joint Dowel Bars: ASTM A 615, Grade 60, plain-steel bars, cut true to length with ends square and free of burrs.

B. Epoxy Repair Coating: Liquid, two-part, epoxy repair coating; compatible with epoxy coating on reinforcement and complying with ASTM A 775.

C. Zinc Repair Material: ASTM A 780, zinc-based solder, paint containing zinc dust, or sprayed zinc.

D. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI’s "Manual of Standard Practice," of greater compressive strength than concrete and as follows:

1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.
2. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.
3. For zinc-coated reinforcement, use galvanized wire or dielectric-polymer-coated wire bar supports.
2.4 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:

1. Portland Cement: ASTM C 150, Type I. Supplement with the following:
 a. Fly Ash: ASTM C 618, Class F.
 b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.

B. Silica Fume: ASTM C 1240, amorphous silica.

C. Normal-Weight Aggregates: ASTM C 33, coarse aggregate or better, graded. Provide aggregates from a single source with documented service record data of at least 10 years' satisfactory service in similar applications and service conditions using similar aggregates and cementitious materials.

 1. Coarse-Aggregate: Free of materials with deleterious reactivity to alkali in cement. Coarse aggregate for all concrete liquid containment structures shall be size no. 467. All other concrete work shall be size no. 57.
 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

D. Lightweight Aggregate: ASTM C 330, no. 57 nominal maximum aggregate size.

E. Water: ASTM C 94 and potable.

2.5 ADMIXTURES

B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.

 1. Water-Reducing Admixture: ASTM C 494, Type A.
 2. Retarding Admixture: ASTM C 494, Type B.
 3. Water-Reducing and Retarding Admixture: ASTM C 494, Type D.
 4. High-Range, Water-Reducing Admixture: ASTM C 494, Type F.
 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494, Type G.
 6. Plasticizing and Retarding Admixture: ASTM C 1017, Type II.

C. Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete and complying with ASTM C 494, Type C.
D. Non-Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, non-set-accelerating, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **BASF Construction Chemicals - Building Systems**; Rheocrete 222+.
 b. **Cortec Corporation**; MCI-2000.
 c. **Grace Construction Products, W. R. Grace & Co.**; DCI-S.
 d. **Sika Corporation**; FerroGard 901.

2.6 WATERSTOPS

A. Flexible Rubber Waterstops: CE CRD-C 513, with factory-installed galvanized steel eyelets, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.

1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. **Greenstreak**.
 b. **Williams Products, Inc**.

2. **Profile**: Ribbed with center bulb
3. **Dimensions**: 9 inches by 3/8 inch thick; nontapered.

2.7 VAPOR RETARDERS

A. Sheet Vapor Retarder: ASTM E 1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **Carlisle Coatings & Waterproofing, Inc.**; Blackline 400.
 b. **Fortifiber Building Systems Group**; Moistop Ultra.
 c. **Grace Construction Products, W. R. Grace & Co.**; Florprufe 120.
 d. **Insulation Solutions, Inc.**; Viper VaporCheck.
 e. **Meadows, W. R., Inc.**; Perminator.
 f. **Raven Industries Inc.**; Vapor Block.
 g. **Reef Industries, Inc.**; Griffolyn.
 h. **Stego Industries, LLC**; Stego Wrap.

B. Sheet Vapor Retarder: ASTM E 1745, Class B. Include manufacturer's recommended adhesive or pressure-sensitive tape.
1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. **Reef Industries, Inc.**: Griffolyn.
 c. **Stego Industries, LLC**: Stego Wrap, 10 mil Class A.

C. **Sheet Vapor Retarder**: ASTM E 1745, Class C. Include manufacturer’s recommended adhesive or pressure-sensitive joint tape.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **Fortifiber Building Systems Group**: Moistop Plus.
 b. **Raven Industries Inc.**: Vapor Block 6.
 c. **Reef Industries, Inc.**: Griffolyn.
 d. **Stego Industries, LLC**: Stego Wrap, 10 mil Class C.

D. **Sheet Vapor Retarder**: Polyethylene sheet, ASTM D 4397, not less than 10 mils thick.

E. **Bituminous Vapor Retarder**: 110-mil-thick, semiflexible, 7-ply sheet membrane consisting of reinforced core and carrier sheet with fortified asphalt layers, protective weathercoating, and removable plastic release liner. Furnish manufacturer's accessories including bonding asphalt, pointing mastics, and self-adhering joint tape.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **Meadows, W. R., Inc.**: Premoulded Membrane Vapor Seal.

2. **Water-Vapor Permeance**: 0.00 grains/h x sq. ft. x inches Hg; ASTM E 154.
3. **Tensile Strength**: 140 lbf/inch; ASTM E 154.
4. **Puncture Resistance**: 90 lbf; ASTM E 154.

F. **Granular Fill**: Clean mixture of crushed stone or crushed or uncrushed gravel; ASTM D 448, Size 57, with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.

G. **Fine-Graded Granular Material**: Clean mixture of crushed stone, crushed gravel, and manufactured or natural sand; ASTM D 448, Size 10, with 100 percent passing a 3/8-inch sieve, 10 to 30 percent passing a No. 100 sieve, and at least 5 percent passing No. 200 sieve; complying with deleterious substance limits of ASTM C 33 for fine aggregates.

2.8 **FLOOR AND SLAB TREATMENTS**

A. **Slip-Resistive Emery Aggregate Finish**: Factory-graded, packaged, rustproof, nonglazing, abrasive, crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials with 100 percent passing 3/8-inch sieve.
1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. Dayton Superior Corporation; Emery Tuff Non-Slip.
 c. Lambert Corporation; EMAG-20.
 d. L&M Construction Chemicals, Inc.; Grip It.
 e. Metalcrete Industries; Metco Anti-Skid Aggregate.

B. Slip-Resistive Aluminum Granule Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of not less than 95 percent fused aluminum-oxide granules.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. BASF Construction Chemicals - Building Systems; Frictex NS.
 c. L&M Construction Chemicals, Inc.; Grip It AO.

C. Emery Dry-Shake Floor Hardener: Pigmented, factory-packaged, dry combination of portland cement, graded emery aggregate, and plasticizing admixture; with emery aggregate consisting of no less than 60 percent of total aggregate content.

1. Color: As indicated by manufacturer's designation and match Engineer's sample.

D. Metallic Dry-Shake Floor Hardener: Pigmented, factory-packaged, dry combination of portland cement, graded metallic aggregate, rust inhibitors, and plasticizing admixture; with metallic aggregate consisting of no less than 65 percent of total aggregate content.

1. Color: As indicated by manufacturer's designation and match Engineer's sample.

E. Unpigmented Mineral Dry-Shake Floor Hardener: Factory-packaged dry combination of portland cement, graded quartz aggregate, and plasticizing admixture.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. BASF Construction Chemicals - Building Systems; Maximent.
 b. ChemMasters; ConColor.
 c. Conspec by Dayton Superior; Conshake 500.
 d. Dayton Superior Corporation; Quartz Tuff.
 e. Edoco by Dayton Superior; Burke Non Metallic Floor Hardener 250.
 f. Euclid Chemical Company (The), an RPM company; Surflex.
 g. Kaufman Products, Inc.; Tycron.
 h. Lambert Corporation; Colorhard.
 i. L&M Construction Chemicals, Inc.; Quartzplate FF.
 j. Metalcrete Industries; Floor Quartz.
 k. Scofield, L. M. Company; Lithochrome Color Hardener.
 l. Symons by Dayton Superior; Hard Top.
F. Pigmented Mineral Dry-Shake Floor Hardener: Factory-packaged, dry combination of portland cement, graded quartz aggregate, color pigments, and plasticizing admixture. Use color pigments that are finely ground, nonfading mineral oxides interground with cement.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. BASF Construction Chemicals - Building Systems; Mastercron.
 b. ChemMasters; ConColor.
 c. Conspec by Dayton Superior; Conshake 600 Colortone.
 d. Dayton Superior Corporation; Quartz Tuff.
 e. Edoco by Dayton Superior; Burke Non Metallic Floor Hardener 200 - 205.
 f. Euclid Chemical Company (The), an RPM company; Surflex.
 g. Kaufman Products, Inc.; Tycron.
 h. Lambert Corporation; Colorhard.
 i. L&M Construction Chemicals, Inc.; Quartz Plate FF.
 j. Metalcrete Industries; Floor Quartz.
 k. Scofield, L. M. Company; Lithochrome Color Hardener.
 l. Symons by Dayton Superior; Color Hardener.

2. **Color:** As indicated by manufacturer's designation and match Engineer's sample.

2.9 LIQUID FLOOR TREATMENTS

A. **VOC Content:** Liquid floor treatments shall have a VOC content of 200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. **Penetrating Liquid Floor Treatment:** Clear, chemically reactive, waterborne solution of inorganic silicate or silicate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ChemMasters; Chemisil Plus.
 b. ChemTec Int'l; ChemTec One.
 c. Conspec by Dayton Superior; Intraseal.
 d. Curecrete Distribution Inc.; Ashford Formula.
 e. Dayton Superior Corporation; Day-Chem Sure Hard (J-17).
 f. Edoco by Dayton Superior; Titan Hard.
 g. Euclid Chemical Company (The), an RPM company; Euco Diamond Hard.
 h. Kaufman Products, Inc.; SureHard.
 i. L&M Construction Chemicals, Inc.; Seal Hard.
 j. Meadows, W. R., Inc.; LIQUI-HARD.
 k. Metalcrete Industries; Floorsaver.
 l. Nox-Crete Products Group; Duro-Nox.
 m. Symons by Dayton Superior; Buff Hard.
 n. US SPEC, Division of US Mix Products Company; US SPEC Industraseal.
 o. Vexcon Chemicals, Inc.; Vexcon StarSeal PS Clear.
C. Penetrating Liquid Floor Treatments for Polished Concrete Finish: Clear, waterborne solution of inorganic silicate or siliconate materials and proprietary components; odorless; that penetrates, hardens, and is suitable for polished concrete surfaces.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

a. Advanced Floor Products; Retro-Plate 99.
b. L&M Construction Chemicals, Inc.; FGS Hardener Plus.
c. QuestMark, a division of CentiMark Corporation; DiamondQuest Densifying Impregnator Application.

2.10 CURING MATERIALS

A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

a. Axim Italcementi Group, Inc.; CATEXOL CimFilm.
b. BASF Construction Chemicals - Building Systems; Confilm.
c. ChemMasters; SprayFilm.
d. Conspec by Dayton Superior; Aquafilm.
e. Dayton Superior Corporation; Sure Film (J-74).
f. Edoco by Dayton Superior; BurkeFilm.
g. Euclid Chemical Company (The), an RPM company; Eucobar.
h. Kaufman Products, Inc.; Vapor-Aid.
i. Lambert Corporation; LAMBCO Skin.
j. L&M Construction Chemicals, Inc.; E-CON.
k. Meadows, W. R., Inc.; EVAPRE.
l. Metalcrete Industries; Waterhold.
m. Nox-Crete Products Group; MONOFILM.
n. Sika Corporation; SikaFilm.
o. SpecChem, LLC; Spec Film.
p. Symons by Dayton Superior; Finishing Aid.
q. TK Products, Division of Sierra Corporation; TK-2120 TRI-FILM.
r. Unitex; PRO-FILM.
s. Vexcon Chemicals, Inc.; Certi-Vex Envio Set.

B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.

C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

D. Water: Potable.

E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Anti-Hydro International, Inc.; AH Curing Compound #2 DR WB.
 b. BASF Construction Chemicals - Building Systems; Kure 200.
 c. ChemMasters; Safe-Cure Clear.
 d. ConSpec by Dayton Superior; W.B. Resin Cure.
 e. Dayton Superior Corporation; Day-Chem Rez Cure (J-11-W).
 f. Edoco by Dayton Superior; Res X Cure WB.
 g. Euclid Chemical Company (The), an RPM company; Kurez W VOX; TAMMSCURE WB 30C.
 i. Lambert Corporation; AQUA KURE - CLEAR.
 j. L&M Construction Chemicals, Inc.; L&M Cure R.
 k. Meadows, W. R., Inc.; 1100-CLEAR.
 l. Nox-Crete Products Group; Resin Cure E.
 m. Right Pointe; Clear Water Resin.
 n. SpecChem, LLC; Spec Rez Clear.
 o. Symons by Dayton Superior; Resi-Chem Clear.
 p. TK Products, Division of Sierra Corporation; TK-2519 DC WB.
 q. Vexcon Chemicals, Inc.; Certi-Vex Enviocure 100.

F. **Clear, Waterborne, Membrane-Forming Curing Compound:** ASTM C 309, Type 1, Class B, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Anti-Hydro International, Inc.; AH Clear Cure WB.
 b. BASF Construction Chemicals - Building Systems; Kure-N-Seal WB.
 c. ChemMasters; Safe-Cure & Seal 20.
 d. ConSpec by Dayton Superior; Cure and Seal WB.
 e. Cresset Chemical Company; Crete-Trete 309-VOC Cure & Seal.
 f. Dayton Superior Corporation; Safe Cure and Seal (J-18).
 g. Edoco by Dayton Superior; Spartan Cote WB II.
 h. Euclid Chemical Company (The), an RPM company; Aqua Cure VOX; Clearseal WB 150.
 j. Lambert Corporation; Glazecote Sealer-20.
 k. L&M Construction Chemicals, Inc.; Dress & Seal WB.
 m. Metalcrete Industries; Metcure.
 n. Nox-Crete Products Group; Cure & Seal 150E.
 o. Symons by Dayton Superior; Cure & Seal 18 Percent E.
 p. TK Products, Division of Sierra Corporation; TK-2519 WB.
 q. Vexcon Chemicals, Inc.; Starseal 309.
G. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, 18 to 25 percent solids, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **BASF Construction Chemicals - Building Systems; Kure-N-Seal W.**
 b. **ChemMasters; Safe-Cure Clear.**
 c. **Conspec by Dayton Superior; High Seal.**
 d. **Dayton Superior Corporation; Safe Cure and Seal (J-19).**
 e. **Edoco by Dayton Superior; Spartan Cote WB II 20 Percent.**
 f. **Euclid Chemical Company (The), an RPM company; Diamond Clear VOX; Clearseal WB STD.**
 g. **Kaufman Products, Inc.; SureCure Emulsion.**
 h. **Lambert Corporation; Glazecote Sealer-20.**
 i. **L&M Construction Chemicals, Inc.; Dress & Seal WB.**
 j. **Meadows, W. R., Inc.; Vocomp-20.**
 k. **Metalcrete Industries; Metcure 0800.**
 l. **Nox-Crete Products Group; Cure & Seal 200E.**
 m. **Symons by Dayton Superior; Cure & Seal 18 Percent E.**
 n. **Vexcon Chemicals, Inc.; Starseal 0800.**

H. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **BASF Construction Chemicals - Building Systems; Kure-N-Seal 25 LV.**
 b. **ChemMasters; Spray-Cure & Seal Plus.**
 c. **Conspec by Dayton Superior; Sealcure 1315.**
 d. **Dayton Superior Corporation; Day-Chem Cure and Seal (J-22UV).**
 e. **Edoco by Dayton Superior; Cureseal 1315.**
 f. **Euclid Chemical Company (The), an RPM company; Super Diamond Clear; LusterSeal 300.**
 g. **Kaufman Products, Inc.; Sure Cure 25.**
 h. **Lambert Corporation; UV Super Seal.**
 i. **L&M Construction Chemicals, Inc.; Lumiseal Plus.**
 j. **Meadows, W. R., Inc.; CS-309/30.**
 k. **Metalcrete Industries; Seal N Kure 30.**
 l. **Right Pointe; Right Sheen 30.**
 m. **Vexcon Chemicals, Inc.; Certi-Vex AC 1315.**

2. **VOC Content**: Curing and sealing compounds shall have a VOC content of 200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

I. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.
1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. **ChemMasters;** Polyseal WB.
 c. **Conspec by Dayton Superior;** Sealcure 1315 WB.
 d. **Edoco by Dayton Superior;** Cureseal 1315 WB.
 e. **Euclid Chemical Company (The), an RPM company;** Super Diamond Clear VOX; LusterSeal WB 300.
 g. **Lambert Corporation;** UV Safe Seal.
 h. **L&M Construction Chemicals, Inc.;** Lumiseal WB Plus.
 j. **Metalcrete Industries;** Metcure 30.
 k. **Right Pointe;** Right Sheen WB30.
 l. **Symons by Dayton Superior;** Cure & Seal 31 Percent E.
 m. **Vexcon Chemicals, Inc.;** Vexcon Starseal 1315.

2. **VOC Content:** Curing and sealing compounds shall have a VOC content of 200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.11 **RELATED MATERIALS**

A. **Expansion- and Isolation-Joint-Filler Strips:** ASTM D 1751, asphalt-saturated cellulosic fiber or ASTM D 1752, cork or self-expanding cork.

B. **Semirigid Joint Filler:** Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 or aromatic polyurea with a Type A shore durometer hardness range of 90 to 95 per ASTM D 2240.

C. **Bonding Agent:** ASTM C 1059/C 1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

D. **Epoxy Bonding Adhesive:** ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements, and as follows:

 1. Types I and II, non-load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

E. **Reglets:** Fabricate reglets of not less than 0.022-inch thick, galvanized-steel sheet. Temporarily fill or cover face opening of reglet to prevent intrusion of concrete or debris.

F. **Dovetail Anchor Slots:** Hot-dip galvanized-steel sheet, not less than 0.034 inch thick, with bent tab anchors. Temporarily fill or cover face opening of slots to prevent intrusion of concrete or debris.
2.12 REPAIR MATERIALS

A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch and that can be feathered at edges to match adjacent floor elevations.

1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by underlayment manufacturer.
4. Compressive Strength: Not less than 4000 psi at 28 days when tested according to ASTM C 109/C 109M.

B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.

1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
4. Compressive Strength: Not less than 5000 psi at 28 days when tested according to ASTM C 109/C 109M.

2.13 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.

1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.

B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:

1. Fly Ash: 25 percent.
4. Combined Fly Ash or Pozzolan and Ground Granulated Blast-Furnace Slag: 50 percent portland cement minimum, with fly ash or pozzolan not exceeding 25 percent.
5. Silica Fume: 10 percent.
6. Combined Fly Ash, Pozzolans, and Silica Fume: 35 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
7. Combined Fly Ash or Pozzolans, Ground Granulated Blast-Furnace Slag, and Silica Fume: 50 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.

C. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.

D. Admixtures: Use admixtures according to manufacturer's written instructions.

1. Use high-range water-reducing admixture in concrete, as required, for placement and workability conforming to ASTM C 494, Type F or G.
2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.
4. Use corrosion-inhibiting admixture in concrete mixtures where indicated.

E. Color Pigment: Add color pigment to concrete mixture according to manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup.

2.14 CONCRETE QUALITY

A. Two groups of concretes are required. Group I is concrete with a HIGH RANGE WATER REDUCER (HRWR), Group II is concrete without HRWR.

1. Group I: All Group I concrete shall contain the specified fly ash. The combined weight of cement and fly ash shall contain no less than 20 percent not more than 25 percent of fly ash. The combined weight of cement and fly ash shall be used as the weight of cement in the determining of the water-cement (w/c) ratio. The following class of concrete is required:

 a. Class "A" Concrete, 4,000 lb. Compressive Strength @ 28 days, Slump Range 1"-2", Maximum W/C Ratio 0.4.

 b. The slump range listed above is required prior to adding the High Range Water Reducer (HRWR). Slump tests shall be made prior to adding the HRWR. The HRWR shall be added to the concrete at the batch plant. The slump range required after the addition of the HRWR is 7 to 10-inches. HRWR shall be capable of maintaining 7 to 10 inch slump in excess of 60 minutes of continuous mixing at 4 to 6 rpm in a truck mixer and workability up to 90 minutes. After introduction of HRWR, concrete temperature shall be maintained within 3 degrees F for 90 minutes when concrete temperatures are in excess of 90 degrees F. Except for the air-entrainment admixture, no other admixture shall be used with the HRWR. Upon 72 hours notice, the HRWR manufacturer shall supply jobsite technical service to the contractor. The manufacturer shall be consulted for mix proportions and dosage rates. No added chlorides shall be used. The initial set shall not be in excess of six hours at temperatures above 50 degrees F. HRWR
shall be used with due consideration given to the air temperature at the
time of batching and casting.

c. Air Content: All concrete shall have an air content of 4.0 percent to 7.0
percent.
d. Group I Class “A” concrete shall be used for concrete box culvert
construction including wing walls.

2. Group II: The following classes of concrete are required:

a. Class "A" Concrete, 4,000 lb. Compressive Strength @ 28 days, Slump
Range 3"-5", Maximum W/C Ratio 0.45
b. Class "B" Concrete, 3,000 lb. Compressive Strength @ 28 days, Slump
Range 3"-5", Maximum W/C Ratio 0.56
c. Class "C" Concrete, 1,500 lb. Compressive Strength @ 28 days, Slump
Range 3"-5", Maximum W/C Ratio not specified
d. Air Content: All concrete shall have an air content of 4.0 to 7.0 percent.
e. Admixture Usage: All concrete placed at air temperatures above 50
degrees F shall contain a water reducing admixture or water reducing-
retarding admixture. All concrete placed at air temperatures below 50
degrees F shall contain the specified non-corrosive non-chloride
accelerator.
f. Group II concrete shall be used for all work not specified as Group I
concrete.
g. Fly ash is required in all slabs for liquid containment structures, either on
grade or formed. Provisions for fly ash use in Group I concrete shall apply.
h. The use of fly ash is not required for the remainder of Group II concrete,
but is permitted. If used, the provisions for fly ash use in Group I concrete
shall apply.

PART 3 - EXECUTION

3.1 FORMWORK

A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support
vertical, lateral, static, and dynamic loads, and construction loads that might be
applied, until structure can support such loads.

B. Construct formwork so concrete members and structures are of size, shape, alignment,
elevation, and position indicated, within tolerance limits of ACI 117.
C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:
 2. Class B, 1/4 inch for rough-formed finished surfaces.

D. Construct forms tight enough to prevent loss of concrete mortar.

E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 1. Install keyways, reglets, recesses, and the like, for easy removal.
 2. Do not use rust-stained steel form-facing material.

F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.

G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.

H. Chamfer exterior corners and edges of permanently exposed concrete.

I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

L. Coat contact surfaces of forms with form-release agent, according to manufacturer’s written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."
2. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.
3. Install dovetail anchor slots in concrete structures as indicated.

3.3 REMOVING AND REUSING FORMS

A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations and curing and protection operations need to be maintained.
 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that supports weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.
 2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.

B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.

C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Engineer.

3.4 SHORES AND RESHORES

A. Comply with ACI 318 and ACI 301 for design, installation, and removal of shoring and reshoring.
 1. Do not remove shoring or reshoring until measurement of slab tolerances is complete.

B. Plan sequence of removal of shores and reshore to avoid damage to concrete. Locate and provide adequate reshoring to support construction without excessive stress or deflection.

3.5 VAPOR RETARDERS

A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.
 1. Lap joints 6 inches and seal with manufacturer's recommended tape.

B. Bituminous Vapor Retarders: Place, protect, and repair bituminous vapor retarder according to manufacturer's written instructions.
C. Granular Course: Cover vapor retarder with fine-graded granular material, moisten, and compact with mechanical equipment to elevation tolerances of plus 0 inch or minus 3/4 inch.

1. Place and compact a 1/2-inch-thick layer of fine-graded granular material over granular fill.

3.6 STEEL REINFORCEMENT

A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.

1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.

C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.

1. Weld reinforcing bars according to AWS D1.4/D 1.4M, where indicated.

D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

E. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

F. Epoxy-Coated Reinforcement: Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D 3963M. Use epoxy-coated steel wire ties to fasten epoxy-coated steel reinforcement.

G. Zinc-Coated Reinforcement: Repair cut and damaged zinc coatings with zinc repair material according to ASTM A 780. Use galvanized steel wire ties to fasten zinc-coated steel reinforcement.

3.7 JOINTS

A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.

B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Engineer.

1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches into concrete.

3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.

4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.

5. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.

6. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

7. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.

2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.

D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated.

2. Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface where joint sealants are indicated. Refer to industry standards and requirements for additional information.

3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.

E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.8 WATERSTOPS

A. Flexible Waterstops: Install in construction joints and at other joints indicated to form a continuous diaphragm. Install in longest lengths practicable. Support and protect exposed waterstops during progress of the Work. Field fabricate joints in waterstops according to manufacturer's written instructions.
B. Self-Expanding Strip Waterstops: Install in construction joints and at other locations indicated, according to manufacturer's written instructions, adhesive bonding, mechanically fastening, and firmly pressing into place. Install in longest lengths practicable.

3.9 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.

B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Engineer.

C. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.
 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.

D. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 1. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.

E. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 3. Screeb slab surfaces with a straightedge and strike off to correct elevations.
 4. Slope surfaces uniformly to drains where required.
 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.
F. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.

1. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.

G. Hot-Weather Placement: Comply with ACI 301 and as follows:

1. Maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

3.10 FINISHING FORMED SURFACES

A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

1. Apply to concrete surfaces not exposed to public view.

B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

1. Apply to concrete surfaces exposed to public view, to receive a rubbed finish, or to be covered with a coating or covering material applied directly to concrete.

C. Rubbed Finish: Apply the following to smooth-formed finished as-cast concrete where indicated:

1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
2. Grout-Cleaned Finish: Wet concrete surfaces and apply grout of a consistency of thick paint to coat surfaces and fill small holes. Mix one part portland cement to one and one-half parts fine sand with a 1:1 mixture of bonding admixture and water. Add white portland cement in amounts determined by trial patches so color of dry grout will match adjacent surfaces. Scrub grout into voids and
remove excess grout. When grout whitens, rub surface with clean burlap and keep surface damp by fog spray for at least 36 hours.

3. Cork-Float: Wet concrete surfaces and apply a stiff grout. Mix one part portland cement and one part fine sand with a 1:1 mixture of bonding agent and water. Add white portland cement in amounts determined by trial patches so color of dry grout will match adjacent surfaces. Compress grout into voids by grinding surface. In a swirling motion, finish surface with a cork float.

D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.11 FINISHING FLOORS AND SLABS

A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes to produce a profile amplitude of 1/4 inch (6 mm) in one direction.

1. Apply scratch finish to surfaces to receive concrete floor toppings or to receive mortar setting beds for bonded cementitious floor finishes.

C. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.

1. Apply float finish to surfaces to receive trowel finish and to be covered with fluid-applied or sheet waterproofing, built-up or membrane roofing, or sand-bed terrazzo.

D. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.

1. Apply a trowel finish to surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system.

2. Finish surfaces to the following tolerances, according to ASTM E 1155, for a randomly trafficked floor surface:

 a. Specified overall values of flatness, F(F) 25; and of levelness, F(L) 20; with minimum local values of flatness, F(F) 17; and of levelness, F(L) 15.

 b. Specified overall values of flatness, F(F) 35; and of levelness, F(L) 25; with minimum local values of flatness, F(F) 24; and of levelness, F(L) 17; for slabs-on-grade.
c. Specified overall values of flatness, F(F) 30; and of levelness, F(L) 20; with minimum local values of flatness, F(F) 24; and of levelness, F(L) 15; for suspended slabs.

d. Specified overall values of flatness, F(F) 45; and of levelness, F(L) 35; with minimum local values of flatness, F(F) 30; and of levelness, F(L) 24.

3. Finish and measure surface so gap at any point between concrete surface and an un leveled, freestanding, 10-ft.-long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/4 inch.

E. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces where ceramic or quarry tile is to be installed by either thickset or thin-set method. While concrete is still plastic, slightly scarify surface with a fine broom.

1. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.

F. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.

1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Engineer before application.

G. Slip-Resistive Finish: Before final floating, apply slip-resistive aggregate finish where indicated and to concrete stair treads, platforms, and ramps. Apply according to manufacturer's written instructions and as follows:

1. Uniformly spread 25 lb/100 sq. ft. of dampened slip-resistive aggregate over surface in one or two applications. Tamp aggregate flush with surface, but do not force below surface.
2. After broadcasting and tamping, apply float finish.
3. After curing, lightly work surface with a steel wire brush or an abrasive stone and water to expose slip-resistive aggregate.

H. Dry-Shake Floor Hardener Finish: After initial floating, apply dry-shake floor hardener to surfaces according to manufacturer's written instructions and as follows:

1. Uniformly apply dry-shake floor hardener at a rate of 100 lb/100 sq. ft. unless greater amount is recommended by manufacturer.
2. Uniformly distribute approximately two-thirds of dry-shake floor hardener over surface by hand or with mechanical spreader, and embed by power floating. Follow power floating with a second dry-shake floor hardener application, uniformly distributing remainder of material, and embed by power floating.
3. After final floating, apply a trowel finish. Cure concrete with curing compound recommended by dry-shake floor hardener manufacturer and apply immediately after final finishing.
3.12 MISCELLANEOUS CONCRETE ITEMS

A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.

B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

C. Equipment Bases and Foundations:
 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 2. Construct concrete bases 6 inches high unless otherwise indicated; and extend base not less than 6 inches in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated or unless required for seismic anchor support.
 3. Minimum Compressive Strength: 4000 psi at 28 days.
 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor into structural concrete substrate.
 6. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 7. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.13 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer’s written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.

D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:

1. **Moisture Curing**: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

2. **Moisture-Retaining-Cover Curing**: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.

3. **Curing Compound**: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound will not interfere with bonding of floor covering used on Project.

4. **Curing and Sealing Compound**: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.14 **LIQUID FLOOR TREATMENTS**

A. **Penetrating Liquid Floor Treatment**: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.

1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
2. Do not apply to concrete that is less than seven days' old.
3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.

B. Polished Concrete Floor Treatment: Apply polished concrete finish system to cured and prepared slabs to match accepted mockup.

1. Machine grind floor surfaces to receive polished finishes level and smooth.
2. Apply penetrating liquid floor treatment for polished concrete in polishing sequence and according to manufacturer's written instructions, allowing recommended drying time between successive coats.
3. Continue polishing with progressively finer grit diamond polishing pads to gloss level to match approved mockup.
4. Control and dispose of waste products produced by grinding and polishing operations.
5. Neutralize and clean polished floor surfaces.

C. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.

3.15 JOINT FILLING

A. Prepare, clean, and install joint filler according to manufacturer's written instructions.

1. Defer joint filling until concrete has aged at least one month. Do not fill joints until construction traffic has permanently ceased.

B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.

C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.16 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Engineer. Remove and replace concrete that cannot be repaired and patched to Engineer's approval.

B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.

C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete. Limit cut depth to 3/4 inch. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.

2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.

3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Engineer.

D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.

1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.

2. After concrete has cured at least 14 days, correct high areas by grinding.

3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.

4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.

5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.

6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
E. Perform structural repairs of concrete, subject to Engineer's approval, using epoxy adhesive and patching mortar.

F. Repair materials and installation not specified above may be used, subject to Engineer's approval.

3.17 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner, at the discretion of the Contractor will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Testing and Inspecting: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.

C. Inspections:
 1. Steel reinforcement placement.
 2. Steel reinforcement welding.
 3. Headed bolts and studs.
 4. Verification of use of required design mixture.
 5. Concrete placement, including conveying and depositing.
 6. Curing procedures and maintenance of curing temperature.
 7. Verification of concrete strength before removal of shores and forms from beams and slabs.

D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.
 2. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 3. Slump: ASTM C 143; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 4. Air Content: ASTM C 231, pressure method, for normal-weight concrete; ASTM C 173, volumetric method, for structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 5. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.
6. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

7. Compression Test Specimens: ASTM C 31/C 31M.
 a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.
 b. Cast and field cure two sets of two standard cylinder specimens for each composite sample.

8. Compressive-Strength Tests: ASTM C 39/C 39M; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.
 a. Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days.
 b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.

9. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

10. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

11. Test results shall be reported in writing to Engineer, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

12. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Engineer but will not be used as sole basis for approval or rejection of concrete.

13. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Engineer. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42 or by other methods as directed by Engineer.

14. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

15. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

E. Measure floor and slab flatness and levelness according to ASTM E 1155 within 24 hours of finishing.
3.18 PROTECTION OF LIQUID FLOOR TREATMENTS

A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION 03 30 00
SECTION 03 35 43 - POLISHED CONCRETE FINISHING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes polished concrete finishing including staining.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples: For each type of product requiring color selection.

1.3 QUALITY ASSURANCE
 A. Field Sample Panels: After approval of samples, produce field sample panels to demonstrate the approved range of selections made under Sample submittals. Produce a minimum of three sets of full-scale panels, approximately 48 by 48 inches (1200 by 1200 mm) minimum, to demonstrate the expected range of finish, color, and appearance variations.
 1. Locate panels as indicated or, if not indicated, as directed by Architect.
 2. Maintain field sample panels during construction in an undisturbed condition as a standard for judging the completed Work.
 3. Demolish and remove field sample panels when directed.

PART 2 - PRODUCTS

2.1 STAIN MATERIALS
 A. Reactive Stain: Acidic-based stain with wetting agents and high-grade, UV-stable metallic salts that react with calcium hydroxide in cured concrete to produce permanent, variegated, or translucent color effects.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Americrete, Inc.
 b. Epmar Corporation; Quaker Chemical company.
 c. H&C Concrete Care Products.
PART 3 - EXECUTION

3.1 POLISHING

A. Polish: Level 2: Low sheen, 400 grit.

B. Apply polished concrete finish system to cured and prepared slabs.

1. Machine grind floor surfaces to receive polished finishes level and smooth.
2. Apply reactive stain for polished concrete in polishing sequence and according to manufacturer's written instructions.
3. Apply penetrating liquid floor treatment for polished concrete in polishing sequence and according to manufacturer's written instructions, allowing recommended drying time between successive coats.
4. Apply penetrating stain for polished concrete in polishing sequence and according to manufacturer's written instructions.
5. Continue polishing with progressively finer-grit diamond polishing pads to gloss level, to match approved mockup.
6. Control and dispose of waste products produced by grinding and polishing operations.
7. Neutralize and clean polished floor surfaces.

3.2 STAINING

A. Newly placed concrete shall be at least 30 days old before staining.

B. Prepare surfaces according to manufacturer's written instructions and as follows:

1. Clean concrete thoroughly by scraping, applying solvents or stripping agents, sweeping and pressure washing, or scrubbing with a rotary floor machine and detergents recommended by stain manufacturer. Rinse until water is clear and allow surface to dry.

 a. Do not use acidic solutions to clean surfaces.

2. Test surfaces with droplets of water. If water beads and does not penetrate surface, or penetrates only in some areas, profile surfaces by acid etching]. Retest and continue profiling surface until water droplets immediately darken and uniformly penetrate concrete surfaces.
3. Apply acidic solution to dampened concrete surfaces, scrubbing with uncolored, acid-resistant nylon-bristle brushes until bubbling stops and concrete surface has texture of 120-grit sandpaper. Do not allow solution to dry on concrete surfaces. Rinse until water is clear. Control, collect, and legally dispose of runoff.
4. Neutralize concrete surfaces and rinse until water is clear. Test surface for residue with clean white cloth. Test surface according to ASTM F 710 to ensure pH is between 7 and 8.
C. Scoring: Score decorative jointing in concrete surfaces 1/16 inch (1.6 mm) deep with diamond blades to match pattern indicated. Rinse until water is clear. Score before staining.

 1. Joint Width: 3/8 inch (10 mm)

D. Allow concrete surface to dry before applying stain. Verify readiness of concrete to receive stain according to ASTM D 4263 by tightly taping 18-by-18-inch (450-by-450-mm), 4-mil- (0.1-mm-) thick polyethylene sheet to a representative area of concrete surface. Apply stain only if no evidence of moisture has accumulated under sheet after 16 hours.

E. Reactive Stain: Apply reactive stain to concrete surfaces according to manufacturer's written instructions and as follows:

 1. Apply stain by uncolored bristle brush, roller, or high-volume, low-pressure sprayer and immediately scrub into concrete surface with uncolored, acid-resistant nylon-bristle brushes in continuous, circular motion. Do not spread stain after fizzing stops. Allow to dry four hours and repeat application of stain in sufficient quantity to obtain color consistent with approved mockup.
 2. Remove stain residue after four hours by wet scrubbing with commercial-grade detergent recommended by stain manufacturer. Rinse until water is clear. Control, collect, and legally dispose of runoff.

F. Penetrating Stain: Apply penetrating stain to concrete surfaces according to manufacturer's written instructions and as follows:

 1. Apply first coat of stain to dry, clean surfaces by airless sprayer or by high-volume, low-pressure sprayer.
 2. Allow to dry four hours and repeat application of stain in sufficient quantity to obtain color consistent with approved mockup.
 3. Rinse until water is clear. Control, collect, and legally dispose of runoff.

END OF SECTION 03 35 43
SECTION 03 37 13 – SHOTCRETE

PART 1 - GENERAL

1.1 SCOPE

Provide sprayed-on concrete (concrete conveyed into place by air pressure through a flexible tube or gun with controlled nozzle) referred to herein as shotcrete, complete as shown and as specified by skate park specialty contractor.

1.2 RELATED INFORMATION

03 30 00-Cast-In-Place Concrete

1.3 QUALITY ASSURANCE

A. Standards: Comply with the requirements of the current edition of the following codes and standards, except as herein modified:

 UBC-Uniform Building Code

 American Concrete Institute (ACI): 506, Chapter 13, Wet Method. Chapter 5, Shotcrete Crew.

 American Society for Testing Materials (ASTM):

 1. Concrete Testing:

 a. Prepare test specimens by each application crew using the equipment, materials and mix proportions proposed for the Project. Owner’s Representative shall observe preparation of test panels noting placement of shotcrete by applications crew.

 b. Test panel shall be at least 48 in. x 48 in. with the same reinforcement as in the structure. (Specimens shall be 6 in. thick. A Testing Agency shall take at least three (3) cores from the specimen and test them in accordance with ASTM C42).

 2. Secure production samples of materials at plants and stockpiles during construction and test for compliance with Specifications.

 3. Test strength of the shotcrete as work progresses as follows:

 a. Cut cores from the structure and test in accordance with ASTM C42. A set of three (3) cores shall be taken not less than once each shift nor less than one for each 50 cubic yards of shotcrete placed through the nozzle. Cores shall be soaked in water for a minimum of 40 hours before testing.
When the length of a core is less than twice the diameter, apply the correction factors given in ASTM C42 to obtain the compressive strength of individual cores. The average compressive strength of three cores taken from the structure, representing a shift or 50 cubic yards of shotcrete, must equal or exceed 0.85\(f'_c\) with no individual core less than 0.75\(f'_c\).

B. Acceptance: Final acceptance of the shotcrete will be based upon the results obtained from cores. Use of data obtained from impact devices will not be permitted for final acceptance of the shotcrete. However, these data may be useful for determining uniformity of the shotcrete.

1.4 QUALITY ASSURANCE

A. Concrete Testing:
1. Prepare samples by each application crew using the equipment, materials and mix proportions proposed for the Project.

B. Acceptance: Final acceptance of the shotcrete will be based upon Skate Park Architect’s approval.

C. Regulatory Requirements: Meet requirements of applicable laws, codes, and regulations required by authorities having jurisdiction over Work.

D. Contractor Samples:
1. Contractor shall prepare a sample for each paving type indicated on Drawings, prior to installation.
2. Samples shall be completed to the satisfaction of the aggregates, texture, color, and finishes to Skate Park Architect.
3. These samples will become the standard of quality by which future paving samples and work will be judged.
4. Samples to remain on-site and be protected during the course of construction, as a means to compare work in progress.

E. Concrete Manufacturer Qualifications: Manufacturer of ready-mixed concrete products complying with ASTM C 94 requirements for production facilities and equipment.

F. Contractor Experience: Provide evidence to indicate successful experience in providing cast-in-place concrete work for skate parks similar in scope to that specified herein and can demonstrate successful experience through past project documentation and references.

1. Required Experience: Contractor or Subcontractor must have completed (3) public concrete skate park facilities with a minimum size of 5,000 square feet, in the last 5 years. Parks must be open and in good operating condition for at least one year.

2. Evidence of Experience: Contractor or Subcontractor shall submit to Skate Park Architect satisfactory documentation of the aforementioned experience and qualification. If a Contractor cannot provide this information or if it is unverifiable,
work under this Section and any other related Section cannot be completed by Contractor. This submission must contain the Project Name & Location, Owner’s Name & Contact Information, Architect Name & Contact Information, Project Size, Contract Value, Completion Date, and Supervisor and/or Key Personnel responsible for this experience for each of the qualifying projects.

G. Safety and Performance Guidelines: Comply with all safety and performance requirements and all applicable references as specified in the ASTM F2480 Standard Guide for In-ground Skate Parks.

H. ACI Requirements: Meet all requirements of ACI 506, Chapter 13, Wet Method and Chapter 5, Shotcrete Crew.

1.5 SUBMITTALS

A. Manufacturer’s Data: Current printed specifications with application and installation instruction for proprietary materials including concrete admixtures.

B. Shop Drawings: Section and plan views showing all proposed construction joints.

C. Mix Design: Concrete mix proportions.

D. Concrete Samples: Representative samples of materials for materials testing, mix proportion testing, and finish. Provide on site, minimum (1) 48”x48” sample (not part of finished project) of shotcrete transition (7’ Radius).

1.6 DELIVERY, HANDLING, AND STORAGE

A. Properly deliver and handle materials to prevent contamination, segregation or damage to materials.

B. Store cement in weather tight enclosures to protect against dampness and contamination.

C. Prevent segregation and contamination of aggregates by proper arrangement and use of stockpiles.

D. Store admixtures properly to prevent contamination, evaporation, or other damage.

PART 2 - PRODUCTS

2.1 CONCRETE MATERIALS

A. Portland Cement: ASTM C150, Type I or II, one brand only.

B. Fly Ash: ASTM C618
C. **Normal Weight Aggregates**: ASTM C33 and as herein specified.

1. Batch fine coarse aggregates separately to avoid segregation.
2. Aggregates shall be free from clay, mud, loam, or other deleterious substances.
3. Dune sand, bank run sand, and manufactured sand are not acceptable for fine aggregate.
4. Coarse aggregate shall be clean, uncoated, heavy media processed aggregate of crushed stone or river washed aggregate.

2.2 **ACCESSORIES**

A. **Water**: Fresh, clean, potable, and free of deleterious acids, mixing, and curing water, as available from Owner. Transport as required.

B. **Admixtures**: Use only accepted admixtures meeting the following requirements:
 1. Chemical Admixtures: ASTM C494
 2. Air-entraining Admixtures: ASTM C260

C. **Expansion Joints**: See Cast-In-Place Concrete - Section 03300.

2.3 **PROPORTIONING AND DESIGN OF CONCRETE MIXES**

A. **Mix**: Prepare design mix to achieve an in-place 28 day compressive strength of 4,000 pounds per square inch. Maximum aggregate size shall not exceed 3/8 inch. Unit weight of in-place shotcrete shall be 494 pounds per cubic yard. Use an independent Testing Agency acceptable to the Owner’s Representative to prepare and report the proposed mix design.

B. **Test Data**: Submit for acceptance proportioning and test data from prior experience if available. If data from prior experience are not available or accepted, make and have tested specimens from three or more different mix proportions in accordance with pre-construction testing requirements of this Specification.

C. **Strength**: Selected mix proportions on the basis of compressive strength tests of specimens shall be cut from the shotcreted test panels not earlier than 5 days after shotcreting. For mix acceptance purposes, average core strengths shall be least equal to \(f'_c \) for cores with L/D of 2.0. For cores with L/D between 1.0 and 2.0, use correction factors given in ASTM C42.

D. **Review**: Mix design shall be reviewed for acceptance by Owner's Representative.

2.4 **CONCRETE APPLICATION EQUIPMENT**
A. **For Wet Mix Shotcrete:**

1. **Mixing Equipment:** Capable of thoroughly mixing aggregate, cement and water in sufficient quantity to maintain continuous placement.

2. **Ready-mixed Concrete:** ASTM C94, except that it may be delivered to the site in the dry state if the equipment is capable of adding the water and mixing it satisfactorily with the dry ingredients.

3. **Air Supply:** Clean air adequate for maintaining sufficient nozzle velocity for parts of work, and for simultaneous operation of blow pipe for cleaning away rebound.

4. **Delivery Equipment:** Capable of discharging aggregate-cement-water mixture accurately, uniformly, and continuously through delivery hose.

PART 3 - EXECUTION

3.1 **INSPECTION**

A. **Examination:** Examine concrete formwork and verify that it is true to line and dimension, adequately braced against vibration, and constructed to permit escape of air and rebound but to prevent mortar leakage during shotcreting. Correct deficiencies.

B. **Inspection:** Inspect reinforcement steel and items to be embedded in concrete. Correct any deviations from the accepted shop drawings.

C. **Notification:** Notify other trades involved in ample time to permit the proper installation of their work. Cooperate in setting such work.

D. **Existing Surfaces:** Examine existing concrete surfaces for unsound material. Correct deficiencies.

E. **Rebound:** Rebound shall not be used in either placement and shall be removed from the site.

3.2 **PREPARATION FOR INSTALLATION OF CONCRETE**

A. **Forms:** Use a form-coating material on removable forms to prevent absorption of moisture and to prevent absorption of moisture and to prevent bond with shotcrete.

3.3 **CONCRETE BATCHING AND MIXING**
A. **Proportions:** Mix proportions shall be controlled by weight batching. Contractor's Testing Laboratory shall maintain quality control records during shotcrete production and make those records available to Owner's Representative.

3.4 CONCRETE PLACEMENT

A. **Placement:** Use suitable delivery equipment and procedures that will result in shotcrete in place meeting the requirements of this Specification. Determine operating procedures for placement in, extended distances, and around any obstructions where placement velocities and mix consistency must be adjusted.

B. **Placement Techniques:** Do not place shotcrete if drying or stiffening of the mix takes place at any time prior to delivery to the nozzle.

1. Control thickness, method of support, air pressure, and/or water content of shotcrete to preclude sagging or sloughing off. Discontinue shotcreting or provide suitable means to screen the nozzle stream if wind or air currents cause separation of the nozzle stream during placement.

2. Hold nozzle as perpendicular to surface as work will permit, to secure maximum compaction with minimum rebound.

3. In shotcreting walls, begin application at bottom. Ensure work does not sag.

4. **Layering:**
 a. Build up layers by making several passes of nozzle over work area.
 b. Broom or scarify the surface of freshly placed shotcrete to which, after hardening, additional layers of shotcrete are to be bonded. Dampen surface just prior to application of succeeding layers.
 c. Allow each layer of shotcrete to take initial set before applying succeeding layers.
 d. Use radial templates to insure exact radii from flat bottom of skate park, deck and coping. Template shall be fabricated from steel or ¾" Plywood. Contractor to submit shop drawing for all templates to be used on the project.

5. **Placement around Reinforcement:**
 a. Hold the nozzle at such distance and angle to place materials behind reinforcement before any material is allowed to accumulate on its face. In the dry-mix process, additional water may be added to the mix when encasing reinforcement to facilitate a smooth flow of material behind the bars.
b. Test to ascertain if any void or sand pockets have developed around or behind reinforcement by probing with an awl or other pointed tool after the shotcrete has achieved its initial set, by removal of randomly selected bars, or coring or other suitable standards.

3.5 REMOVAL OF SURFACE DEFECTS IN CONCRETE
A. General: Remove and replace shotcrete which lacks uniformity, exhibits segregation honeycombing, or lamination, or which contains any dry patches, slugs, voids, or pockets. Remove defective areas.

B. Sounding: Sound work with hammer for voids. Remove and replace damaged in-place shotcrete.

3.6 CONCRETE FINISH
A. Form Finish: Smooth form finish shall consist of a smooth, hard, uniform texture with a minimum of seams.

B. Unformed Finish: Float finish on unformed face of wall shall consist of a smooth, hard, uniform surface of smooth steel trowel. Level to a tolerance of 1/10 inch in 10 feet when tested with a 10-foot steel straighedge placed on the surface horizontally, and vertically with radial template with the appropriate radii.

3.7 CONCRETE JOINTS
A. Cleaning: The entire joint shall be thoroughly cleaned and wetted prior to the application of additional shotcrete.

B. Reinforcement: Make joints perpendicular to the main reinforcement. Continue reinforcement across joints.

3.8 CONCRETE CURING AND PROTECTION
A. Initial Curing: Immediately after finishing, keep shotcrete continuously moist for at least 24 hours. Use one of the following materials or methods:

 1. Ponding or continuous sprinkling.
 2. Cover and keep continuously wet.

B. Final Curing: Provide additional curing immediately following the initial curing and before the shotcrete has dried. Use one of the following materials or methods:

 1. Continue the method used in initial curing.
C. Duration of Curing: Continue for the first 7 days after shotcreting or until specified strength is obtained. During the curing period, maintain shotcrete above 40 degrees and in a moist condition. Prevent rapid drying at the end of the curing period.

END OF SECTION 03 37 13
SECTION 04 22 00 - CONCRETE UNIT MASONRY

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Concrete masonry units.
 2. Decorative concrete masonry units.
 3. Pre-faced concrete masonry units.
 4. Steel reinforcing bars.

1.2 DEFINITIONS
A. CMU(s): Concrete masonry unit(s).
B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Sustainable Design Submittals:
 1. Product Certificates: For regional materials, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each regional material.
C. Shop Drawings: For reinforcing steel. Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315.
D. Samples: For each type and color of the following:
 1. Exposed] Decorative CMUs.
 2. Pre-faced CMUs.
 3. Pigmented and colored-aggregate mortar.

1.4 INFORMATIONAL SUBMITTALS
A. Material Certificates: For each type and size of product. For masonry units, include data on material properties material test reports substantiating compliance with requirements.
B. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.

1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91/C 91M for air content.
2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

1.5 QUALITY ASSURANCE

A. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Comply with requirements in Section 014000 "Quality Requirements" for mockups.

1. Build sample panels for [each type of exposed unit masonry construction] in sizes approximately 48 inches (1200 mm) long by 36 inches (900 mm) high by full thickness.

1.6 FIELD CONDITIONS

A. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

PART 2 - PRODUCTS

2.1 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work.

C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated.

1. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.
2.2 CONCRETE MASONRY UNITS

A. Regional Materials: CMUs shall be manufactured within 500 miles (800 km) of Project site from aggregates and cement that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles (800 km) of Project site.

B. Regional Materials: CMUs shall be manufactured within 500 miles (800 km) of Project site.

C. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.

D. CMUs: ASTM C 90.
 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2150 psi (14.8 MPa).
 2. Density Classification: Lightweight unless otherwise indicated.

2.3 CONCRETE LINTELS

A. Concrete Lintels: ASTM C 1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than that of CMUs.

2.4 MORTAR AND GROUT MATERIALS

A. Regional Materials: Aggregate for mortar and grout, cement, and lime shall be manufactured within 500 miles (800 km) of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles (800 km) of Project site.

B. Portland Cement: ASTM C 150/C 150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

C. Hydrated Lime: ASTM C 207, Type S.

D. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.

E. Colored Cement Products: Packaged blend made from portland cement and hydrated lime or colored masonry cement and mortar pigments, all complying with specified requirements, and containing no other ingredients.
 1. Colored Portland Cement-Lime Mix:
Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Essroc.
b. Holcim (US) Inc.
c. Approved equal

2. Colored Masonry Cement:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Cemex S.A.B. de C.V.
2) Essroc.
3) Holcim (US) Inc.
4) Approved equal

F. Aggregate for Mortar: ASTM C 144.

1. White-Mortar Aggregates: Natural white sand or crushed white stone.
2. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

2.5 REINFORCEMENT

A. Uncoated-Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60 (Grade 420).

B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch (3.77-mm) steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

C. Masonry-Joint Reinforcement, General: ASTM A 951/A 951M.

1. Interior Walls: Hot-dip galvanized, carbon steel.
2. Wire Size for Side Rods: 0.148-inch (3.77-mm) diameter.
3. Wire Size for Cross Rods: 0.148-inch (3.77-mm) diameter.
4. Spacing of Cross Rods: Not more than 16 inches (407 mm) o.c.
5. Provide in lengths of not less than 10 feet (3 m), with prefabricated corner and tee units.

2.6 TIES AND ANCHORS

A. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:
2. **Steel Sheet, Galvanized after Fabrication**: ASTM A 1008/A 1008M, Commercial Steel, with ASTM A 153/A 153M, Class B coating.
3. **Steel Plates, Shapes, and Bars**: ASTM A 36/A 36M.

B. **Adjustable Anchors for Connecting to Concrete**: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 1. **Connector Section**: Dovetail tabs for inserting into dovetail slots in concrete and attached to tie section; formed from [0.060-inch- (1.52-mm-) thick steel sheet, galvanized after fabrication] [0.105-inch- (2.66-mm-) thick steel sheet, galvanized after fabrication].
 2. **Tie Section**: Triangular-shaped wire tie made from [0.187-inch- (4.76-mm-)] [0.25-inch- (6.35-mm-)] diameter, hot-dip galvanized-steel wire.
 3. **Corrugated-Metal Ties**: Metal strips not less than 7/8 inch (22 mm) wide with corrugations having a wavelength of 0.3 to 0.5 inch (7.6 to 12.7 mm) and an amplitude of 0.06 to 0.10 inch (1.5 to 2.5 mm) made from [0.060-inch- (1.52-mm-) thick steel sheet, galvanized after fabrication] [0.075-inch- (1.90-mm-) thick steel sheet, galvanized after fabrication] [0.105-inch- (2.66-mm-) thick steel sheet, galvanized after fabrication] with dovetail tabs for inserting into dovetail slots in concrete.

C. **Partition Top Anchors**: 0.105-inch- (2.66-mm-) thick metal plate with a 3/8-inch- (9.5-mm-) diameter metal rod 6 inches (152 mm) long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication.

D. **Rigid Anchors**: Fabricate from steel bars 1-1/2 inches (38 mm) wide by 1/4 inch (6.35 mm) thick by 24 inches (610 mm) long, with ends turned up 2 inches (51 mm) or with cross pins unless otherwise indicated.
 1. **Corrosion Protection**: Hot-dip galvanized to comply with ASTM A 153/A 153M.

2.7 **EMBEDDED FLASHING MATERIALS**

A. **Metal Flashing**: Provide metal flashing complying with Section 076200 "Sheet Metal Flashing and Trim" and as follows:
 1. Fabricate metal drip edges from stainless steel. Extend at least 3 inches (76 mm) into wall and 1/2 inch (13 mm) out from wall, with outer edge bent down 30 degrees and hemmed.
 2. Fabricate metal sealant stops from stainless steel. Extend at least 3 inches (76 mm) into wall and out to exterior face of wall. At exterior face of wall, bend metal back on itself for 3/4 inch (19 mm) and down into joint 1/4 inch (6 mm) to form a stop for retaining sealant backer rod.
 3. Fabricate metal expansion-joint strips from [stainless steel] to shapes indicated.
B. Solder and Sealants for Sheet Metal Flashings: As specified in Section 076200 "Sheet Metal Flashing and Trim."

C. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer's standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

2.8 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene urethane or [PVC.

B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 or [PVC, complying with ASTM D 2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.

C. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D 226/D 226M, Type I (No. 15 asphalt felt).

2.9 MASONRY-CELL FILL

A. Loose-Fill Insulation: Perlite complying with ASTM C 549, Type II (surface treated for water repellency and limited moisture absorption) or Type IV (surface treated for water repellency and to limit dust generation).

B. Lightweight-Aggregate Fill: ASTM C 331/C 331M.

2.10 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.

1. Do not use calcium chloride in mortar or grout.
2. Use portland cement-lime or masonry cement mortar unless otherwise indicated.

B. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion Specification. Provide the following types of mortar for applications stated unless another type is indicated.

1. For masonry below grade or in contact with earth, use Type S.
2. For reinforced masonry, use Type N.
3. For exterior, above-grade, load-bearing and nonload-bearing walls and parapet walls; for interior load-bearing walls; for interior nonload-bearing partitions; and for other applications where another type is not indicated, use Type N.
4. For interior nonload-bearing partitions, Type O may be used instead of Type N.
C. Pigmented Mortar: Use colored cement product. Do not add pigments to colored cement products.

1. Pigments shall not exceed 10 percent of portland cement by weight.
2. Pigments shall not exceed 5 percent of masonry cement by weight.
3. Application: Use pigmented mortar for exposed mortar joints with the following units:
 a. Decorative CMUs.
 b. Pre-faced CMUs.

D. Colored-Aggregate Mortar: Produce required mortar color by using colored aggregates and natural color or white cement as necessary to produce required mortar color.

1. Application: Use colored-aggregate mortar for exposed mortar joints with the following units:
 a. Decorative CMUs.
 b. Pre-faced CMUs.

E. Grout for Unit Masonry: Comply with ASTM C 476.

1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
2. Proportion grout in accordance with ASTM C 476, Table 1 or paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2000 psi (14 MPa).
3. Provide grout with a slump of 8 to 11 inches (200 to 280 mm) as measured according to ASTM C 143/C 143M.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

3.2 TOLERANCES

A. Dimensions and Locations of Elements:

1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.
4. Where align with existing is noted, do not vary from existing by more than 1/8 inch at joint.

B. Lines and Levels:

1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12-mm) maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12-mm) maximum.
3. For vertical lines and surfaces, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.
4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12-mm) maximum.
5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.

C. Joints:

1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm), with a maximum thickness limited to 1/2 inch (12 mm).
2. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch (9 mm) or minus 1/4 inch (6 mm).
3. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm).

3.3 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

C. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

D. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.
E. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.

F. Fill cores in hollow CMUs with grout 24 inches (600 mm) under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

3.4 MORTAR BEDDING AND JOINTING

A. Lay hollow CMUs as follows:
 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.

B. Lay solid CMUs with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.

D. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

3.5 MASONRY-CELL FILL

A. Pour loose-fill insulation into cavities to fill void spaces at existing exterior walls. Maintain inspection ports to show presence of fill at extremities of each pour area. Close the ports after filling has been confirmed. Limit the fall of fill to one story high, but not more than 20 feet (6 m).

3.6 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch (16 mm) on exterior side of walls, 1/2 inch (13 mm) elsewhere. Lap reinforcement a minimum of 6 inches (150 mm).
 1. Space reinforcement not more than 16 inches (406 mm) o.c.
 2. Space reinforcement not more than 8 inches (203 mm) o.c. in foundation walls and parapet walls.
 3. Provide reinforcement not more than 8 inches (203 mm) above and below wall openings and extending 12 inches (305 mm) beyond openings.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.
C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

3.7 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:

1. Provide an open space not less than 1/2 inch (13 mm) wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.

2. Anchor masonry with anchors embedded in masonry joints and attached to structure.

3. Space anchors as indicated, but not more than 24 inches (610 mm) o.c. vertically and 36 inches (915 mm) o.c. horizontally.

3.8 FLASHING

A. General: Install embedded flashing at ledges and other obstructions to downward flow of water in wall where indicated.

B. Install flashing as follows unless otherwise indicated:

1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.

2. At lintels, extend flashing a minimum of 6 inches (150 mm) into masonry at each end. At heads and sills, extend flashing 6 inches (150 mm) at ends and turn up not less than 2 inches (50 mm) to form end dams.

C. Install single-wythe CMU flashing system in bed joints of CMU walls where indicated to comply with manufacturer's written instructions. Install CMU cell pans with upturned edges located below face shells and webs of CMUs above and with weep spouts aligned with face of wall. Install CMU web covers so that they cover upturned edges of CMU cell pans at CMU webs and extend from face shell to face shell.

3.9 REINFORCED UNIT MASONRY INSTALLATION

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.

1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.

B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.

C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 2. Limit height of vertical grout pours to not more than 60 inches (1520 mm).

3.10 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

B. Inspections: Special inspections according to Level B in TMS 402/ACI 530/ASCE 5.
 1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 3. Place grout only after inspectors have verified proportions of site-prepared grout.

C. Testing Prior to Construction: One set of tests.

D. Testing Frequency: One set of tests for each 5000 sq. ft. (464 sq. m) of wall area or portion thereof.

E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C 140 for compressive strength.

F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.

G. Mortar Test (Property Specification): For each mix provided, according to ASTM C 780. Test mortar for [mortar air content] [and] [compressive strength].

H. Grout Test (Compressive Strength): For each mix provided, according to ASTM C 1019.

I. Prism Test: For each type of construction provided, according to ASTM C 1314 at [seven days and at]28 days.
3.11 REPAIRING, POINTING, AND CLEANING

A. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

B. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:

1. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes.
2. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

3.12 MASONRY WASTE DISPOSAL

A. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.

1. Do not dispose of masonry waste as fill within 18 inches (450 mm) of finished grade.

B. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.

C. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner’s property.

END OF SECTION 04 22 00
SECTION 04 26 13 - MASONRY VENEER

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Clay face brick.

B. Products Installed but Not Furnished under This Section:
 1. Steel lintels in masonry veneer.
 2. Steel shelf angles for supporting masonry veneer.

1.2 ALLOWANCES

A. Face brick is part of the Face Brick Allowance.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. Product Certificates: For regional materials, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each regional material.

C. Samples for Verification: For each type and color of brick and colored mortar.

1.4 INFORMATIONAL SUBMITTALS

A. Material Certificates: For each type and size of product.

1.5 QUALITY ASSURANCE

A. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Comply with requirements in Section 014000 "Quality Requirements" for mockups.
 1. Build sample panels for typical exterior wall in sizes approximately 48 inches (1200 mm) long by 48 inches (1200 mm) high by full thickness.
1.6 FIELD CONDITIONS

A. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F (4 deg C) and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.1 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects will be exposed in the completed Work.

2.2 BRICK

A. Regional Materials: Brick shall be manufactured within 500 miles (160 km) of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 100 miles (160 km) of Project site.

B. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching finish and color of exposed faces of adjacent units:

1. For ends of sills and caps and for similar applications that would otherwise expose unfinished brick surfaces, provide units without cores or frogs and with exposed surfaces finished.
2. Provide special shapes for applications where shapes produced by sawing would result in sawed surfaces being exposed to view.

C. Clay Face Brick: Facing brick complying with ASTM C 216) [or] [hollow brick complying with ASTM C 652, Class H40V (void areas between 25 and 40 percent of gross cross-sectional area)].

1. Acceptable Manufacturers: Belden Brick, Boral Brick, Hanson Brick, Chattahoochee Brick Co
2. Grade MW or SW.
3. Type FBS or Type HBX.
4. Initial Rate of Absorption: Less than 30 g/30 sq. in. (30 g/194 sq. cm) per minute when tested according to ASTM C 67.
5. Efflorescence: Provide brick that has been tested according to ASTM C 67 and is rated "not effloresced."
6. Surface Coating: Brick with colors or textures produced by application of coatings shall withstand 50 cycles of freezing and thawing according to ASTM C 67 with no observable difference in the applied finish when viewed from 10 feet (3 m) or shall have a history of successful use in Project's area.
7. Size (Actual Dimensions): Match existing

D. Portland Cement: ASTM C 150/C 150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

E. Hydrated Lime: ASTM C 207, Type S.

F. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.

G. Masonry Cement: ASTM C 91/C 91M.

H. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C 979/C 979M. Use only pigments with a record of satisfactory performance in masonry mortar.

I. Colored Cement Products: Packaged blend made from portland cement and hydrated lime masonry cement or mortar cement and mortar pigments, all complying with specified requirements, and containing no other ingredients.

J. Aggregate for Mortar: ASTM C 144.

1. White-Mortar Aggregates: Natural white sand or crushed white stone.
2. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

K. Water: Potable.

2.3 TIES AND ANCHORS

A. General: Ties and anchors shall extend at least 1-1/2 inches (38 mm) into veneer but with at least a 5/8-inch (16-mm) cover on outside face.

B. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:

C. Adjustable Anchors for Connecting to Concrete: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.

D. Adjustable Masonry-Veneer Anchors:

 1. General: Provide anchors that allow vertical adjustment but resist a 100-lbf (445-N) load in both tension and compression perpendicular to plane of wall without deforming or developing play in excess of 1/16 inch (1.5 mm).

2.4 EMBEDDED FLASHING MATERIALS

A. Metal Flashing: Provide metal flashing complying with Section 076200 "Sheet Metal Flashing and Trim" and as follows:

 1. Fabricate metal drip edges from stainless steel. Extend at least 3 inches (76 mm) into wall and 1/2 inch (13 mm) out from wall, with outer edge bent down 30 degrees and hemmed.

 2. Fabricate metal sealant stops from stainless steel. Extend at least 3 inches (76 mm) into wall and out to exterior face of wall. At exterior face of wall, bend metal back on itself for 3/4 inch (19 mm) and down into joint 1/4 inch (6 mm) to form a stop for retaining sealant backer rod.

B. Solder and Sealants for Sheet Metal Flashings: As specified in Section 076200 "Sheet Metal Flashing and Trim."

C. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer's standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

2.5 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene urethane or [PVC].

B. Weep/Vent Products: Use one of the following unless otherwise indicated:

 1. Cellular Plastic Weep/Vent: One-piece, flexible extrusion made from UV-resistant polypropylene copolymer, full height and width of head joint and depth 1/8 inch (3 mm) less than depth of outer wythe, in color selected from manufacturer's standard.

 2. Mesh Weep/Vent: Free-draining mesh; made from polyethylene strands, full height and width of head joint and depth 1/8 inch (3 mm) less than depth of outer wythe; in color selected from manufacturer's standard.

 3. Aluminum Weep Hole/Vent: Units made from sheet aluminum, designed to fit into a head joint and consisting of a vertical channel, with louvers stamped in web
and with a top flap to keep mortar out of the head joint; factory primed and painted before installation to comply with Section 099113 "Exterior Painting" in color selected by Architect.

4. Vinyl Weep Hole/Vent: Units made from flexible PVC, designed to fit into a head joint and consisting of a louvered vertical leg, flexible wings to seal against ends of masonry units, and a top flap to keep mortar out of the head joint; in color selected by Architect.

C. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity.

2.6 MASONRY CLEANERS

A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.

2.7 MORTAR MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.

1. Do not use calcium chloride in mortar or grout.
2. Use portland cement-lime or masonry cement mortar unless otherwise indicated.
3. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.

B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.

C. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion Specification. Use Type N unless another type is indicated.

D. Pigmented Mortar: Use colored cement product or select and proportion pigments with other ingredients to produce color required. Do not add pigments to colored cement products.

1. Pigments shall not exceed 10 percent of portland cement by weight.
2. Pigments shall not exceed 5 percent of masonry cement or mortar cement by weight.
3. Application: Use pigmented mortar for exposed mortar joints.
E. Colored-Aggregate Mortar: Produce required mortar color by using colored aggregates and natural color or white cement as necessary to produce required mortar color.

1. Mix to match Architect's sample.
2. Application: Use colored aggregate mortar for exposed mortar joints.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

B. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures. Mix units from several pallets or cubes as they are placed.

C. Wetting of Brick: Wet brick before laying if initial rate of absorption exceeds 30 g/30 sq. in. (30 g/194 sq. cm) per minute when tested according to ASTM C 67. Allow units to absorb water so they are damp but not wet at time of laying.

3.2 TOLERANCES

A. Dimensions and Locations of Elements:

1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.

B. Lines and Levels:

1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2 inch (12 mm) maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2 inch (12 mm) maximum.
3. For vertical lines and surfaces, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2 inch (12 mm) maximum.
4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2 inch (12 mm) maximum.
5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2 inch (12 mm) maximum.

C. Joints:

1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm), with a maximum thickness limited to 1/2 inch (12 mm).

2. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm). Do not vary from adjacent bed-joint and head-joint thicknesses by more than 1/8 inch (3 mm).

3.3 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

C. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

3.4 MORTAR BEDDING AND JOINTING

A. Lay masonry units with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

B. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.

3.5 ANCHORED MASONRY VENEERS

A. Anchor masonry veneers to concrete and masonry backup with masonry-veneer anchors to comply with the following requirements:

1. Fasten anchors to concrete and masonry backup with metal fasteners of type indicated. Use two fasteners unless anchor design only uses one fastener.

2. Embed tie sections connector sections and continuous wire in masonry joints.

3. Locate anchor sections to allow maximum vertical differential movement of ties up and down.

4. Space anchors as indicated, but not more than 18 inches (458 mm) o.c. vertically and 24 inches (610 mm) o.c. horizontally, with not less than one anchor for each 2 sq. ft. (0.2 sq. m) of wall area. Install additional anchors within 12 inches (305
mm) of openings and at intervals, not exceeding 8 inches (203 mm), around perimeter.

5. Space anchors as indicated, but not more than 16 inches (406 mm) o.c. vertically and 25 inches (635 mm) o.c. horizontally, with not less than one anchor for each [2.67 sq. ft. (0.25 sq. m)] [3.5 sq. ft. (0.33 sq. m)] of wall area. Install additional anchors within 12 inches (305 mm) of openings and at intervals, not exceeding 36 inches (914 mm), around perimeter.

6. Space anchors as indicated, but not more than 18 inches (458 mm) o.c. vertically and horizontally. Install additional anchors within 12 inches (305 mm) of openings and at intervals, not exceeding 24 inches (610 mm), around perimeter.

B. Provide not less than ½” of airspace between back of masonry veneer and face of cmu.

3.6 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete to comply with the following:

1. Provide an open space not less than [1/2 inch (13 mm)] [1 inch (25 mm)] [2 inches (50 mm)] wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.

2. Anchor masonry with anchors embedded in masonry joints and attached to structure.

3. Space anchors as indicated, but not more than 24 inches (610 mm) o.c. vertically and 36 inches (915 mm) o.c. horizontally.

3.7 FLASHING, WEEP HOLES, AND VENTS

A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated. Install vents at shelf angles, ledges, and other obstructions to upward flow of air in cavities, and where indicated.

B. Install flashing as follows unless otherwise indicated:

1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.

2. At lintels and shelf angles, extend flashing a minimum of 6 inches (150 mm) into masonry at each end. At heads and sills, extend flashing 6 inches (150 mm) at ends and turn up not less than 2 inches (50 mm) to form end dams.

3. Install metal drip edges beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch (13 mm) back from outside face of wall, and adhere flexible flashing to top of metal drip edge.
4. Install metal flashing termination beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch (13 mm) back from outside face of wall, and adhere flexible flashing to top of metal flashing termination.

C. Install weep holes in veneers in head joints of first course of masonry immediately above embedded flashing.

 1. Use specified weep/vent products or open-head joints to form weep holes.
 2. Space weep holes 24 inches (600 mm) o.c. unless otherwise indicated.

D. Place cavity drainage material in airspace behind veneers to comply with configuration requirements for cavity drainage material in "Miscellaneous Masonry Accessories" Article.

E. Install vents in head joints in exterior wythes at spacing indicated. Use specified weep/vent products or open-head joints to form vents.

 1. Close cavities off vertically and horizontally with blocking in manner indicated. Install through-wall flashing and weep holes above horizontal blocking.

3.8 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

B. Inspections: Special inspections according to Level B in TMS 402/ACI 530/ASCE 5.

 1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.

C. Testing Prior to Construction: One set of tests.

D. Clay Masonry Unit Test: For each type of unit provided, according to ASTM C 67 for compressive strength.

E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C 140 for compressive strength.

F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.

3.9 REPAIRING, POINTING, AND CLEANING

A. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
B. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:

1. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes.
2. Protect adjacent stone and nonmasonry surfaces from contact with cleaner.
3. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
5. Clean masonry with a proprietary acidic cleaner applied according to manufacturer's written instructions.

3.10 MASONRY WASTE DISPOSAL

A. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.

1. Do not dispose of masonry waste as fill within 18 inches (450 mm) of finished grade.

B. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 04 26 13
SECTION 05 50 00 – METAL FABRICATIONS

PART 1 - GENERAL

1.1 SCOPE: Provide labor, materials and equipment for the installation of the Site Metal Work as shown on the drawings and as specified.

1.2 RELATED SECTIONS

 B. Section 03 30 00 - Cast-In-Place Concrete
 C. Section 03 37 13 - Shotcrete

1.3 QUALITY ASSURANCE

 A. Qualifications of Fabricators: Experienced in fabrication of miscellaneous metals.

 B. Qualifications of Welders: Welding shall be done only by certified welding operators currently qualified according to AWS D1.1.

 C. Qualifications of Workmen: Provide at least one person who shall be present at all times during execution of this portion of the Work, and who shall be thoroughly familiar with the type of materials being installed, the referenced standards, the requirements of this Work, and who shall direct all work performed under this Section. Welds indicated may be made in shop or field with approval.

1.4 REFERENCE STANDARDS:

1.5 SUBMITTALS

 A. Shop Drawings:

 1. Submit shop drawings for all custom fabricated items under this section. Indicate profiles, sizes, connection attachments, reinforcing, anchorage, size and type of fasteners and accessories. Indicate welded connections using standard AWS welding symbols.

 2. Verification: Verify all measurements at the job. Show dimensions, sizes, thicknesses, gauges, finishes, joining, attachments, and relationship of work to adjoining construction. Where items must fit and coordinate with finished surfaces and/or constructed spaces, take measurements at site and not from drawings.
3. Coordination: Coordinate with work of Cast-In-Place Concrete Section.

B. Samples: Required for all Coping and Edging of concrete work. Submit finish metal samples for final finish selection. Submit prior to delivery to site. Attach name, address of manufacturer and/or supplier to each sample.

1.6 DELIVERY, STORAGE AND HANDLING

A. Coordination:
 1. Coordinate with work of Cast-In-Place Concrete Section.

B. Storage of Materials:
 1. Materials which are stored at the project site shall be above ground on platforms, skids, or other supports. Protect steel from corrosion. Store other materials in a weather-tight and dry place until ready for use.

C. Protection:
 1. Use all means necessary to protect miscellaneous metals before, during and after installation and to protect the installed work and materials of all other trades.
 2. Protect any adjacent materials or areas below from damage due to weld splatter or sparks during field welding.

D. Replacements: In the event of damage, immediately make all repairs and replacements necessary to the approval of the Owner’s Representative and at no additional cost to the Owner.

1.7 JOB CONDITIONS

A. Examine existing conditions in which the work is to be installed. Notify Owner’s Representative if conditions are unacceptable to begin work.

B. Do not proceed with the work until unsatisfactory conditions have been corrected.

1.8 COORDINATION

A. Templates and Built-ins: Furnish all anchors, fastenings, sleeves, setting templates and layouts affecting or installed in the work of other trades.

B. Delivery: Where items must be incorporated or built into adjacent work, deliver to trade responsible for such work in sufficient time that progress of work is not delayed. Be responsible for proper location of such items.

1.9 JOB SITE SAMPLE
A. Contractor to provide fabricated, on site sample of metal item(s), complete with approved finish, for review by Owner and Owner's Representative before fabrication of total quantities. Any fabrication of project item(s) by Contractor before Owner review and approval is strictly at the Contractor's own risk and expense.

B. Approved sample(s) shall be used as the standard of workmanship and shall remain on site until work has been completed and approved by the Owner's Representative.

PART 2 - PRODUCTS

2.1 MATERIALS

A. 2" ROUND STEEL PIPE COPING-O.D. 2.375, Thickness .154: ASTM A-53, Type E or S (Fy=35 ksi), Grade B or A-501 (Fy=36 ksi).

B. 2"X2" SQUARE STEEL TUBING- O.D. 2"X2", Thickness .188: ASTM A-53, Type E or S (Fy=35 ksi), Grade B or A-501 (Fy=36 ksi).

C. 2"x6" STEEL PIPE COPING: O.D. 2"X6", Thickness .188: ASTM A-53, Type E or S (Fy=35 ksi), Grade B or A-501 (Fy=36 ksi).

D. 2"X6"x2" ANGLE IRON STAIR NOSING- O.D. 2"x6" Thickness .188: ASTM A-53, Type E or S (Fy=35 ksi), Grade B or A-501 (Fy=36 ksi).

E. 2"X6"x4 ANGLE IRON STAIR NOSING- O.D. 2"X6" Thickness .33 : ASTM A-53, Type E or S (Fy=35 ksi), Grade B or A-501 (Fy=36 ksi).

D. WELDING RODS: E-70 series low hydrogen unless otherwise noted on drawings.

2.3 OTHER MATERIALS: All other materials, not specifically described but required for a complete and proper installation of miscellaneous metals, shall be new, first quality of their respective kinds and subject to the approval of the Owner's Representative.

PART 3 - EXECUTION

3.1 EXISTING CONDITIONS

A. Inspection:

1. Prior to all work of this Section, carefully inspect the installed work of all other trades and verify that all such work is complete to the point where this installation may properly commence.

B. Discrepancies:

1. In the event of discrepancy, immediately notify the Owner's Representative.
3.2 COORDINATION

A. General: Carefully coordinate with all other trades to insure proper and adequate interface of the work of other trades with the work of this Section.

B. Delivery: Insure timely delivery of all metal fabrications which must be installed in other work so as not to delay that work.

3.3 INSTALLATION

A. General:

1. Install metal fabrications in strict accordance with the Drawings, the approved Shop Drawings, and all pertinent codes, regulations and standards.

2. Obtain Owner’s Representative review prior to site cutting or making adjustments which are not part of scheduled work.

3. Install items square and level, accurately fitted and free from distortion or defects.

4. Align all metal fabrications as shown on the Drawings, and where vertical or horizontal members are shown, align them straight, plumb and level within a tolerance of one in 500.

5. Make provisions for erection stresses by temporary bracing. Keep work in alignment.

6. Replace items damaged in course of installation.

7. Perform field welding in accordance with AWS D1.1

8. After installation, grind and touch-up field welds.

3.4 WORKMANSHIP

A. Layout: Set all work plumb, true, rigid, and neatly trimmed out. Miter corners and angles of exposed molding and frames unless otherwise noted.

B. Fitting: Fit exposed connections accurately together to form tight hairline joints.

C. Labor: Employ only workmen specifically skilled in such work.

3.5 FABRICATION

A. Shop assembles in largest practicable dimensions, making members true to length so assembling may be done without fillers.
B. Provide all surfaces free of file marks, dents, hammer marks, wire edges or any unsightly surface defects.

C. STEEL PIPE COPING: Roll pipe to conform with top radius curve of each bowl and ledge as shown on drawings. Refer to drawings for relational tolerance to concrete surface and other steel.

3.6 ATTACHMENTS AND REINFORCEMENTS

A. Do all cutting, shearing, drilling, punching, threading, tapping, etc., required for site metalwork or for attachment of adjacent work. If applicable, drill or punch holes; do not use cutting torch.

3.7 OTHER CONNECTORS: Make all permanent connections in ferrous metal surfaces using welds where at all possible; do not use bolts or screws.

3.8 WELDING

A. Preparation: Remove all rust, paint, scale and other foreign matter. Wire brush all flame-cut edges. Clamp members as required and alternate welds, all as necessary to prevent warping or misalignment.

B. Exposed Welds: Uniformly grind smooth (no tolerance) all welds normally exposed to view and feel in the finished work.

D. Faulty and Defective Welding: Chip out and replace all welding showing cracks, slag inclusion, lack of fusion, bad undercut or other defects ascertained by visual or other means of inspection. Replace and re-weld at no cost to Owner.

E. Field Welding:
 1. Procedure: Comply with AWS code of manual shielded metal-arc welding, appearance and quality of welds made, and methods used in correcting welding work.
 2. Protection: Protect all adjacent surfaces from damage due to weld sparks, spatter, or tramp metal.

3.9 SURFACE TREATMENT AND PROTECTIVE COATINGS

A. Cleaning:
 1. Thoroughly clean all mill scale, rust, dirt, grease and other foreign matter from ferrous metal prior to any galvanizing, or painting.
 2. Conditions which are too severe to be removed by hand cleaning, shall be cleaned using appropriate methods for solvent cleaning, power tool cleaning and brush-off blast cleaning.

B. Exterior Ferrous Metal:
1. Grind smooth all welds, burrs, and rough surfaces. Clean and hot-phosphate treat completed assembly. Hot phosphate treatment not required on items which are not exposed in the finish work or on those items where size prohibits such treatment.

2. Galvanize ferrous metal items unless specified.

2. Indicate on Shop Drawings where treatment is proposed to be omitted, if any.

3.10 CLEAN-UP

A. Keep all areas of work clean, neat and orderly at all times. Keep paved areas clean during installation.

B. Clean up and remove all debris from the entire work area prior to Final Acceptance to satisfaction of Owner’s Representative.

END OF SECTION 05 50 00
SECTION 05 73 00 - DECORATIVE METAL RAILINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Steel and iron decorative railings.

1.2 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Manufacturer's product lines of railings assembled from standard components.
 2. Grout, anchoring cement, and paint products.

B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.

C. Shop Drawings: Include plans, elevations, sections, and attachment details.

D. Samples: For each type of exposed finish required.

E. Delegated-Design Submittal: For installed products indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, according to ASTM E 894 and ASTM E 935.

C. Preconstruction test reports.

D. Evaluation Reports: For post-installed anchors, from ICC-ES.

1.4 QUALITY ASSURANCE

A. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation.
1. Build mockups for each form and finish of railing consisting of two posts, top rail, infill area, and anchorage system components.

1.5 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction testing on laboratory mockups. Payment for these services will be made by Contractor. Retesting of products that fail to meet specified requirements shall be done at Contractor's expense.

1. Build laboratory mockups at testing agency facility; use personnel, materials, and methods of construction that will be used at Project site.
2. Test railings according to ASTM E 894 and ASTM E 935.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Steel and Iron Decorative Railings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Indital USA.
 c. Approved alternative

B. Product Options: Information on Drawings and in Specifications establishes requirements for system's aesthetic effects and performance characteristics.

1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design railings, including attachment to building construction.

B. Structural Performance: Railings, including attachment to building construction, shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:

1. Handrails and Top Rails of Guards:
 a. Uniform load of 50 lbf/ft. (0.73 kN/m) applied in any direction.
 b. Concentrated load of 200 lbf (0.89 kN) applied in any direction.
c. Uniform and concentrated loads need not be assumed to act concurrently.

2. Infill of Guards:
 a. Concentrated load of 50 lbf (0.22 kN) applied horizontally on an area of 1 sq. ft. (0.093 sq. m).
 b. Infill load and other loads need not be assumed to act concurrently.

2.3 METALS, GENERAL
 A. Brackets, Flanges, and Anchors: Same metal and finish as supported rails unless otherwise indicated.

2.4 STEEL AND IRON
 A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
 B. Tubing: ASTM A 500/A 500M (cold formed) or ASTM A 513.
 C. Bars: Hot-rolled, carbon steel complying with ASTM A 29/A 29M, Grade 1010.
 D. Plates, Shapes, and Bars: ASTM A 36/A 36M.
 E. Cast Iron: Either gray iron, ASTM A 48/A 48M, or malleable iron, ASTM A 47/A 47M, unless otherwise indicated.

2.5 FASTENERS
 A. Fastener Materials: Unless otherwise indicated, provide the following:
 2. Dissimilar Metals: Type 316 stainless-steel fasteners.
 B. Post-Installed Anchors: Fastener systems with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC193 or ICC-ES AC308.
 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, unless otherwise indicated.
2.6 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

B. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.

C. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.

D. Shop Primer for Galvanized Steel: Cementitious galvanized metal primer complying with MPI#26.

E. Epoxy Intermediate Coat: Complying with MPI#77 and compatible with primer and topcoat.

F. Polyurethane Topcoat: Complying with MPI#72 and compatible with undercoat.

G. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187/D 1187M.

H. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

2.7 FABRICATION

A. General: Fabricate railings to comply with requirements indicated for design, dimensions, member sizes and spacing, details, finish, and anchorage, but not less than that required to support structural loads.

B. Connections: Fabricate railings with welded connections unless otherwise indicated.

C. Welded Connections: Cope components at connections to provide close fit, or use fittings designed for this purpose. Weld all around at connections, including at fittings.

 1. At exposed connections, finish exposed welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Type 1 welds; no evidence of a welded joint.

D. Brazed Connections: Connect copper-alloy railings by brazing. Cope components at connections to provide close fit, or use fittings designed for this purpose. Braze corners and seams continuously.

 1. At exposed connections, finish exposed surfaces smooth and blended so no roughness shows after finishing and brazed surface matches contours of adjoining surfaces.

E. Mechanical Connections: Connect members with concealed mechanical fasteners and fittings. Fabricate members and fittings to produce flush, smooth, rigid, hairline joints.
F. Form changes in direction by bending.

G. Bend members in jigs to produce uniform curvature for each configuration required; maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.

H. Close exposed ends of hollow railing members with prefabricated end fittings.

I. Provide wall returns at ends of wall-mounted handrails unless otherwise indicated.

J. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, flanges, miscellaneous fittings, and anchors to interconnect railing members to other work unless otherwise indicated.

K. Expanded-Metal Infill Panels: Fabricate infill panels from steel expanded metal unless otherwise indicated.
 1. Edge panels with U-shaped channels made from same metal as infill; not less than 0.043 inch (1.1 mm) thick.

L. Perforated-Metal Infill Panels: Fabricate infill panels from perforated metal made from same metal as railings in which they are installed.
 1. Edge panels with U-shaped channels made from metal sheet, of same metal as perforated metal and not less than 0.043 inch (1.1 mm) thick.

2.8 STEEL AND IRON FINISHES

A. Galvanized Railings:
 1. Hot-dip galvanize exterior steel and iron railings, including hardware, after fabrication.
 2. Comply with ASTM A 123/A 123M for hot-dip galvanized railings.
 4. Do not quench or apply post-galvanizing treatments that might interfere with paint adhesion.

B. For galvanized railings, provide hot-dip galvanized fittings, brackets, fasteners, sleeves, and other ferrous components.

C. Preparing Galvanized Railings for Shop Priming: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with etching cleaner.

D. Primer Application: Apply shop primer to prepared surfaces of railings unless otherwise indicated. Comply with requirements in SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting. Primer need not be applied to surfaces to be embedded in concrete or masonry.

E. High-Performance Coating: Apply epoxy intermediate and polyurethane topcoats to prime-coated surfaces. Comply with coating manufacturer's written instructions and
with requirements in SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting. Apply at spreading rates recommended by coating manufacturer.

1. Color: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Fit exposed connections together to form tight, hairline joints.

B. Perform cutting, drilling, and fitting required for installing railings. Set railings accurately in location, alignment, and elevation; measured from established lines and levels and free of rack.

 1. Set posts plumb within a tolerance of 1/16 inch in 3 feet (2 mm in 1 m).
 2. Align rails so variations from level for horizontal members and variations from parallel with rake of steps and ramps for sloping members do not exceed 1/4 inch in 12 feet (5 mm in 3 m).

C. Control of Corrosion: Prevent galvanic action and other forms of corrosion by insulating metals and other materials from direct contact with incompatible materials.

 1. Coat concealed surfaces of aluminum and copper alloys that will be in contact with grout, concrete, masonry, wood, or dissimilar metals, with a heavy coat of bituminous paint.

D. Use steel pipe sleeves preset and anchored into concrete for installing posts. After posts have been inserted into sleeves, fill annular space between post and sleeve with nonshrink, nonmetallic grout.

E. Form or core-drill holes not less than 5 inches (125 mm) deep and 3/4 inch (20 mm) larger than OD of post for installing posts in concrete. Clean holes of loose material, insert posts, and fill annular space between post and concrete with nonshrink, nonmetallic grout.

F. Anchor posts to metal surfaces with flanges, angle type, or floor type as required by conditions, connected to posts and to metal supporting members.

G. Anchor railing ends to concrete and masonry with sleeves concealed within railing ends and anchored to wall construction with anchors and bolts unless otherwise noted by structural.

H. Attach handrails to walls with wall brackets except where end flanges are used.

 1. Use type of bracket with flange tapped for concealed anchorage to threaded hanger bolt.
2. Locate brackets as indicated or, if not indicated, at spacing required to support structural loads.

I. Secure wall brackets and railing end flanges to building construction as follows:

1. For concrete and solid masonry anchorage, use drilled-in expansion shields and hanger or lag bolts.
2. For hollow masonry anchorage, use toggle bolts.
3. For wood stud partitions, use hanger or lag bolts set into wood backing between studs. Coordinate with carpentry work to locate backing members.
4. For steel-framed partitions, use hanger or lag bolts set into wood backing between studs. Coordinate with stud installation to locate backing members.
5. For steel-framed partitions, fasten brackets directly to steel framing or concealed steel reinforcements using self-tapping screws of size and type required to support structural loads.
6. For steel-framed partitions, fasten brackets with toggle bolts installed through flanges of steel framing or through concealed steel reinforcements.

J. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.

END OF SECTION 05 73 00
SECTION 06 10 00 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Framing with dimension lumber.
 2. Wood furring and grounds.
 3. Wood sleepers.
 4. Plywood backing panels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product.

1.3 INFORMATIONAL SUBMITTALS

A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.

B. Evaluation Reports: For the following, from ICC-ES:
 1. Wood-preservative-treated wood.
 2. Fire-retardant-treated wood.
 3. Engineered wood products.
 4. Shear panels.
 5. Power-driven fasteners.
 6. Post-installed anchors.
 7. Metal framing anchors.

1.4 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Grade lumber by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
1. Factory mark each piece of lumber with grade stamp of grading agency.
2. For exposed lumber indicated to receive a stained or natural finish, omit grade stamp and provide certificates of grade compliance issued by grading agency.
3. Dress lumber, S4S, unless otherwise indicated.

B. Maximum Moisture Content of Lumber: 15 percent for 2-inch nominal (38-mm actual) thickness or less; 19 percent for more than 2-inch nominal (38-mm actual) thickness unless otherwise indicated.

C. Engineered Wood Products: Acceptable to authorities having jurisdiction and for which current model code research or evaluation reports exist that show compliance with building code in effect for Project.
 1. Allowable design stresses, as published by manufacturer, shall meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat items indicated on Drawings, and the following:
 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete.
 3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 4. Wood framing members that are less than 18 inches (460 mm) above the ground in crawlspaces or unexcavated areas.
 5. Wood floor plates that are installed over concrete slabs-on-grade.
2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, materials shall comply with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet (3.2 m) beyond the centerline of the burners at any time during the test.

1. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated lumber and plywood by pressure process after being subjected to accelerated weathering according to ASTM D 2898. Use for exterior locations and where indicated.

2. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity. Use where exterior type is not indicated.

C. Kiln-dry lumber after treatment to maximum moisture content of 19 percent. Kiln-dry plywood after treatment to maximum moisture content of 15 percent.

D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.

E. Application: Treat items indicated on Drawings, and the following:
 1. Concealed blocking.
 2. Framing for non-load-bearing partitions.
 3. Framing for non-load-bearing exterior walls.
 4. Roof construction.
 5. Plywood backing panels.

2.4 DIMENSION LUMBER FRAMING

A. Non-Load-Bearing Interior Partitions: Construction or No. 2 grade.

 1. Application: Interior wood partitions not indicated as load bearing.
 2. Species:
 a. Southern pine or mixed southern pine; SPIB.
 b. Northern species; NLGA.
 c. Eastern softwoods; NeLMA.
 d. Western woods; WCLIB or WWPA.

B. Framing Other Than Non-Load-Bearing Partitions: No. 2 grade.

 1. Application: Framing other than interior partitions not indicated as load bearing.
2. Species:
 a. Hem-fir (north); NLGA.
 b. Southern pine; SPIB.
 c. Douglas fir-larch; WCLIB or WWPA.
 d. Spruce-pine-fir; NLGA.
 e. Douglas fir-south; WWPA.
 f. Hem-fir; WCLIB or WWPA.
 g. Douglas fir-larch (north); NLGA.
 h. Spruce-pine-fir (south); NeLMA, WCLIB, or WWPA.

C. Exposed Framing: Hand-select material for uniformity of appearance and freedom from characteristics, on exposed surfaces and edges, that would impair finish appearance, including decay, honeycomb, knot-holes, shake, splits, torn grain, and wane.
 1. Species and Grade: As indicated above for load-bearing construction of same type.

2.5 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 1. Blocking.
 2. Nailers.
 3. Rooftop equipment bases and support curbs.
 5. Furring.

B. Dimension Lumber Items: Construction or No. 2 grade lumber of any species.

C. Concealed Boards: 19 percent maximum moisture content and the following species and grades:
 1. Mixed southern pine or southern pine; No. 2 grade; SPIB.
 2. Eastern softwoods; No. 2 Common grade; NeLMA.
 3. Northern species; No. 2 Common grade; NLGA.
 4. Western woods; Construction or No. 2 Common grade; WCLIB or WWPA.

2.6 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, fire-retardant treated, in thickness indicated or, if not indicated, not less than 3/4-inch (19-mm) nominal thickness.
2.7 FASTENERS

A. General: Fasteners shall be of size and type indicated and shall comply with requirements specified in this article for material and manufacture.

1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.

B. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

C. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01 ICC-ES AC58 ICC-ES AC193 or ICC-ES AC308 as appropriate for the substrate.

2.8 METAL FRAMING ANCHORS

A. Allowable design loads, as published by manufacturer, shall meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency. Framing anchors shall be punched for fasteners adequate to withstand same loads as framing anchors.

1. Use for interior locations unless otherwise indicated.

C. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A 653/A 653M; structural steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 (Z550) coating designation; and not less than 0.036 inch (0.9 mm) thick.

1. Use for wood-preservative-treated lumber and where indicated.

2.9 MISCELLANEOUS MATERIALS

A. Sill-Sealer Gaskets: Glass-fiber-resilient insulation, fabricated in strip form, for use as a sill sealer; 1-inch (25-mm) nominal thickness, compressible to 1/32 inch (0.8 mm); selected from manufacturer's standard widths to suit width of sill members indicated.

B. Sill-Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch (6.4 mm) thick, selected from manufacturer's standard widths to suit width of sill members indicated.

C. Flexible Flashing: Composite, self-adhesive, flashing product consisting of a pliable, butyl rubber or rubberized-asphalt compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.025 inch (0.6 mm).
D. Adhesives for Gluing Furring and Sleepers to Concrete or Masonry: Formulation complying with ASTM D 3498 that is approved for use indicated by adhesive manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

B. Framing with Engineered Wood Products: Install engineered wood products to comply with manufacturer's written instructions.

C. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry accurately to other construction. Locate furring, nailers, blocking, grounds, and similar supports to comply with requirements for attaching other construction.

D. Install shear wall panels to comply with manufacturer's written instructions.

E. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.

F. Do not splice structural members between supports unless otherwise indicated.

G. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.

H. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

I. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:

1. **Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code (IBC).**
2. **Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.**
3. **ICC-ES evaluation report for fastener.**

3.2 PROTECTION

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
B. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 06 10 00
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Interior trim.
 2. Interior plywood paneling.

B. Related Requirements:

1.2 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product.

B. Sustainable Design Submittals:
 2. Chain-of-Custody Qualification Data: For manufacturer and vendor.

C. Samples: For each type of paneling and shelving and brackets.

1.3 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer that is certified for chain of custody by an FSC-accredited certification body.

B. Vendor Qualifications: A vendor that is certified for chain of custody by an FSC-accredited certification body.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Certified Wood: The following wood products shall be certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-00 and FSC STD-40-004.
 1. Interior plywood board paneling.

B. Lumber: DOC PS 20.
1. Factory mark each piece of lumber with grade stamp of inspection agency indicating grade, species, moisture content at time of surfacing, and mill.

a. For exposed lumber, mark grade stamp on end or back of each piece.

D. Hardboard: AHA A135.4.

2.2 FIRE-RETARDANT-TREATED MATERIALS

A. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E84, with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet (3.2 m) beyond the centerline of the burners at any time during the test.

1. Kiln dry lumber and plywood after treatment to a maximum moisture content of 19 and 15 percent respectively.

B. Identify fire-retardant-treated wood with appropriate classification marking of testing and inspecting agency acceptable to authorities having jurisdiction.

1. For exposed lumber and plywood indicated to receive a stained or natural finish, mark back of each piece.

C. Application: Where indicated.

2.3 INTERIOR TRIM

A. Softwood Lumber Trim:
 1. Species and Grade: Western red cedar, Grade A; NLGA, WCLIB, or WWPA.
 2. Maximum Moisture Content: 15 percent.

B. Hardwood Lumber Trim:
 1. Species and Grade: White maple; A Finish; NHLA.
 2. Maximum Moisture Content: 10 percent.
 a. Maximum Moisture Content: 9 percent.

3. Optional Material: Primed MDF.

2.4 PANELING

A. Hardwood Veneer Plywood Paneling: Manufacturer's stock hardwood plywood panels complying with HPVA HP-1.
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated or comparable product by one of the following:
a. **Plyboo**

 2. Face Veneer Species and Cut: Bamboo plywood
 4. Thickness: 3/4 inch (6.4 mm).
 5. Finish: As selected by Architect from manufacturer's full range.

B. Hardwood Veneer Plywood Paneling for installation in ceiling grid:
 1. Face Veneer Species: Maple plywood
 2. Veneer Matching: Face Match
 3. Thickness: 1/4" inch

2.5 **SHELVING**

A. Shelving: Made from the following material, 3/4 inch (19 mm) thick.
 1. 1" Plyboo

B. Shelf Brackets without Rod Support: BHMA A156.16, B04041; concealed shelf supports.

C. Paneling Adhesive: Comply with paneling manufacturer's written recommendations for adhesives.
 1. Adhesives should have a voc content of 30 or less.

PART 3 - EXECUTION

3.1 **PREPARATION**

A. Before installing interior finish carpentry, condition materials to average prevailing humidity in installation areas for a minimum of 24 hours unless longer conditioning is recommended by manufacturer.

3.2 **INSTALLATION, GENERAL**

A. Install interior finish carpentry level, plumb, true, and aligned with adjacent materials. Use concealed shims where necessary for alignment.

 1. Scribe and cut interior finish carpentry to fit adjoining work. Refinish and seal cuts as recommended by manufacturer.
 2. Countersink fasteners, fill surface flush, and sand unless otherwise indicated.
 3. Install to tolerance of 1/8 inch in 96 inches (3 mm in 2438 mm) for level and plumb. Install adjoining interior finish carpentry with 1/32-inch (0.8-mm) maximum offset for flush installation and 1/16-inch (1.5-mm) maximum offset for reveal installation.
3.3 PANELING INSTALLATION

A. Plywood Paneling: Select and arrange panels on each wall to minimize noticeable variations in grain character and color between adjacent panels. Leave 1/4-inch (6-mm) gap to be covered with trim at top, bottom, and openings. Install with uniform tight joints between panels.

1. Attach panels to supports with manufacturer's recommended panel adhesive and fasteners. Space fasteners and adhesive as recommended by panel manufacturer.
2. Conceal fasteners to greatest practical extent.
3. Install in full lengths without end joints.
4. Stagger end joints in random pattern to uniformly distribute joints on each wall.
5. Select and arrange boards on each wall to minimize noticeable variations in grain character and color between adjacent boards. Install with uniform tight joints between boards.
6. Fasten paneling by face nailing, setting nails, and filling over nail heads.

3.4 SHELVING AND CLOTHES ROD INSTALLATION

A. Cut shelf cleats at ends of shelves about 1/2 inch (13 mm) less than width of shelves and sand exposed ends smooth.

B. Install shelf cleats by fastening to framing or backing with finish nails or trim screws, set below face and filled. Space fasteners not more than 16 inches (400 mm) o.c.

C. Install shelf brackets according to manufacturer's written instructions, spaced not more than 32 inches (800 mm) o.c. Fasten to framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors.

D. Cut shelves to neatly fit openings with only enough gap to allow shelves to be removed and reinstalled. Install shelves, fully seated on cleats, brackets, and supports.

END OF SECTION 06 20 23
SECTION 07 26 00 - VAPOR RETARDERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Polyethylene vapor retarders.
 2. Reinforced-polyethylene vapor retarders.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS
 A. Product test reports.

PART 2 - PRODUCTS

2.1 POLYETHYLENE VAPOR RETARDERS
 A. Polyethylene Vapor Retarders: ASTM D 4397, 10-mil- (0.25-mm-) thick sheet, with
 maximum permeance rating of 0.1 perm (5.7 ng/Pa x s x sq. m).

2.2 REINFORCED-POLYETHYLENE VAPOR RETARDERS
 A. Reinforced-Polyethylene Vapor Retarders: Sheet with outer layers of polyethylene film
 laminated to an inner reinforcing layer consisting of either nylon cord or polyester scrim
 and weighing not less than 20 lb/1000 sq. ft. (9 kg/100 sq. m), with maximum
 permeance rating of 0.1 perm (5.7 ng/Pa x s x sq. m).

PART 3 - EXECUTION

3.1 INSTALLATION OF VAPOR RETARDERS ON FRAMING
 A. Extend vapor retarders to extremities of areas to protect from vapor transmission.
 Secure vapor retarders in place with adhesives, vapor retarder fasteners, or other
 anchorage system as recommended by manufacturer. Extend vapor retarders to cover
miscellaneous voids in insulated substrates, including those filled with loose-fiber insulation.

B. Seal vertical joints in vapor retarders over framing by lapping no fewer than two studs and sealing with vapor-retarder tape according to vapor-retarder manufacturer's written instructions. Locate all joints over framing members or other solid substrates.

C. Seal joints caused by pipes, conduits, electrical boxes, and similar items penetrating vapor retarders with vapor-retarder tape to create an airtight seal between penetrating objects and vapor retarders.

D. Repair tears or punctures in vapor retarders immediately before concealment by other work. Cover with vapor-retarder tape or another layer of vapor retarders.

3.2 INSTALLATION OF VAPOR RETARDERS IN CRAWL SPACES

A. Install vapor retarders over prepared grade. Lap joints a minimum of 12 inches (305 mm) and seal with manufacturer's recommended tape. Install second layer over pathways to equipment.

B. Extend vapor retarder over footings and seal to foundation wall or grade beam with manufacturer's recommended tape.

1. Extend vapor retarder vertically minimum full height of cavity wall.

C. Seal around penetrations such as utilities and columns in order to create a monolithic, airtight membrane at grade surface, perimeter, and all vertical penetrations.

END OF SECTION 07 26 00
SECTION 08 11 13 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes hollow-metal work.

1.2 DEFINITIONS
A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
C. Shop Drawings: Include elevations, door edge details, frame profiles, metal thicknesses, preparations for hardware, and other details.
D. Samples for Initial Selection: For units with factory-applied color finishes.
E. Samples for Verification: For each type of exposed finish required.
F. Schedule: Prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings.

1.4 INFORMATIONAL SUBMITTALS
A. Product test reports.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Ceco Door; ASSA ABLOY.
2. Custom Metal Products.
3. Hollow Metal Inc.
4. Republic Doors and Frames.

2.2 REGULATORY REQUIREMENTS

A. Fire-Rated Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings and temperature-rise limits indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.

1. Smoke- and Draft-Control Assemblies: Provide an assembly with gaskets listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.

B. Fire-Rated, Borrowed-Lite Assemblies: Complying with NFPA 80 and listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing according to NFPA 257 or UL 9.

2.3 INTERIOR DOORS AND FRAMES

A. Standard-Duty Doors and Frames: SDI A250.8, Level 1. At locations indicated in the Door and Frame Schedule.

1. Physical Performance: Level C according to SDI A250.4.
2. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 b. Thickness: 1-3/8 inches (34.9 mm).
 c. Face: Metallic-coated, cold-rolled steel sheet, minimum thickness of 0.032 inch (0.8 mm).
 d. Edge Construction: Model 2, Seamless.
 e. Core: Vertical steel stiffener
3. Frames:
 a. Materials: Metallic-coated, cold-rolled steel sheet, minimum thickness of 0.042 inch (1.0 mm).
 b. Frames: Fabricated from same thickness material as adjacent door frame.
 c. Construction: Full profile welded.
4. Exposed Finish: [Prime].

2.4 FRAME ANCHORS

A. Jamb Anchors:
1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch (1.0 mm) thick, with corrugated or perforated straps not less than 2 inches (51 mm) wide by 10 inches (254 mm) long; or wire anchors not less than 0.177 inch (4.5 mm) thick.
2. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch (1.0 mm) thick.
3. Compression Type for Drywall Slip-on Frames: Adjustable compression anchors.
4. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch- (9.5-mm-) diameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.

B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch (1.0 mm), and as follows:
1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.
2. Separate Topping Concrete Slabs: Adjustable-type anchors with extension clips, allowing not less than 2-inch (51-mm) height adjustment. Terminate bottom of frames at finish floor surface.

2.5 MATERIALS
A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
B. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
C. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
D. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.
E. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.
F. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.
G. Power-Actuated Fasteners in Concrete: From corrosion-resistant materials.
H. Grout: ASTM C 476, except with a maximum slump of 4 inches (102 mm), as measured according to ASTM C 143/C 143M.
I. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing).
J. Glazing: Section 088000 "Glazing."

K. Bituminous Coating: Cold-applied asphalt mastic, compounded for 15-mil (0.4-mm) dry film thickness per coat.

2.6 FABRICATION

A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer’s plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Hollow-Metal Doors:

1. Exterior Doors: Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.

C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.

1. Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
3. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.
4. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
5. Jamb Anchors: Provide number and spacing of anchors as follows:
 a. Masonry Type: Locate anchors not more than 16 inches (406 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c., to match coursing, and as follows:
 1) Two anchors per jamb up to 60 inches (1524 mm) high.
 2) Three anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high.
 3) Four anchors per jamb from 90 to 120 inches (2286 to 3048 mm) high.
 4) Four anchors per jamb plus one additional anchor per jamb for each 24 inches (610 mm) or fraction thereof above 120 inches (3048 mm) high.
b. Stud-Wall Type: Locate anchors not more than 18 inches (457 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c. and as follows:

1) Three anchors per jamb up to 60 inches (1524 mm) high.
2) Four anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high.
3) Five anchors per jamb from 90 to 96 inches (2286 to 2438 mm) high.
4) Five anchors per jamb plus one additional anchor per jamb for each 24 inches (610 mm) or fraction thereof above 96 inches (2438 mm) high.

c. Compression Type: Not less than two anchors in each frame.
d. Postinstalled Expansion Type: Locate anchors not more than 6 inches (152 mm) from top and bottom of frame. Space anchors not more than 26 inches (660 mm) o.c.

6. Door Silencers: Except on weather-striped frames, drill stops to receive door silencers.

a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.

D. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.

1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.

E. Stops and Moldings: Provide stops and moldings around glazed lites and louvers where indicated. Form corners of stops and moldings with [butted] [or] [mitered] hairline joints.

1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow-metal work.
2. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.
4. Provide loose stops and moldings on inside of hollow-metal work.
5. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.

2.7 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.

B. Factory Finish: SDI A250.3.

2.8 ACCESSORIES

A. Louvers: Provide louvers for interior doors, where indicated, which comply with SDI 111C, with blades or baffles formed of 0.020-inch- (0.5-mm-) thick, cold-rolled steel sheet set into 0.032-inch- (0.8-mm-) thick steel frame.
 1. Fire-Rated Automatic Louvers: Movable blades closed by actuating fusible link, and listed and labeled for use in fire-rated door assemblies of type and fire-resistance rating indicated.

B. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.

C. Grout Guards: Formed from same material as frames, not less than 0.016 inch (0.4 mm) thick.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Hollow-Metal Frames: Install hollow-metal frames for doors, transoms, sidelites, borrowed lites, and other openings, of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.
 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 a. At fire-rated openings, install frames according to NFPA 80.
 b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 c. Install frames with removable stops located on secure side of opening.
 d. Install door silencers in frames before grouting.
 e. Remove temporary braces necessary for installation only after frames have been properly set and secured.
 f. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
 g. Field apply bituminous coating to backs of frames that will be filled with grout containing antifreezing agents.
2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.

5. Concrete Walls: Solidly fill space between frames and concrete with mineral-fiber insulation.

6. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

7. In-Place Metal or Wood-Stud Partitions: Secure slip-on drywall frames in place according to manufacturer's written instructions.

8. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 a. Squaress: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.

B. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Steel Doors:
 a. Between Door and Frame Jambs and Head: 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
 b. Between Edges of Pairs of Doors: 1/8 inch (3.2 mm) to 1/4 inch (6.3 mm) plus or minus 1/32 inch (0.8 mm).
 c. At Bottom of Door: 3/4 inch (19.1 mm) plus or minus 1/32 inch (0.8 mm).
 d. Between Door Face and Stop: 1/16 inch (1.6 mm) to 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).

2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.

3. Smoke-Control Doors: Install doors and gaskets according to NFPA 105.

C. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollow-metal manufacturer's written instructions.

1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches (230 mm) o.c. and not more than 2 inches (51 mm) o.c. from each corner.
3.2 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.

B. Remove grout and other bonding material from hollow-metal work immediately after installation.

C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

END OF SECTION 08 11 13
SECTION 08 41 13 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Exterior and interior storefront framing.
2. Storefront framing for window walls.
3. Storefront framing for ribbon walls.
4. Storefront framing for punched openings.
5. Exterior and interior manual-swing entrance doors and door-frame units.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. Product Data: For sealants, indicating VOC content.
2. Laboratory Test Reports: For sealants, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: Include plans, elevations, sections, full-size details, and attachments to other work.

1. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.

D. Samples: For each exposed finish required.

E. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams.

F. Delegated-Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1.4 INFORMATIONAL SUBMITTALS
A. Energy Performance Certificates: NFRC-certified energy performance values from manufacturer.
B. Product test reports.
C. Field quality-control reports.
D. Sample warranties.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance data.

1.6 QUALITY ASSURANCE
A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
B. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated and accredited by IAS or ILAC Mutual Recognition Arrangement as complying with ISO/IEC 17025.
C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.7 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 10 years from date of Substantial Completion.
B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Warranty Period: 20 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design aluminum-framed entrances and storefronts.

B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.

1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.

2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

C. Structural Loads:

 Wind Loads: As indicated on sheet s0.01 of Drawings.

D. Deflection of Framing Members: At design wind pressure, as follows:

1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch (19.1 mm), whichever is less.

2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch (3.2 mm), whichever is smaller.
 a. Operable Units: Provide a minimum 1/16-inch (1.6-mm) clearance between framing members and operable units.

E. Structural: Test according to ASTM E 330 as follows:

1. When tested at positive and negative wind-load design pressures, assemblies do not evidence deflection exceeding specified limits.

2. When tested at 150 percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding \[0.2\] percent of span.
3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

F. Air Infiltration: Test according to ASTM E 283 for infiltration as follows:

1. Fixed Framing and Glass Area:
 a. Maximum air leakage of \[0.06 \text{ cfm/sq. ft. (0.30 L/s per sq. m)}\] at a static-air-pressure differential of \[1.57 \text{ lbf/sq. ft. (75 Pa)}\].

2. Entrance Doors:
 a. Pair of Doors: Maximum air leakage of \[1.0 \text{ cfm/sq. ft. (5.08 L/s per sq. m)}\] at a static-air-pressure differential of 1.57 lbf/sq. ft. (75 Pa).
 b. Single Doors: Maximum air leakage of \[0.5 \text{ cfm/sq. ft. (2.54 L/s per sq. m)}\] at a static-air-pressure differential of 1.57 lbf/sq. ft. (75 Pa).

G. Water Penetration under Static Pressure: Test according to ASTM E 331 as follows:

1. No evidence of water penetration through fixed glazing and framing areas when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft. (300 Pa).

H. Energy Performance: Certify and label energy performance according to NFRC as follows:

1. Thermal Transmittance (U-factor): Fixed glazing and framing areas shall have U-factor of not more than \(0.35 \text{ Btu/sq. ft. x h x deg F (2.55 W/sq. m x K)}\) as determined according to NFRC 100.
2. Solar Heat Gain Coefficient: Fixed glazing and framing areas shall have a solar heat gain coefficient of no greater than 0.35 as determined according to NFRC 200.
3. Condensation Resistance: Fixed glazing and framing areas shall have an NFRC-certified condensation resistance rating of no less than 45 as determined according to NFRC 500.

I. Windborne-Debris Impact Resistance: Pass missile-impact and cyclic-pressure tests when tested according to ASTM E 1886 and testing information in ASTM E 1996 for Wind Zone 2.

1. Large-Missile Test: For glazed openings located within 30 feet (9.1 m) of grade.

J. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes:

1. Temperature Change: \(120 \text{ deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.}\)
2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kawneer North America; an Alcoa company.
2. TRACO.
3. Trulite Glass & Aluminum Solutions, LLC.
4. Tubelite Inc.

2.3 FRAMING

A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.

2. Glazing System: Retained mechanically with gaskets on four sides.
4. Finish: Match existing doors and windows.
5. Fabrication Method: Field-fabricated stick system.

B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

D. Materials:

1. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 c. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
 d. Structural Profiles: ASTM B 308/B 308M.

2. Steel Reinforcement: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.

 a. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 b. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 c. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.
2.4 ENTRANCE DOOR SYSTEMS

A. Entrance Doors: Manufacturer’s standard glazed entrance doors for manual-swing operation.

1. Door Construction: 1-3/4-inch (44.5-mm) overall thickness, with minimum 0.125-inch- (3.2-mm-) thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.

 a. Thermal Construction: High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior.

2. Door Design: Medium stile; 3-1/2-inch (88.9-mm) nominal width.

 a. Provide nonremovable glazing stops on outside of door.

2.5 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Hardware not specified in this Section is specified in Section 087100 "Door Hardware."

B. General: Provide entrance door hardware and entrance door hardware sets indicated in door and frame schedule for each entrance door to comply with requirements in this Section.

1. Opening-Force Requirements:

 a. Egress Doors: Not more than 15 lbf (67 N) to release the latch and not more than 30 lbf (133 N) to set the door in motion and not more than 15 lbf (67 N) to open the door to its minimum required width.
 b. Accessible Interior Doors: Not more than 5 lbf (22.2 N) to fully open door.

C. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of entrance door hardware are indicated in "Entrance Door Hardware Sets" Article. Products are identified by using entrance door hardware designations as follows:

1. Named Manufacturers’ Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers’ names are abbreviated in "Entrance Door Hardware Sets" Article.
2. References to BHMA Standards: Provide products complying with these standards and requirements for description, quality, and function.

D. Pivot Hinges: BHMA A156.4, Grade 1.
1. Offset-Pivot Hinges: Provide top, bottom, and intermediate offset pivots at each door leaf.

E. Butt Hinges: BHMA A156.1, Grade 1, radius corner.
 1. Nonremovable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while entrance door is closed.
 2. Exterior Hinges: Stainless steel, with stainless-steel pin.
 3. Quantities:
 a. For doors up to 87 inches (2210 mm) high, provide three hinges per leaf.
 b. For doors more than 87 and up to 120 inches (2210 and up to 3048 mm) high, provide four hinges per leaf.

F. Continuous-Gear Hinges: Manufacturer’s standard with stainless-steel bearings between knuckles, fabricated to full height of door and frame.

G. Mortise Auxiliary Locks: BHMA A156.5, Grade 1.

J. Panic Exit Devices: BHMA A156.3, Grade 1, listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305.

K. Cylinders: As specified in Section 87100 “Door Hardware.” BHMA A156.5, Grade 1.
 1. Keying: Master key system.

L. Strikes: Provide strike with black-plastic dust box for each latch or lock bolt; fabricated for aluminum framing.

M. Operating Trim: BHMA A156.6.

N. Removable Mullions: BHMA A156.3, extruded aluminum.
 1. When used with panic exit devices, provide removable mullions listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305. Use only mullions that have been tested with exit devices to be used.

O. Closers: BHMA A156.4, Grade 1, with accessories required for a complete installation, sized as required by door size, exposure to weather, and anticipated frequency of use; adjustable to comply with field conditions and requirements for opening force.

P. Concealed Overhead Holders: BHMA A156.8, Grade 1.

Q. Surface-Mounted Holders: BHMA A156.16, Grade 1.
R. Door Stops: BHMA A156.16, Grade 1, floor or wall mounted, as appropriate for door location indicated, with integral rubber bumper.

S. Weather Stripping: Manufacturer's standard replaceable components.

T. Weather Sweeps: Manufacturer's standard exterior-door bottom sweep with concealed fasteners on mounting strip.

U. Silencers: BHMA A156.16, Grade 1.

V. Thresholds: BHMA A156.21, raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch (12.7 mm).

W. Finger Guards: Manufacturer's standard collapsible neoprene or PVC gasket anchored to frame hinge-jamb at center-pivoted doors.

2.6 GLAZING

A. Glazing: Comply with Section 088000 "Glazing."

B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.

C. Glazing Sealants: As recommended by manufacturer.
 1. Sealant shall have a VOC content of 250 g/L or less.
 2. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.7 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Physical and thermal isolation of glazing from framing members.
 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 5. Provisions for field replacement of glazing from interior.
 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

E. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.

F. Entrance Doors: Reinforce doors as required for installing entrance door hardware.

G. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.

H. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.8 ALUMINUM FINISHES

A. Color Anodic Finish: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm or thicker.
 1. Color: Bronze to match existing doors and windows. Provide sample for Architect to review.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:
 1. Comply with manufacturer’s written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure non-movement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:
 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Set continuous sill members and flashing in full sealant bed as specified in Section 079200 "Joint Sealants" to produce weathertight installation.

D. Install components plumb and true in alignment with established lines and grades.
E. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.

F. Install glazing as specified in Section 088000 "Glazing."

G. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.

 1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

3.2 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Field Quality-Control Testing: Perform the following test on representative areas of aluminum-framed entrances and storefronts.

 1. Water-Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.

 a. Perform a minimum of two tests in areas as directed by Architect.

C. Aluminum-framed entrances and storefronts will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 08 41 13
SECTION 08 71 00 - DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:

1. Mechanical door hardware for the following:
 a. Swinging doors.
 2. Electrified door hardware.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: Details of electrified door hardware.
C. Samples: For each exposed product and for each color and texture specified.
D. Other Action Submittals:

1. Door Hardware Schedule: Prepared by or under the supervision of Installer, detailing fabrication and assembly of door hardware, as well as installation procedures and diagrams. Coordinate final door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 a. Format: Use same scheduling sequence and format and use same door numbers as in the Contract Documents.
 b. Content: Include the following information:
 1) Identification number, location, hand, fire rating, size, and material of each door and frame.
 2) Locations of each door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
 3) Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.
 4) Description of electrified door hardware sequences of operation and interfaces with other building control systems.

2. Keying Schedule: Prepared by or under the supervision of Installer, detailing Owner's final keying instructions for locks.
1.3 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and an Architectural Hardware Consultant who is available during the course of the Work to consult with Contractor, Architect, and Owner about door hardware and keying.

B. Architectural Hardware Consultant Qualifications: A person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project and who is currently certified by DHI as follows:

1. For door hardware, an Architectural Hardware Consultant (AHC) who is also an Electrified Hardware Consultant (EHC).

C. Source Limitations: Provide electrified door hardware from same manufacturer as mechanical door hardware, unless otherwise indicated. Manufacturers that perform electrical modifications and that are listed by a testing and inspecting agency acceptable to authorities having jurisdiction are acceptable.

D. Fire-Rated Door Assemblies: Where fire-rated door assemblies are indicated, provide door hardware rated for use in assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C, unless otherwise indicated.

E. Smoke- and Draft-Control Door Assemblies: Where smoke- and draft-control door assemblies are required, provide door hardware that meet requirements of assemblies tested according to UL 1784 and installed in compliance with NFPA 105.

1. Air Leakage Rate: Maximum air leakage of 0.3 cfm/sq. ft. (3 cu. m per minute/sq. m) at the tested pressure differential of 0.3-inch wg (75 Pa) of water.

F. Electrified Door Hardware: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.

G. Means of Egress Doors: Latches do not require more than 15 lbf (67 N) to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.

H. Accessibility Requirements: Comply with applicable provisions in the DOJ's 2010 ADA Standards for Accessible Design for door hardware on doors in an accessible route.

1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf (22.2 N).
2. Comply with the following maximum opening-force requirements:
a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf (22.2 N) applied perpendicular to door.
b. Sliding or Folding Doors: 5 lbf (22.2 N) applied parallel to door at latch.
c. Fire Doors: Minimum opening force allowable by authorities having jurisdiction.

3. Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than 1/2 inch (13 mm) high.

4. Closers: Adjust door and gate closer sweep periods so that, from an open position of 90 degrees, the time required to move the door to a position of 12 degrees from the latch is 5 seconds minimum.

5. Spring Hinges: Adjust door and gate spring hinges so that, from an open position of 70 degrees, the time required to move the door to the closed position is 1.5 seconds minimum.

I. Keying Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver keys to manufacturer of key control system for subsequent delivery to Owner.

B. Deliver keys and permanent cores to Owner by registered mail or overnight package service.

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three years from date of Substantial Completion, unless otherwise indicated.

 a. Electromagnetic and Delayed-Egress Locks: Five years from date of Substantial Completion.

 b. Exit Devices: Two years from date of Substantial Completion.

 c. Manual Closers: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

A. Provide door hardware for each door as scheduled on Drawings to comply with requirements in this Section.
1. Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and products complying with BHMA designations referenced.

2. Sequence of Operation: Provide electrified door hardware function, sequence of operation, and interface with other building control systems indicated.

B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in Part 3 "Door Hardware Schedule" Article. Products are identified by using door hardware designations, as follows:

1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers' names are abbreviated in Part 3 "Door Hardware Schedule" Article.

2. References to BHMA Designations: Provide products complying with these designations and requirements for description, quality, and function.

2.2 HINGES

A. Hinges: BHMA A156.1. Provide template-produced hinges for hinges installed on hollow-metal doors and hollow-metal frames.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allegion plc.
 b. Baldwin Hardware Corporation.
 c. Hager Companies.
 d. Approved equal

2.3 SELF-CLOSING HINGES AND PIVOTS

A. Self-Closing Hinges and Pivots: BHMA A156.17.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allegion plc.
 b. Hager Companies.
 c. Approved equal

2.4 CONTINUOUS HINGES

A. Continuous Hinges: BHMA A156.26; minimum 0.120-inch- (3.0-mm-) thick, hinge leaves with minimum overall width of 4 inches (102 mm); fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete.
B. Pin-and-Barrel-Type Hinges:
 1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Hager Companies.
 b. Approved equal

2.5 MECHANICAL LOCKS AND LATCHES

A. Strikes: Provide manufacturer's standard strike for each lock bolt or latchbolt complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finished to match lock or latch.
 1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
 2. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim.
 3. Aluminum-Frame Strike Box: Manufacturer's special strike box fabricated for aluminum framing.
 4. Rabbet Front and Strike: Provide on locksets for rabbeted meeting stiles.

B. Bored Locks: BHMA A156.2; Grade 1; Series 4000.
 1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Best Access Systems; Stanley Security Solutions, Inc.

C. Mortise Locks: BHMA A156.13; Security Grade 1; stamped steel case with steel or brass parts; Series 1000.
 1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Best Access Systems; Stanley Security Solutions, Inc.

2.6 AUXILIARY LOCKS

A. Bored Auxiliary Locks: BHMA A156.5: Grade 1; with strike that suits frame.
 1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Best Access Systems; Stanley Security Solutions, Inc.

B. Mortise Auxiliary Locks: BHMA A156.5; Grade 1; with strike that suits frame.
1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:

a. **Best Access Systems; Stanley Security Solutions, Inc.**

C. Narrow Stile Auxiliary Locks: BHMA A156.5; Grade 1; with strike that suits frame.

2.7 ELECTROMECHANICAL LOCKS

A. Electromechanical Locks: BHMA A156.25; Grade [1] [2]; motor or solenoid driven; mortise latchbolt; with strike that suits frame.

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:

a. **Best Access Systems; Stanley Security Solutions, Inc.**

2.8 SELF-CONTAINED ELECTRONIC LOCKS

A. Self-Contained Electronic Locks: BHMA A156.25, mortise; with internal, battery-powered, self-contained electronic locks; consisting of complete lockset, motor-driven lock mechanism, and actuating device; enclosed in zinc-dichromate-plated, wrought-steel case, and strike that suits frame. Provide key override, low-battery detection and warning, LED status indicators, and ability to program at the lock.

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:

a. **Best Access Systems; Stanley Security Solutions, Inc.**

2.9 EXIT LOCKS AND EXIT ALARMS

A. Exit Locks and Alarms: BHMA A156.29, Grade 1.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. **Arrow USA; an ASSA ABLOY Group company.**

b. **Detex Corporation.**

2.10 SURFACE BOLTS

A. Manual Flush Bolts: BHMA A156.16; minimum 3/4-inch (19-mm) throw; designed for mortising into door edge.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
2.11 AUTOMATIC AND SELF-LATCHING FLUSH BOLTS
A. Automatic and Self-Latching Flush Bolts: BHMA A156.16; minimum 3/4-inch (19-mm) throw; designed for mortising into door edge.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allegion plc.
 b. Burns Manufacturing Incorporated.
 c. Door Controls International, Inc.

2.12 EXIT DEVICES AND AUXILIARY ITEMS
A. Exit Devices and Auxiliary Items: BHMA A156.3.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allegion plc.
 b. Hager Companies.
 c. Precision Hardware, Inc.; a Stanley company.

2.13 LOCK CYLINDERS
A. Lock Cylinders: Tumbler type, constructed from brass or bronze, stainless steel, or nickel silver.

1. Manufacturer: Same manufacturer as for locking devices.

B. Construction Master Keys: Provide cylinders with feature that permits voiding of construction keys without cylinder removal. Provide 10 construction master keys.

C. Construction Cores: Provide construction cores that are replaceable by permanent cores. Provide 10 construction master keys.

2.14 KEYING

1. Master Key System: Change keys and a master key operate cylinders.

2.
B. Keys: Nickel silver.
 1. Stamping: Permanently inscribe each key with a visual key control number and include the following notation:
 a. Notation: "DO NOT DUPLICATE."
 2. Quantity: In addition to one extra key blank for each lock, provide the following:
 b. Master Keys: Five.

2.15 OPERATING TRIM
A. Operating Trim: BHMA A156.6; aluminum, unless otherwise indicated.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allegion plc.
 b. Burns Manufacturing Incorporated.
 c. Hager Companies.

2.16 ACCESSORIES FOR PAIRS OF DOORS
A. Coordinators: BHMA A156.3; consisting of active-leaf, hold-open lever and inactive-leaf release trigger; fabricated from steel with nylon-coated strike plates; with built-in, adjustable safety release.
B. Carry-Open Bars: BHMA A156.3; prevent the inactive leaf from opening before the active leaf; provide polished brass or bronze carry-open bars with strike plate for inactive leaves of pairs of doors unless automatic or self-latching bolts are used.
C. Astragals: BHMA A156.22.

2.17 SURFACE CLOSERS
A. Surface Closers: BHMA A156.4; rack-and-pinion hydraulic type with adjustable sweep and latch speeds controlled by key-operated valves and forged-steel main arm. Comply with manufacturer's written recommendations for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.18 CONCEALED CLOSERS

A. Concealed Closers: BHMA A156.4; rack-and-pinion hydraulic type with adjustable sweep and latch speeds controlled by key-operated valves. Comply with manufacturer's written recommendations for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Allegion plc.
 b. Hager Companies.

2.19 CLOSER HOLDER RELEASE DEVICES

A. Closer Holder Release Devices: BHMA A156.15; Grade 1; closer connected with separate or integral releasing and fire- or smoke-detecting devices. Door shall become self-closing on interruption of signal to release device. Automatic release is activated by loss of power.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Allegion plc.
 b. Approved equal

2.20 MECHANICAL STOPS AND HOLDERS

A. Wall- and Floor-Mounted Stops: BHMA A156.16; polished cast brass, bronze, or aluminum base metal.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allegion plc.
 b. Baldwin Hardware Corporation.
 c. Hager Companies.

2.21 OVERHEAD STOPS AND HOLDERS

A. Overhead Stops and Holders: BHMA A156.8.
2.22 DOOR GASKETING

A. Door Gasketing: BHMA A156.22; air leakage not to exceed 0.50 cfm per foot (0.000774 cu. m/s per m) of crack length for gasketing other than for smoke control, as tested according to ASTM E 283; with resilient or flexible seal strips that are easily replaceable and readily available from stocks maintained by manufacturer.

2.23 THRESHOLDS

A. Thresholds: BHMA A156.21; fabricated to full width of opening indicated.

2.24 METAL PROTECTIVE TRIM UNITS

A. Metal Protective Trim Units: BHMA A156.6; fabricated from 0.050-inch- (1.3-mm-) thick stainless steel; with manufacturer's standard machine or self-tapping screw fasteners.

2.25 AUXILIARY DOOR HARDWARE

A. Auxiliary Hardware: BHMA A156.16.

2.26 FABRICATION

A. Fasteners: Provide door hardware manufactured to comply with published templates prepared for machine, wood, and sheet metal screws. Provide screws that comply with commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.

1. Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.

2. Fire-Rated Applications:

a. Wood or Machine Screws: For the following:
 1) Hinges mortised to doors or frames.
 2) Strike plates to frames.
 3) Closers to doors and frames.

b. Steel Through Bolts: For the following unless door blocking is provided:
 1) Surface hinges to doors.
 2) Closers to doors and frames.
 3) Surface-mounted exit devices.
3. Spacers or Sex Bolts: For through bolting of hollow-metal doors.
4. Fasteners for Wood Doors: Comply with requirements in DHI WDHS.2, "Recommended Fasteners for Wood Doors."
5. Gasketing Fasteners: Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.

2.27 FINISHES

A. Provide finishes complying with BHMA A156.18 as indicated in door hardware schedule.

B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Steel Doors and Frames: For surface applied door hardware, drill and tap doors and frames according to ANSI/SDI A250.6.

B. Wood Doors: Comply with DHI WDHS.5 "Recommended Hardware Reinforcement Locations for Mineral Core Wood Flush Doors."

C. Mounting Heights: Mount door hardware units at heights to comply with the following unless otherwise indicated or required to comply with governing regulations.

2. Custom Steel Doors and Frames: HMMA 831.

D. Install each door hardware item to comply with manufacturer’s written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work. Do not install surface-mounted items until finishes have been completed on substrates involved.

1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.

E. Hinges: Install types and in quantities indicated in door hardware schedule but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches (750 mm) of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.
F. Intermediate Offset Pivots: Where offset pivots are indicated, provide intermediate offset pivots in quantities indicated in door hardware schedule but not fewer than one intermediate offset pivot per door and one additional intermediate offset pivot for every 30 inches (750 mm) of door height greater than 90 inches (2286 mm).

G. Lock Cylinders: Install construction cores to secure building and areas during construction period.
 1. Replace construction cores with permanent cores as directed by Owner.
 2. Furnish permanent cores to Owner for installation.

H. Key Control System: Tag keys and place them on markers and hooks in key control system cabinet, as determined by final keying schedule.

I. Boxed Power Supplies: Locate power supplies as indicated or, if not indicated, above accessible ceilings. Verify location with Architect.
 1. Configuration: Provide one power supply for each door opening with electrified door hardware.

J. Thresholds: Set thresholds for exterior doors and other doors indicated in full bed of sealant complying with requirements specified in Section 079200 "Joint Sealants."

K. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.

L. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.

M. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.

N. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

O. Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

3.2 FIELD QUALITY CONTROL

A. Independent Architectural Hardware Consultant: Owner will engage a qualified independent Architectural Hardware Consultant to perform inspections and to prepare inspection reports.

3.3 DOOR HARDWARE SCHEDULE

END OF SECTION 08 71 00
SECTION 09 51 23 - ACOUSTICAL TILE CEILINGS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes acoustical tiles and concealed suspension systems for ceilings.

1.2 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer
 recycled content and cost.
 C. Samples: For each exposed product and for each color and texture specified.

1.4 INFORMATIONAL SUBMITTALS
 A. Product test reports.
 B. Evaluation reports.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance data.

1.6 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Qualified according to NVLAP.
 B. Mockups: Build mockups to verify selections made under sample submittals and to
 demonstrate aesthetic effects and set quality standards for materials and execution.
1. Build mockup of typical ceiling area as shown on Drawings.
2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Acoustical ceiling shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: Comply with ASTM E 1264 for Class A Class B Class C materials.
 2. Smoke-Developed Index: 450 or less.

2.2 ACOUSTICAL TILE CEILINGS, GENERAL

A. Acoustical Tile Standard: Comply with ASTM E 1264.

B. Metal Suspension System Standard: Comply with ASTM C 635.

C. Attachment Devices: Size for five times the design load indicated in ASTM C 635, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.

2.3 ACOUSTICAL TILES

A. Materials: 1/4” Plywood inserts

B. Color: As selected from samples.

C. Edge/Joint Detail: butt

D. Thickness: As indicated on Drawings.

E. Modular Size: As indicated on Drawings.

2.4 METAL SUSPENSION SYSTEM

A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
B. Structural Classification: Intermediate-duty system.

C. Access: Upward.

D. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Manufacturer's standard moldings for edges and penetrations complying with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install acoustical tile ceilings to comply with ASTM C 636/C 636M and seismic design requirements indicated, according to manufacturer's written instructions and CISCA's "Ceiling Systems Handbook."

B. Measure each ceiling area and establish layout of acoustical tiles to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width tiles at borders, and comply with layout shown on reflected ceiling plans.

C. Arrange directionally patterned acoustical tiles as indicated on reflected ceiling plans.

END OF SECTION 09 51 23
SECTION 09 91 13 – EXTERIOR PAINTING

PART 1 – GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes surface preparation and field painting of the following:

1. Miscellaneous exposed exterior items and surfaces.

B. Paint exposed surfaces, except where the paint schedules indicate that a surface or material is not to be painted or is to remain natural. If the paint schedules do not specifically mention an item or a surface, paint the item or surface the same as similar adjacent materials or surfaces whether or not schedules indicate colors. If the schedules do not indicate color or finish, the Owner Representative will select from standard colors and finishes available.

1. Painting includes field painting of exposed steel and iron work, and primed metal surfaces of mechanical and electrical equipment.

C. Do not paint prefinished items, concealed surfaces, finished metal surfaces, operating parts, and labels.

1. Finished metal surfaces include the following if used:

a. Stainless steel.
 b. Bronze and brass.
 c. Iron

2. Labels: Do not paint over Underwriters Laboratories (UL), Factory Mutual (FM), or other code-required labels or equipment name, identification, performance rating, or nomenclature plates.

D. Related Sections include the following:

1. Division 5 Section "Metal Fabrications" for shop priming ferrous metal.

1.03 DEFINITIONS

A. General: Standard coating terms defined in ASTM D 16 apply to this Section.

1. Flat refers to a lusterless or matte finish with a gloss range below 15 when measured at an 85-degree meter.
2. Eggshell refers to low-sheen finish with a gloss range between 5 and 20 when measured at a 60-degree meter.

3. Satin refers to low-sheen finish with a gloss range between 15 and 35 when measured at a 60-degree meter.

4. Semi-gloss refers to medium-sheen finish with a gloss range between 30 and 65 when measured at a 60-degree meter.

5. Full gloss refers to high-sheen finish with a gloss range more than 65 when measured at a 60-degree meter.

1.04 SUBMITTALS

A. Product Data: For each paint system specified. Include block fillers and primers.
 1. Material List: Provide an inclusive list of required coating materials. Indicate each material and cross-reference specific coating, finish system, and application. Identify each material by manufacturer's catalog number and general classification.
 2. Manufacturer's Information: Provide manufacturer's technical information, including label analysis and instructions for handling, storing, and applying each coating material proposed for use.
 3. Certification by the manufacturer that products supplied comply with local regulations controlling use of volatile organic compounds (VOCs).

B. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors available for each type of finish-coat material indicated.
 1. After color selection, the Owner's Representative will furnish color chips for surfaces to be coated.

C. Samples for Verification: Of each color and material to be applied, with texture to simulate actual conditions, on representative Samples of the actual substrate.
 1. Provide stepped Samples, defining each separate coat, including block fillers and primers. Use representative colors when preparing Samples for review. Resubmit until required sheen, color, and texture are achieved.
 2. Provide a list of materials and applications for each coat of each sample. Label each sample for location and application.
 3. Submit Samples on the following substrates for the Owner's Representative's review of color and texture only:
a. Ferrous Metal: Provide two 4-inch- (100-mm-) square samples of flat metal and two 8-inch- (200-mm-) long samples of solid metal for each color and finish.

D. Qualification Data: For firms and persons specified in the "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of Owners’ Representatives and Owners, and other information specified.

1.05 QUALITY ASSURANCE

A. Applicator Qualifications: Engage an experienced applicator who has completed painting system applications similar in material and extent to that indicated for this Project with a record of successful in-service performance.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Deliver materials to the Project Site in manufacturer's original, unopened packages and containers bearing manufacturer's name and label, and the following information:

1. Product name or title of material.
2. Product description (generic classification or binder type).
3. Manufacturer's stock number and date of manufacture.
4. Contents by volume, for pigment and vehicle constituents.
5. Thinning instructions.
6. Application instructions.
7. Color name and number.

B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum ambient temperature of 45 deg F (7 deg C). Maintain containers used in storage in a clean condition, free of foreign materials and residue.

C. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste daily. Take necessary measures to ensure that workers and work areas are protected from fire and health hazards resulting from handling, mixing, and application.

1.07 PROJECT CONDITIONS

A. Apply water-based paints only when the temperature of surfaces to be painted and surrounding air temperatures are between 50 and 90 deg F (10 and 32 deg C).

B. Apply solvent-thinned paints only when the temperature of surfaces to be painted and surrounding air temperatures are between 45 and 95 deg F (7.2 and 35 deg C).
C. Do not apply paint in snow, rain, fog, or mist; or when the relative humidity exceeds 85 percent; or at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.

1.08 EXTRA MATERIALS

A. Furnish extra paint materials from the same production run as the materials applied in the quantities described below. Package paint materials in unopened, factory-sealed containers for storage and identify with labels describing contents. Deliver extra materials to the Owner.

1. Quantity: Furnish the City with an additional 5 percent, but not less than 1 gal. (3.785 L) or 1 case, as appropriate, of each material and color applied.

PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products listed in the paint schedules.

2.02 PAINT MATERIALS, GENERAL

A. Material Compatibility: Provide fillers, primers, undercoats, and finish-coat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.

B. Material Quality: Provide manufacturer's best-quality paint material of the various coating types specified. Paint-material containers not displaying manufacturer's product identification will not be acceptable.

1. Proprietary Names: Use of manufacturer's proprietary product names to designate colors or materials is not intended to imply that products named are required to be used to the exclusion of equivalent products of other manufacturers. Furnish manufacturer's material data and certificates of performance for proposed substitutions.

C. Colors: Provide color selections made by the Owner's Representative.

PART 3 – EXECUTION

3.01 EXAMINATION
A. Examine substrates, areas, and conditions, with the Applicator present, under which painting will be performed for compliance with paint application requirements.

1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.

2. Start of painting will be construed as the Applicator's acceptance of surfaces and conditions within a particular area.

B. Coordination of Work: Review other Sections in which primers are provided to ensure compatibility of the total system for various substrates. On request, furnish information on characteristics of finish materials to ensure use of compatible primers.

1. Notify the Owner’s Representative about anticipated problems using the materials specified over substrates primed by others.

3.02 PREPARATION

A. General: Remove hardware and hardware accessories, plates, machined surfaces, and similar items already installed that are not to be painted. If removal is impractical or impossible because of the size or weight of the item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations in each space or area, reinstall items removed using workers skilled in the trades involved.

B. Cleaning: Before applying paint or other surface treatments, clean the substrates of substances that could impair the bond of the various coatings. Remove oil and grease before cleaning.

1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.

C. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer’s written instructions for each particular substrate condition and as specified.

1. Provide barrier coats over incompatible primers or remove and re-prime.

2. Ferrous Metals: Clean un-galvanized ferrous-metal surfaces that have not been shop coated; remove oil, grease, dirt, loose mill scale, and other foreign substances. Use solvent or mechanical cleaning methods that comply with the Steel Structures Painting Council's (SSPC) recommendations.
a. Touch up bare areas and shop-applied prime coats that have been damaged. Wire-brush, clean with solvents recommended by paint manufacturer, and touch up with the same primer as the shop coat.

D. Materials Preparation: Mix and prepare paint materials according to manufacturer's written instructions.

1. Maintain containers used in mixing and applying paint in a clean condition, free of foreign materials and residue.

2. Stir material before application to produce a mixture of uniform density. Stir as required during application. Do not stir surface film into material. If necessary, remove surface film and strain material before using.

3. Use only thinners approved by paint manufacturer and only within recommended limits.

3.03 APPLICATION

A. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.

1. Paint colors, surface treatments, and finishes are indicated in the schedules.

2. Do not paint over dirt, rust, scale, grease, moisture, scuffed surfaces, or conditions detrimental to formation of a durable paint film.

3. Provide finish coats that are compatible with primers used.

4. The term "exposed surfaces" includes areas visible when permanent or built-in fixtures, covers, and similar components are in place. Extend coatings in these areas, as required, to maintain the system integrity and provide desired protection.

5. Sand lightly between each succeeding enamel, or varnish coat.

B. Scheduling Painting: Apply first coat to surfaces that have been cleaned, pretreated, or otherwise prepared for painting as soon as practicable after preparation and before subsequent surface deterioration.

1. The number of coats and the film thickness required are the same regardless of application method. Do not apply succeeding coats until the previous coat has cured as recommended by the manufacturer. If sanding is required to produce a smooth, even surface according to manufacturer's written instructions, sand between applications.

2. Omit primer on metal surfaces that have been shop primed and touchup painted.
3. If undercoats, stains, or other conditions show through final coat of paint, apply additional coats until paint film is of uniform finish, color, and appearance. Give special attention to ensure edges, corners, crevices, welds, and exposed fasteners receive a dry film thickness equivalent to that of flat surfaces.

4. Allow sufficient time between successive coats to permit proper drying. Do not recoat surfaces until paint has dried to where it feels firm, does not deform or feel sticky under moderate thumb pressure, and where application of another coat of paint does not cause the undercoat to lift or lose adhesion.

C. Application Procedures: Apply paints and coatings by brush, roller, spray, or other applicators according to manufacturer's written instructions.

1. Brushes: Use brushes best suited for the type of material applied. Use brush of appropriate size for the surface or item being painted.

2. Rollers: Use rollers of carpet, velvet back, or high-pile sheep's wool as recommended by the manufacturer for the material and texture required.

3. Spray Equipment: Use airless spray equipment with orifice size as recommended by the manufacturer for the material and texture required.

D. Minimum Coating Thickness: Apply paint materials no thinner than manufacturers recommended spreading rate. Provide the total dry film thickness of the entire system as recommended by the manufacturer.

E. Fillers: Apply fillers at a rate to ensure complete coverage of pores filled.

F. Prime Coats: Before applying finish coats, apply a prime coat of material, as recommended by the manufacturer, to material that is required to be painted or finished and that has not been prime coated by others. Recoat primed and sealed surfaces where evidence of suction spots or unsealed areas in first coat appears, to ensure a finish coat with no burn through or other defects due to insufficient sealing.

G. Pigmented (Opaque) Finishes: Completely cover surfaces as necessary to provide a smooth, opaque surface of uniform finish, color, appearance, and coverage. Cloudiness, spotting, holidays, laps, brush marks, runs, sags or other surface imperfections will not be acceptable.

H. Completed Work: Match approved samples for color, texture, and coverage. Remove, refinish, or repaint work not complying with requirements.

3.04 CLEANING

A. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from the site.
1. After completing painting, clean paint-spattered surfaces. Remove spattered paint by washing and scraping. Be careful not to scratch or damage adjacent finished surfaces.

3.05 PROTECTION

A. Protect work of other trades, whether being painted or not, against damage by painting. Correct damage by cleaning, repairing or replacing, and repainting, as approved by Owner’s Representative.

B. Provide "Wet Paint" signs to protect newly painted finishes. Remove temporary protective wrappings provided by others to protect their work after completing painting operations.

1. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. Comply with procedures specified in the Painting and Decorating Contractors of America (PDCA) Standards (P1).

3.06 EXTERIOR PAINT SCHEDULE

A. Ferrous Metal: Provide the following finish systems over exterior ferrous metal. Primer is not required on shop-primed items.

Semi-gloss, Acrylic-Enamel Finish: 2 finish coats over a rust-inhibitive primer.

1. Primer: Rust-inhibitive metal primer applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 1.3 mil.

a. Mirrolac™ Rust Penetrating Metal Primer #13101 by Devoe & Reynolds Co.

b. Blox-Rust® Alkyd Metal Primer #621-04 by Fuller O’Brien

c. Glid-Guard® Tank & Structural Primer, Red #5205 by Glidden.

e. Speedhide® Interior/Exterior Rust Inhibitive Steel Primer 6-208 by PPG Industries, Inc.

f. S/D 1009 Suprime® "9" Interior/Exterior Alkyd Metal Primer by P & L.

2. First and Second Coats: Semi-gloss, exterior, acrylic-latex enamel applied at spreading rate recommended by the manufacturer to achieve a total dry film thickness of not less than 2.6 mil.

END OF SECTION 09 91 13
SECTION 09 91 23 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes surface preparation and the application of paint systems on interior substrates.

1.2 DEFINITIONS
A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
B. MPI Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
C. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
D. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.
E. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.
F. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.
G. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Include preparation requirements and application instructions.
 1. Include Printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
B. Samples: For each type of paint system and in each color and gloss of topcoat.

1.4 QUALITY ASSURANCE
A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft.
 b. Other Items: Architect will designate items or areas required.

2. Final approval of color selections will be based on mockups.
 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Benjamin Moore & Co.; AURA Interior low voc paint, or a comparable product by one of the following:
 1. Behr Process Corporation
 2. Sherwin-Williams
 3. Glidden Professional
 4. PPG Architectural Finishes, Inc.

B. Products: Subject to compliance with requirements, provide one of the products listed in the Interior Finish Schedule for the paint category indicated.

2.2 PAINT, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."

B. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

C. Colors: Provide Architect with samples, unless otherwise noted on drawings.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

1. Concrete: 12 percent.
2. Fiber-Cement Board: 12 percent.
3. Masonry (Clay and CMUs): 12 percent.
5. Gypsum Board: 12 percent.
6. Plaster: 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

D. Proceed with coating application only after unsatisfactory conditions have been corrected.

1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" and "MPI Maintenance Repainting Manual" applicable to substrates and paint systems indicated.

B. Clean all existing surfaces per instructions and recommendations in “MPI Maintenance Repainting Manual.”

C. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" and “MPI Maintenance Repainting Manual.”
B. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 INTERIOR PAINTING SCHEDULE

A. Concrete Substrates, Nontraffic Surfaces:
 1. Institutional Low-Odor/VOC Latex System [MPI INT 3.1M]:
 a. Prime Coat: Primer sealer, interior, institutional low odor/VOC MPI #149.
 c. Topcoat: Latex, interior, institutional low odor/VOC MPI Gloss Level 4, MPI #146.

B. Concrete Substrates, Traffic Surfaces: See 033543 – Polished Concrete Finishing

C. CMU Substrates:
 1. Institutional Low-Odor/VOC Latex System MPI INT 4.2E:
 c. Topcoat: Latex, interior, institutional low odor/VOC (MPI Gloss Level 4), MPI #146.

D. Wood Substrates: Wood paneling and casework. See 099300 – Staining and Transparent Finishing

E. Spray-Textured Ceiling Substrates:
 1. Latex, Flat System MPI INT 9.1A: Spray applied.
 b. Topcoat: Latex, interior, flat (MPI Gloss Level 1), MPI #53.

 2. Latex System MPI INT 9.1E: Spray applied.
 c. Topcoat: Latex, interior, flat (MPI Gloss Level 1), MPI #53.

F. Gypsum Board] and Plaster Substrates: Not Used
G. [Cotton or Canvas] and ASJ Insulation-Covering Substrates: Including pipe and duct coverings Insert description. Not Used

END OF SECTION 09 91 23
SECTION 10 44 16 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS
A. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.5 COORDINATION
A. Coordinate type and capacity of fire extinguishers with fire-protection cabinets to ensure fit and function.

1.6 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."
B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.

2.2 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

A. Fire Extinguishers: Type, size, and capacity for each mounting bracket indicated.
 1. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B.

B. Stored-Pressure Water Type: UL-rated 2-A, 2.5-gal. (9.5-L) nominal capacity, with water in stainless-steel container; with pressure-indicating gage.

C. Carbon Dioxide Type: UL-rated 10-B:C, 10-lb (4.5-kg) nominal capacity, with carbon dioxide in manufacturer's standard enameled-metal container.

2.3 MOUNTING BRACKETS

A. Mounting Brackets: Manufacturer's standard steel, designed to secure fire extinguisher to wall or structure, of sizes required for types and capacities of fire extinguishers indicated, with plated or black baked-enamel finish.

B. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated by Architect.
 1. Identify bracket-mounted fire extinguishers with the words "FIRE EXTINGUISHER" in red letter decals applied to mounting surface.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine fire extinguishers for proper charging and tagging.
 1. Remove and replace damaged, defective, or undercharged fire extinguishers.

B. Install fire extinguishers and mounting brackets in locations indicated and in compliance with requirements of authorities having jurisdiction.
 1. Mounting Brackets: 60” above finished floor to top of fire extinguisher.

C. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.

END OF SECTION 10 44 16
SECTION 12 93 10 – CUSTOM SHADE SAIL

PART 1 - GENERAL
1.1 Related Documents
A. Drawings and general provisions of the Contract, including General Conditions and Division 1 Specifications Sections, apply to this section.

1.2 Summary
A. The shade structure contractor shall be responsible for design, engineering, fabrication and supply of the work specified herein. The intent of this specification is to have only one manufacturer be responsible for the aforementioned functions.

1.3 Submittals
A. Provide structural shop drawings drawings.
B. Provide fabric color and powder coat color selections for final order.

1.4 Project Conditions
A. Field Measurements: verify layout information for shade structures shown on the drawings in relation to the property survey and existing structures. Verify locations by field measurements prior to construction.

1.5 Warranty
A. The successful bidder shall provide a one (1) year warranty on all labor and materials.
B. A supplemental non-prorated warranty from the manufacturer shall be provided for a period of ten (10) years on fabric including stitching and twenty (20) years on the structural integrity of the steel, from date of substantial completion.
C. The warranty shall not deprive the Owner of other rights the Owner may have under the provisions of the Contract Documents, and will be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contractor documents.
D. Because of surety requirements, any performance and payment bond that might be required will cover only the first year of the warranty. The manufacturer’s warranty will be a separate document, and will be executed at the time of completion of the work.

PART 2 – PRODUCTS
2.1 General
A. The shade products shall be designed and manufactured to the most exacting specifications by skilled craftsmen, and certified by Professional Engineers for structural soundness of designs. All shade products are shipped knocked-down, with complete assembly instructions, and ready for easy in-field installation.
B. The proposed structure(s) manufactured by Shade Systems, Inc. and distributed by Hasley Recreation & Design, Inc. or approved equal, shall be modular and pre-fabricated, and include the structural steel frame, fabric roof, steel cables and all fasteners.

C. Distributed by:
Hasley Recreation & Design, Inc.
P.O. box 936
Greensboro, GA 30642
800-865-2063 Toll Free 706-453-7927 Fax
www.hasley-recreation.com
sales@hasley-recreation.com

D. Structures are engineered to meet or exceed the requirements of International Building Code (IBC), and the following standard specifications:

1. Wind Speed (Frame only): 150 M.P.H.
2. Wind Speed (Frame w/canopy): 90 M.P.H.
3. Live Load: None
4. Snow Load: None

Optional designs with greater wind speeds, live loads, and snow loads are available.

E. Material: All materials shall be structurally sound and appropriate for safe use. Product durability shall be ensured by the use of corrosion-resistant metals such as stainless steel, and coatings such as zinc-plating, galvanizing, and power-coating on steel parts, subject to the Product-Specific requirements. Fabrics used shall include UV-stabilizers and fire retardants for longevity and safety.

F. Weldments: All tubing members are factory-welded by Certified Welders to American Welding Society (AWS) specifications and to the highest standards quality workmanship. Weldments are finished with a zinc-rich galvanized coating. No field welding is required in the assembly of the shade products.

G. Posts, Structural Frame Tubing, and Hardware: All tubing used shall be cold-formed and milled per ASTM A-135 and ASTM A-500. Material testing is in accordance with ASTM E-8. Minimum yield is 40,000 psi with a minimum tensile strength of 45,000 psi on all posts. Support pipes shall be schedule 40 black steel with appropriate pretreatment for powder-coating. All fastening hardware shall be stainless steel.

H. Polyester Powder-coating Process: All powder-coated parts are completely cleaned and a hot zinc phosphate pretreatment with non-chromic sealer is applied. Powder-coating is then electrostatically applied and oven-cured at 375 to 425 degrees Fahrenheit. Polyester powders shall meet or exceed ASTM standards for Adhesion, Hardness, Impact, Flexibility, Overbake Resistance, and Salt Spray Resistance. Colors shall be specified.

I. Standard Footings: Footings shall be designed per stringent International Building Code (IBC) for the specified structure. Columns will be provided as standard direct embedment. Other footing designs are available.

J. Roofing: Sails are designed by Shade Systems only for use with polyethylene shade fabric. Fabric is attached to posts using the Fastening Systems below in conjunction with vinyl covered minimum ¼" diameter galvanized cables. Cable fasteners are zinc-plated copper for maximum corrosion resistance.

2.2 Fastening System
A. Shade Fabric shall be delivered complete with fastening system installed. Fastening System to consist of factory-formed stainless steel tensioning plates pre-attached to fabric canopies at each corner, and cables per the above hemmed into the fabric at the factory and terminating in the bracket. Posts shall be equipped with an adjustable 360-degree swivel and pivot attachment mechanism to which the tensioning plate fastens. Tensioning plate includes a stainless steel adjustment bolt which, when turned, tensions the fabric for a taut fit. Fabrics, cables, and brackets which are not pre-assembled at the factory are not acceptable. Cables which attach to posts with u-bolts or ‘S’ hooks, and which do not use a stainless steel bracketing system similar to the above are not acceptable.

2.3 Fabric
A. Shade Fabric: Knitted of monofilament and tape construction high density polyethylene with Ultra Violent (U.V.) stabilizers and flame retardant. UV-Block Factor varies by standard color offered from 91% to 99%.
1. Normal Thickness: 0.057 inches
2. Fabric Mass: Min 337 g/m²
3. Light Fastness: 7-8 (Blue Wool Scale)
4. Weather Fastness: 4-5 (Grey Scale Test)
5. Tear Resistance:
 a. Warp 210N
 b. Weft 276N
6. Breaking Force:
 a. Warp 786N
 b. Weft 1544N
7. Bursting Pressure: Mean 3125kPa
8. Bursting Force: Mean 1775N
9. All hems and seams are double row lock stitched using exterior grade UV-stabilized polyethylene GORE™ TENARA™ sewing thread (GORE and TENARA are trademarks of W.L. Gore & Associates).

B. Flammability: Shade Fabric is treated with fire retardants and passes requirements established under the NFPA 701 Test Method 2 test standards for flammability, including the accelerated water leaching protocol. Written evidence of compliance with this standard, including with accelerated water leaching protocol, must be furnished with bid proposal.

<table>
<thead>
<tr>
<th>Color</th>
<th>Weight (g/m²)</th>
<th>Shade Factor %</th>
<th>UVR Block %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navy Blue</td>
<td>316</td>
<td>96</td>
<td>99</td>
</tr>
<tr>
<td>Forest Green</td>
<td>340</td>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>Aquatic Blue</td>
<td>348</td>
<td>88</td>
<td>94</td>
</tr>
<tr>
<td>Desert Sand</td>
<td>322</td>
<td>84</td>
<td>95</td>
</tr>
<tr>
<td>Rivergum Green</td>
<td>318</td>
<td>86</td>
<td>93</td>
</tr>
<tr>
<td>Eggshell White</td>
<td>342</td>
<td>79</td>
<td>95</td>
</tr>
<tr>
<td>Canary Yellow</td>
<td>342</td>
<td>77</td>
<td>93</td>
</tr>
<tr>
<td>Bright Red</td>
<td>342</td>
<td>81</td>
<td>91</td>
</tr>
<tr>
<td>Light Blue</td>
<td>348</td>
<td>95</td>
<td>97</td>
</tr>
<tr>
<td>Silver Grey</td>
<td>318</td>
<td>92</td>
<td>97</td>
</tr>
</tbody>
</table>
PART 3 – EXECUTION

3.1 Installation
 A. Installations of shade structure(s) shall be performed by an installer who shall follow
 the manufacturer’s instructions for assembly, installation, and erection, per approved
 drawings.
 B. Concrete
 1. Concrete work shall be executed in accordance with the latest edition of the
 American Concrete Building Code, ACI 318.
 2. All reinforcement shall confirm to ASTM A-615, Grade 60.

3.2. Reinforcing steel shall be detailed, fabricated, and placed in accordance with the latest

END OF SECTION 12 93 10
SECTION 12 93 13 - BICYCLE RACKS

PART 1 - GENERAL

1.1 SECTION INCLUDES
A. Bicycle Rack.

1.2 REFERENCES
A. ASTM Testing Standards:
B. ISO Testing Standards:
 1. ISO 1520 – Paints and Varnishes – Cupping Test.
 2. ISO 2815 – Paints and Varnishes – Buchholz Indentation Test.

1.3 SUBMITTALS
A. Product Data: Submit manufacturer’s product data, storage and handling requirements and recommendations, installation methods and available colors, styles, patterns and textures.
B. Shop Drawings: Submit manufacturer’s shop drawings, including plans and elevations, indicating overall dimensions.
C. Samples: Submit manufacturer’s samples of materials, finishes, and colors.
D. Warranty: Manufacturer’s standard warranty.

1.4 QUALITY ASSURANCE
A. Manufacturer’s Qualifications: Manufacturer regularly engaged in manufacture of site furnishings since 1969.
B. Product Support: Products are supported with complete engineering drawings and design patents.
C. Base Worth: An installed base of products worth in excess of one hundred million dollars.
D. Assets: Excess of twenty million dollars in assets.
E. Production: Orders are filled within a 40-day schedule.
F. Facility Operator: Welders and machine operators are certified.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Delivery: Deliver materials to site in manufacturer’s original, unopened containers and packaging, with labels clearly identifying product name and manufacturer.
B. **Storage**: Store materials in clean, dry area in accordance with manufacturer’s instructions. Keep materials in manufacturer’s original, unopened containers and packaging until installation.

C. **Handling**: Protect materials and finish during handling and installation to prevent damage.

1.6 **WARRANTY**

A. **Warranty Information**:

- Products will be free from defects in material and/or workmanship for a period of three years from the date of invoice.
- The warranty does not apply to damage resulting from accident, alteration, misuse, tampering, negligence, or abuse.
- Landscape Forms, Inc. shall, at its option, repair, replace, or refund the purchase price of any items found defective upon inspection by an authorized Landscape Forms service representative.
- Purchasers should be aware that normal use of these high quality products can result in superficial damage affecting the finish. Scratches, nicks, and dents are to be considered normal wear and tear, and are not the responsibility of the manufacturer.

PART 2 - PRODUCTS

2.1 **MANUFACTURER**

A. Landscape Forms, Inc., 431 Lawndale Avenue, Kalamazoo, Michigan 49048. Toll Free (800) 521-2546. Phone (269) 381-0396. Fax (269) 381-3455. Website www.landscapeforms.com. E-mail: specify@landscapeforms.com.

2.2 **BICYCLE RACK**

A. **“PI” Bicycle Rack**

B. **Size**:

- Depth: 2 inches.
- Height: 43 inches. (55 inches for embedded racks)
- Width: 21 inches.

C. **Mounting**:

1. Surface Mount

2.3 **MATERIALS**

A. Horizontal Bar and Legs: Constructed of 2” inner diameter, 0.120” wall tubular metal.

B. Horizontal Bar Protective Cover: Constructed of 2” inner diameter, 0.080” thick black PVC.

C. Surface Mount Plate: Constructed of 10"w x 5"d x 3/8" thick carbon steel plate.

2.4 **ACCESSORIES**

A. **Anchor Bolts**: Corrosion resistant recommended (not supplied by manufacturer)

2.5 **RECYCLED CONTENT**

A. **Powder Coated Carbon Steel**:

- Recycled Material Content: Minimum 91 percent.
- Post-Consumer Material Content: Minimum 59 percent.
- Pre-Consumer Material Content: Minimum 32 percent.
- Recyclable: 100 percent.
2.6 FABRICATION
A. Shop assembled bicycle rack.

2.7 FINISHES
A. Finish on Metal: Landscape Forms, Inc. “Pangard II”.
 1. Primer: Rust inhibitor.
 2. Topcoat: Thermosetting TGIC polyester powder coat. UV, chip, and flake resistant.
 3. Test Results: “Pangard II”.
 a. Gloss Consistency, Gardner 60 Degrees, ASTM D 523: Plus or minus 5 percent from standard.
 b. UV Resistance, Color and Gloss, ASTM G 155, Cycle 7: Delta E less than 2 at 2.0 mils and less than 20 percent loss.
 c. Cross-Hatch Adhesion, ASTM D 3359, Method B: 100 percent pass.
 d. Flexibility Test, Mandrel, ASTM D 522: 3 mm at 2 mils.
 e. Erichsen Cupping, ISO 1520: 8 mm.
 g. Impact Test, ASTM D 2794: 60 inch-pounds at 2.5 mils.
 h. Pencil Hardness, ASTM D 3363: 2H minimum.
 i. Corrosion Resistance, 1,500-Hour Test, ASTM B 117: Max undercutting 1 mm.
 j. Humidity Resistance, 1,500-Hour Test, ASTM D 2247: Max blisters 1 mm.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas to receive racks.
B. Notify Architect of conditions that would adversely affect installation or subsequent use.
C. Do not begin installation until unacceptable conditions are corrected.

3.2 INSTALLATION
A. Install in accordance with manufacturer's instructions at locations indicated on the Drawings.
B. Install level.
C. Anchor securely in place.

3.3 ADJUSTING
A. Finish Damage: Repair minor damages to finish in accordance with manufacturer's instructions and as approved by Architect.
B. Component Damage: Remove and replace damaged components that cannot be successfully repaired as determined by Architect.

3.4 CLEANING
A. Clean racks promptly after installation in accordance with manufacturer's instructions.
B. Do not use harsh cleaning materials or methods that could damage finish.
3.5 PROTECTION
A. Protect installed racks to ensure that, except for normal weathering, racks will be without damage or deterioration at time of Substantial Completion.

END OF SECTION 12 93 13
CHAPTER 12 93 43.13 - BENCHES

PART 1 - GENERAL

1.1 SECTION INCLUDES
A. Benches

1.2 REFERENCES
A. ANSI/BIFMA Testing Standards:
 1. ANSI/BIFMA X5.4-2005 – Standard Test for Lounge Seating.

1.3 SUBMITTALS
A. Product Data: Submit manufacturer’s product data, storage and handling requirements and recommendations, installation methods and available colors, styles, patterns and textures.
B. Shop Drawings: Submit manufacturer’s shop drawings, including plans and elevations, indicating overall dimensions.
C. Samples: Submit manufacturer’s samples of materials, finishes, and colors.
D. Warranty: Manufacturer’s standard warranty.

1.4 QUALITY ASSURANCE
A. Manufacturer’s Qualifications: Manufacturer regularly engaged in manufacture of site furnishings since 1969.
B. Product Support: Products are supported with complete engineering drawings and design patents.
C. Base Worth: An installed base of products worth in excess of one hundred million dollars.
D. Assets: Excess of twenty million dollars in assets.
E. Production: Orders are filled within a 40-day schedule.
F. Facility Operator: Welders and machine operators are certified.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Delivery: Deliver materials to site in manufacturer’s original, unopened containers and packaging, with labels clearly identifying product name and manufacturer.
B. Storage: Store materials in clean, dry area in accordance with manufacturer’s instructions. Keep materials in manufacturer’s original, unopened containers and packaging until installation.
C. Handling: Protect materials and finish during handling and installation to prevent damage.

1.6 WARRANTY
A. Warranty Information:
 - Products will be free from defects in material and/or workmanship for a period of three years from the date of invoice.
 - The warranty does not apply to damage resulting from accident, alteration, misuse, tampering, negligence, or abuse.
- Landscape Forms, Inc. shall, at its option, repair, replace, or refund the purchase price of any items found defective upon inspection by an authorized Landscape Forms service representative.

-Purchasers should be aware that normal use of these high quality products can result in superficial damage affecting the finish. Scratches, nicks, and dents are to be considered normal wear and tear, and are not the responsibility of the manufacturer.

PART 2 - PRODUCTS

2.1 MANUFACTURER
A. Landscape Forms, Inc., 431 Lawndale Avenue, Kalamazoo, Michigan 49048. Toll Free (800) 521-2546. Phone (269) 381-0396. Fax (269) 381-3455. Website: www.landscapeforms.com. E-mail: specify@landscapeforms.com.

2.2 BENCHES
A. "Neoromantico" Benches
B. Style:
 1. Backed
 -Depth: 27 inches.
 -Overall Height: 31 inches.

C. Length:
 1. 69 inches.

D. Mounting:
 1. Surface mounted

2.3 MATERIALS
A. Cast Supports: Cast supports are made of A514 aluminum.
B. Seat and Back Panels: Board thickness of 1-3/16 inches.
 1. Wood for Exterior Use:

C. Mounting:
 1. Surface Mount: Surface mount units have type 304 stainless steel anchor tabs installed.

2.4 ACCESSORIES
A. Anchor Bolts: Corrosion resistant recommended (not supplied by manufacturer)

2.5 FABRICATION
A. Shop assembled benches.

2.6 FINISHES
A. Finish on Aluminum: Supports are anodized to provide corrosion protection.
B. Finish on Wood:
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas to receive benches.
B. Notify Architect of conditions that would adversely affect installation or subsequent use.
C. Do not begin installation until unacceptable conditions are corrected.

3.2 INSTALLATION
A. Install benches in accordance with manufacturer’s instructions at locations indicated on the Drawings.
B. Install benches level.
C. Anchor benches securely in place, if surface mounted or embedded.

3.3 ADJUSTING
A. Finish Damage: Repair minor damages to finish in accordance with manufacturer’s instructions and as approved by Architect.
B. Component Damage: Remove and replace damaged components that cannot be successfully repaired as determined by Architect.

3.4 CLEANING
A. Clean benches promptly after installation in accordance with manufacturer’s instructions.
B. Do not use harsh cleaning materials or methods that could damage finish.

3.5 PROTECTION
A. Protect installed benches to ensure that, except for normal weathering, benches will be without damage or deterioration at time of Substantial Completion.

END OF SECTION 12 93 43.13
Outdoor Bottle Fillers
MODEL M-OBF4
OUTDOOR BOTTLE FILLER

STANDARD FEATURES
- All Stainless Steel Construction
- Battery Pack 6AA
- 100 Mesh Inlet Strainer
- Laminar Flow Water Supply
- Hands Free Sensor Operation
- Lead and Cyst Filter
- Meets ADA Forward and Side Reach Requirements

SUGGESTED SPECIFICATIONS
Model M-OBF4 Bottle filler shall be activated by a 9 volt sensor or the push-button as standard. Unit shall contain a 100 mesh inlet strainer, lead and cyst filter, 6-AA battery pack and laminar flow spout. Construction shall be heavy gage, all stainless steel and pedestal base of bottle filler shall have four mounting holes. Access covers shall be secured with vandal-resistant stainless steel screws. A self-closing push-button, needing less than 5 pounds force, shall activate an internally mounted valve. Unit is certified to meet NSF/ANSI 61.9, Public Law 111-380, and National Reduction of Lead in Drinking Water S.3874.

MODELS - PUSH-BUTTON AND SENSOR OPERATION:
- M-OBF4 Satin Stainless Finish
- M-OBF5 Green Powder-Coated
- M-OBF6 Red Powder-Coated
- M-OBF7 Blue Powder-Coated

MODELS - PUSH BUTTON OPERATION ONLY:
- M-OBFM4 Satin Stainless Finish
- M-OBFM5 Green Powder-Coated
- M-OBFM6 Red Powder-Coated
- M-OBFM7 Blue Powder-Coated

Custom color finishes available upon request

OPTIONAL ACCESSORIES
(additional costs may be incurred)
- FRU1 Underground freeze-resistant single valve (push-button operation only, less filter)
- FRU2 Underground freeze-resistant double valves (push-button operation only, less filter)
- HB1 Hose bibb with vacuum breaker
- HB3 Vandal resistant Hose bibb with vacuum breaker
- IAP In-ground anchor plate
- LOGO Customer specified logo
- PF Pet fountain with push-button valve

Option Notes:
1. See separate option sheet
2. This option is not available freeze-resistant

Please visit www.murdockmfg.com for most current specifications.
OUTDOOR BOTTLE FILLERS

Outdoor Bottle Fillers
MODEL M-OBF4
OUTDOOR BOTTLE FILLER

OPTIONAL - PF PET FOUNTAIN

GENERAL DIMENSIONS:
1. ALL DIMENSIONS ARE IN INCHES (MM).
2. MOUNTING HARDWARE NOT PROVIDED.

ONE YEAR LIMITED WARRANTY - Parts are warranted for one (1) year from date of shipment.

MURDOCK MFG. • 15125 Proctor Avenue • City of Industry, CA 91746 USA
Phone 800-453-7465 or 626-333-2543 • Fax 626-855-4860 • www.murdockmfg.com

M. OBF4
Rev: 08/04/14
Important: Read all instructions and refer to local codes prior to installation.

Prepare trench for water supply line and waste line (if required) a minimum of 21" below frost line. At fountain location prepare hole to trench depth and large enough for a person to work. Provide 36" centerline of PVC Pipe Casing & FRU valve to fixture location. Lay supply and waste into trench allowing extra length to be trimmed during hook-up.

Depending on code and design requirements, drain may be open, French or sanitary connection. Under drain and PVC Tube Casing opening, place a minimum of five cubic feet of porous gravel fill. Local soil conditions may require more gravel for drainage.

- It is recommended to include a supply stop appropriately located on the supply line.
- An in-line PRV installed on the supply line is recommended to ensure a working water pressure of 40-60 psi.
- A water filter should be installed on the supply line if sediment or mineral content is a problem.
- A ½" NPT swivel elbow supply fitting below PVC Pipe Casing will assist in making up connections to the FRU valve inlet hose.

Valve Specifications:
Minimum/Maximum Pressure: 30/100 PSI
Assemble PVC Tube Casing following manufacturer’s instructions for primer and glue by others. Do not glue caps. Trim bottom excess of PVC Tube Casing and FRU all-thread lowering rod to allow FRU valve assembly to be lowered a minimum of 21” below frost line. Make up supply connection to loose fixture flexible hose inlet and test for leaks. Pull hose through assembled PVC Tube Casing and connect to FRU.

Position assembled PVC Tube Casing as indicated with Branch Arm orientated toward fixture. Install optional Ground Valve box as required. Refill trench and hole, compacting back fill as required. Leave sufficient depth in hole to accommodate concrete pad (by others).

Prepare the slab area surrounding fountain spreading and compacting gravel as necessary. Prepare forms (refer to fixture installation) to protect Branch Arm and waste stub outs. If required, fix ½” UNC L-bolt anchors by others in position arranging L-bolts according to pattern indicated and pour concrete to grade. Leave enough thread for mounting base. Ensure concrete top surface is flat and level. If concrete has cured use appropriate ½” concrete anchoring hardware by others following the manufacturer’s installation recommendations.

Allow concrete to cure before completing installation.

Position fixture near installation site and thread 1/8” OD Breather tube from FRU valve through Branch Arm, Branch Arm Cap and fixture pedestal and fix to pedestal interior with duct tape by others.

Thread 1/4” OD riser(s) and pushbutton 1/8” OD tubing thru Branch Arm Cap and Branch Arm to make up connections to FRU valve.

Set fixture into position aligning anchoring studs to pedestal mounting holes. Secure pedestal to slab. After securing fixture in place, make up connections to fixture waste outlet. Refer to fixture installation sheet for additional information.

To ensure plumb installation, lay a bubble level on fountain bowl and adjust using shims or washers until unit is level.

Lower FRU valve assembly into PVC Pipe Casing coiling flexible hose within casing without kinking and seal with cap provided. Conceal and cover with ground valve box lid.

Turn on water supply and test for proper operation and checking for leaks. Ensure water drains out of risers at FRU and into gravel fill when flow stops.

FYI: Protect exposed valve assembly, tubing and tube openings to prevent damage to equipment or to prevent tubes from becoming filled with soil or debris. Excess tubing should be trimmed to fit. When tubing is properly trimmed, FRU valve may be raised to grade level to allow maintenance or servicing and returned to bottom of casing when completed. Riser tubing should include no low spots where water may collect and freeze.
Place insulation material by others in valve casing as shown and replace cap. Place insulation material by others in valve ground box and cover. Install drinking fountain access panels to complete installation.
1/8" OD BREATHER TUBE

1/8" OD PUSH-IN FITTING FOR BREATER TUBE

1/8" OD COMPRESSION FOR PUSHBUTTON

VALVE CHECKSTOP

1/2" OD x 10 FEET LONG REINFORCED HOSE INLET w/ 1/2" OD x 1/2" NPT FITTING

1/4" OD COMPRESSION RISER FITTING
FRU Freeze Resistant Valve System

Components and Repair Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALVE COMPONENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8” OD x 15 Feet Long, Polyethylene Tubing</td>
<td>2150-000-000</td>
<td></td>
</tr>
<tr>
<td>1/4” OD (.040 Wall) x 15 Feet Long, Polyethylene Riser Tubing</td>
<td>2160-000-000</td>
<td></td>
</tr>
<tr>
<td>½” OD x 10 Feet Long, Braided Reinforced Supply Inlet</td>
<td>7000-139-199</td>
<td></td>
</tr>
<tr>
<td>½” OD x ½” NPT Push-in Fitting</td>
<td>7000-140-000</td>
<td></td>
</tr>
<tr>
<td>Riser Check Valve Assembly</td>
<td>7000-115-003</td>
<td></td>
</tr>
<tr>
<td>1/8” OD Tube TEE fitting</td>
<td>1895-400-000</td>
<td></td>
</tr>
</tbody>
</table>

Please visit www.murdock.com for most current specifications.
VALVE COMPONENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Acting Valve Assembly - Open End</td>
<td>2570-100-001</td>
<td></td>
</tr>
<tr>
<td>Retaining Clip, Air-Control Valves</td>
<td>0326-100-000</td>
<td></td>
</tr>
<tr>
<td>1/8" OD x #10-32 UNFE, Push-In Fitting</td>
<td>7000-125-000</td>
<td></td>
</tr>
</tbody>
</table>
Installation Instructions

A— Remove screw ① fixing existing end valve body assembly ② from mounting channel ③ and separate valve body assembly from remainder of valve manifold assembly and plate.

B— Add new thru valve body ④ to mounting channel making up connections to check valve or valve manifold assembly.

C— Add male-to-male valve 0-ring coupler ⑤ to end of thru valve body ④ prior to mounting end valve body ② assembly to mounting channel ③ by aligning screw holes on plate with bottom valve alignment pin and fixing with screw ①.

D— Make up connections to breather tube manifold ⑥ with ⑦ tee and 1/8" OD PE tubing provided.

E— Test for leaks.

Reference Drawings

<table>
<thead>
<tr>
<th>Item</th>
<th>Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRU Assemblies</td>
<td>9938-340-5M0</td>
</tr>
<tr>
<td>FRU Parts</td>
<td>9938-333-0M1</td>
</tr>
<tr>
<td>Checkstop</td>
<td>9956-040-0M3</td>
</tr>
</tbody>
</table>

FRU Valve Manifold Addition

<table>
<thead>
<tr>
<th>Title</th>
<th>Date Issued</th>
<th>Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacture Date</td>
<td>10/07/09</td>
<td>9938-347-0M1</td>
</tr>
<tr>
<td>To Present</td>
<td>09/16/13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PUSH PAD / PUSH BUTTON FRU FREEZE RESISTANT DRINKING FOUNTAINS
NON-METERING AIR-CONTROLLED VALVE - (DIRECT ACTING)

<table>
<thead>
<tr>
<th>CONDITION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO WATER FLOW:</td>
</tr>
<tr>
<td>WATER DRIPS / WILL NOT SHUT OFF:</td>
</tr>
<tr>
<td>REDUCED WATER FLOW:</td>
</tr>
<tr>
<td>PREMATURE WATER SHUTOFF:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOLUTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Check water main supply — open.</td>
</tr>
<tr>
<td>1.2 Inspect checkstops — open.</td>
</tr>
<tr>
<td>1.3 Inspect checkstop strainer for debris — clean.</td>
</tr>
<tr>
<td>1.4 Check 1/8” O.D. tubing and fittings for leaks.</td>
</tr>
<tr>
<td>1.5 Check pushbutton air diaphragm for holes.</td>
</tr>
<tr>
<td>1.6 Check servomotor diaphragm center hole for blockage.</td>
</tr>
<tr>
<td>2.1 Check servomotor diaphragm offset hole for debris.</td>
</tr>
<tr>
<td>2.2 Check servomotor seat for build-up or damage.</td>
</tr>
<tr>
<td>2.3 Check servomotor seat o-ring for damage.</td>
</tr>
<tr>
<td>2.4 Check servomotor plate and diaphragm for obstruction.</td>
</tr>
<tr>
<td>3.1 Check water main supply for 20 psig minimum flow pressure.</td>
</tr>
<tr>
<td>3.2 Check valve riser tubing for crimping.</td>
</tr>
<tr>
<td>3.3 Inspect checkstop strainer for debris — clean.</td>
</tr>
<tr>
<td>3.4 Check valve flow control for blockage — clean.</td>
</tr>
<tr>
<td>3.5 Inspect bubbler for debris — clean.</td>
</tr>
<tr>
<td>4.1 Check 1/8” O.D. tubing and fittings for leaks.</td>
</tr>
<tr>
<td>4.2 Check pushbutton air diaphragm for holes.</td>
</tr>
</tbody>
</table>

Refer to Air-Controlled Valve Maintenance Detail on drawing # 9940-203-0M1 for –FRA_ Above Ground units and on drawing # 9940-204-0M1 for Stone & –FRU_ Below Ground units to locate solutions above.
CHECKSTOP STRAINER - SERVOMOTOR DETAIL

Refer to drawing #9940-202-0M1 for Valve Maintenance Instructions numbered solutions detailed above.
SECTION 22 00 00 - PLUMBING GENERAL

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. General Conditions: Refer to the General Conditions, the Supplementary General Conditions and the Special Conditions, all provisions of which apply to work under this section as if written in full herein.

B. The scope of work described in these Specifications and/or indicated on the Drawings shall include (except where otherwise noted) the furnishing of all materials, equipment, appurtenances, accessories, connections, labor, etc. required and/or necessary to completely install, clean, inspect, adjust, test, balance and leave in safe and proper operating condition all systems. All work shall be accomplished by workmen skilled in the various trades involved.

C. The Drawings and Specifications are complementary to each other and what is called for by one shall be as binding as if called for by both. If a discrepancy exists between the Drawing and Specifications, the higher cost shall be included, and the Engineer shall be notified of the discrepancy.

D. All work performed under this specification shall be accomplished in accordance with the requirements and provisions of Section 230000 - HVAC General.

1.2 STANDARDS

A. All Plumbing systems shall conform to all ordinances and regulations of the City, County, State and/or other authorities having jurisdiction in accordance with the requirements of the following codes, standards and design guides.

5. Americans with Disabilities Act (ADA)
6. ANSI/NSF 61, NSF 372, and NSF 61-G compliance is required for all components of the domestic potable water system.
7. American Society of Plumbing Engineers (ASPE) Data Books
8. National Fire Protection Association (NFPA) Standards:
 a. NFPA 54 - National Fuel Gas Code
9. Plumbing Drainage Institute (PDI)
10. Underwriters Laboratories Inc. (UL)
11. National Sanitation Foundation (NSF)
12. Local and State Fire Marshal requirements
13. Local Building and Inspection Department requirements
14. Local Health Department requirements

B. If code or other requirements exceed the provisions shown on the Contract Documents, the Engineer shall be notified in writing. Where requirements of the Contract Documents exceed code requirements, work shall be furnished and installed in accordance with the Contract Documents. Any work done contrary to these requirements shall be removed and replaced at the Contractor’s expense.

1.3 PERMITS

A. The Contractor shall obtain all permits and inspections required for the installation of this work and pay all charges incident thereto. He shall deliver to the Architect all certificates of said inspection.

1.4 WORK INCLUDED

A. Systems

1. The Plumbing Systems installed and work performed under this Division of the Specifications shall include, but not necessarily be limited to, the following as noted below. The connection point for all systems from the site utilities shall be as 5'-0" from the exterior of the building unless specifically otherwise noted.
 a. Domestic cold, hot and hot water recirculation systems
 b. Sanitary, drainage, waste and vent systems
 c. Natural gas system

1.5 DRAWINGS

A. The Drawings are diagrammatic and do not necessarily depict exact conditions. The indicated locations of equipment, ductwork, piping, etc. are approximate only. The Drawings are schematic in nature and are not to be scaled. Scales are shown for reference and approximation only. Refer to the architectural drawings for dimensional data of building components.

B. The locations, arrangement and extent of equipment, devices, and other appurtenances related to the installation of work shown on the Drawings are approximate. The Contractor shall not scale drawings, but shall refer to the architectural drawings for exact dimensions of building components. Should a conflict exist between the architectural and engineering drawings regarding dimensions and scale, the Contractor shall notify the Architect of the discrepancy for resolution.

C. Materials, equipment or labor not indicated but which can be reasonably inferred to be necessary for a complete installation shall be provided. Drawings and Specifications do not undertake to indicate every item of material, equipment, or labor required to produce a complete and properly operating installation.
1.6 OPERATION AND MAINTENANCE MANUALS

A. The Contractor shall prepare a minimum of two (2) instruction manuals, one of which shall be submitted to the Architect for the Engineer’s review, describing installation, operation and maintenance of all Plumbing equipment. Manuals shall include copies of control schematics, sequences of operations, indicate the function and operations of all components, as well as the Contractor’s name, address, and telephone number. Manuals shall also contain one copy of all manufacturers’ drawings, pamphlets, data, parts lists and instructions manual for each piece of equipment. Upon approval, one copy shall be delivered to the Owner; one copy shall be kept by the Contractor. The pamphlets and drawings are to be neatly bound in a 3-ring binder(s).

B. The Contractor shall give detailed instructions for a period of not less than two (2) days to the responsible personnel designated by the Owner in the operation and maintenance of all equipment furnished under this Contract. A letter containing the name of the person or persons to whom the instructions were given and the dates of instruction period shall be submitted to the Engineer in the as-built submittal.

C. Prior to final acceptance by the Owner, the Contractor shall submit a complete as-built drawing submittal for the Engineer’s review, three (3) sets of operating and maintenance manuals, spare parts lists, drawings, wiring diagrams, troubleshooting data, manufacturer’s bulletins, and other pertinent data on all equipment furnished under this Contract. Each set shall be enclosed in a suitable hard cover binder.

D. A complete set of reproducible as-built drawings shall be provided indicating the location of all piping dimensionally located from a minimum of two column lines or major building structures. Drawings shall be a minimum of 1/8" scale.

E. Provide name, address and telephone numbers of the manufacturer’s representative and service company for each piece of equipment installed in the as-built submittal package.

F. Provide all loose keys for supply valves, wall hydrants and hose bibbs installed.

G. Provide a full repair kit set (total relief valve kit, first check and second check kits) for each reduced pressure backflow preventer installed.

1.7 AS-BUILT DRAWINGS

A. The Contractor shall maintain a record set of drawings indicating all changes in the work from that shown in the Contract Documents. Prior to final acceptance by the Owner, the Contractor shall assemble the complete set of as-built drawings that accurately reflects all changes to indicate actual final construction. All concealed piping shall be dimensionally located from at least two (2) column lines or major building structure elements. Drawings shall be a minimum of 1/8" scale.
B. The original set of “as-built” drawings shall be scanned and transmitted to the Architect in both full size Mylar and CD format.

1.8 EQUIPMENT, MATERIAL BID BASIS

A. Manufacturers’ names, model numbers, etc. as specified on the Drawings and herein are for the purpose of describing type, capacity, function and quality of equipment and materials required.

B. Unless “approved equal” is specifically stated, bids shall be based on equipment named in Specifications or on Drawings as “base” products. Proposed alternate equipment and materials may be submitted along with the “base” products, provided deductive pricing is included with the alternate.

C. Alternate “approved equal” items listed shall conform to specified base items and shall be substantially equal in quality, size, weight, construction, capacities and performance. The alternate equipment and materials shall be submitted as full equivalent to the equipment and materials specified, with sufficient supportive documentation and technical literature to demonstrate quality, performance, and workmanship without doubt or question. The Engineer shall consider the use of the alternate equipment based on the supportive documentation and other information available to him, and shall approve or disapprove any alternates. The decision of the Engineer shall in all cases be final.

D. The Contractor shall coordinate the installation of all plumbing equipment proposed for use in this project with all building trades (architectural, structural, mechanical and electrical). Coordination shall be accomplished prior to, and shall be reflected in, the submittal of shop drawings for approval. Any modifications or revisions required by other trades as a result of the use of equipment other than the basis of design shall be made at no additional cost. When substitution of equipment is made, the Contractor shall be responsible for the costs of any item and engineering and construction revisions necessary in his or any other contract or trade that may be required to satisfy plans and specifications.

1.9 START-UP-SERVICE

A. The service of a factory-trained representative shall be provided on the jobsite for a minimum of one (1) day to provide the manufacturer’s certification and start-up of all major equipment and systems including water heaters, etc. A formal report is to be issued indicating any revisions required for certification of the assembly by the manufacturer. Instruction and training of the operator’s personnel shall be provided following certification of the assembly.

1.10 SUBMITTALS

A. The Contractor shall prepare, submit, and obtain Engineer’s review of manufacturers’ submittals on the following equipment and systems prior to ordering, purchasing, or installation of any equipment or materials. All required submittals shall be transmitted simultaneously in hard ring binders with the
associated specification section and the item submitted clearly identified. Partial submittals will be returned without review.

1. Plumbing fixtures, faucets and trim
2. Water heaters and storage tanks
3. Domestic water pressure booster system
4. Insulation
5. Floor drains and drainage accessories
6. Hydrants and hose bibbs
7. Mixing valves
8. Hot water return pumps
9. Backflow preventers
10. Pipe and fittings
11. Grooved joint couplings
12. Valves
13. Pipe supports
14. Piping accessories
15. Pipe labels and valve tags

B. All approvals required by any code or enforcement authority, insurance underwriter, etc. shall be obtained prior to equipment being submitted to the Engineer.

C. Quality Assurance/Control Submittals: Submit the following:

1. Test Reports: Upon request, submit test reports from recognized testing laboratories.
2. Certificates: Submit the following:
 a. Manufacturer’s certificate that products comply with specified requirements.
 b. Certificate indicating that the installer is authorized to install the manufacturer’s products

D. Review of submittals by the Engineer does not relieve the Contractor from the responsibility for complying with all requirements of the Contract Documents. Furthermore, it shall be the responsibility of the Contractor to coordinate the requirements of all approved equipment with other trades and disciplines such as roof openings, wall openings, electrical characteristics, etc.

E. All submittals shall be identified by the equipment mark or tag identification numbers shown on the Contract Drawings. Each individual submittal item shall be marked to show which specification section pertains to the item.

F. Submittals shall clearly indicate selection of model numbers, sizes, dimensions, electrical characteristics, etc. of the proposed equipment. Any proposed deviations from specified equipment shall be clearly indicated on the submittal.

G. Included with submittals of plumbing equipment requiring electrical connections shall be a written statement confirming coordination of voltage requirements,
bearing the names and signatures of the plumbing and electrical contractors. A photocopied reproduction of the below statement is acceptable.

VOLTAGE COORDINATION STATEMENT

This statement is to confirm that the voltages of the equipment provided under this specification have been coordinated with the Electrical Drawings, as well as with the electrical contractor.

Plumbing Contractor: __________________________
Project Manager Name: __________________________
Project Manager Signature/Date: __________________________

Electrical Contractor: __________________________
Project Manager Name: __________________________
Project Manager Signature/Date: __________________________

1.11 RENOVATIONS AND ADDITIONS

A. Prior to the ordering or purchasing of any plumbing equipment or materials or the layout or installation of any work, the Contractor shall examine the premises and verify any and all of the existing conditions under which he will be required to operate, or that will in any manner affect the work under this Contract.

B. Active Services: When encountered in work, protect, brace, and support existing active sewer, gas and other services required for proper execution of the work. If existing active services are encountered that require relocation, relocate as shown on the Contract Documents or as necessary. Do not prevent or disturb operation of active services that are to remain. Notify utility companies or municipal agencies having jurisdiction.

C. Interruption of Services: Where work makes temporary shutdown of services unavoidable, shut down at night or at such times as approved by Owner, which will cause the least interference with scheduled operations. Arrange work to assure that services will be shut down only during time actually required to make the connection to the existing work.

D. The existing system installations removed or damaged shall become the property of the Contractor and shall be removed from the project site. Existing ductwork, pipe insulation, equipment or material damaged by the Contractor while performing any work shall be replaced with new materials to match existing conditions.

E. Where work under this project requires extension, relocation, reconnection or modifications to existing equipment or systems, the existing equipment or systems shall be restored to their original and operating condition.
F. All pipe, fittings, insulation, supports, etc. removed in the renovation area are to be removed from the site. No existing pipe or materials are to be removed and reused on the renovation.

1.12 COORDINATION OF TRADES

A. The Contractor shall give full cooperation to other trades, and shall furnish all information necessary to permit the work of all trades to be installed satisfactorily and with least possible interference or delay.

B. Piping and other plumbing equipment shall not be installed without first coordinating the installation of same with other trades. The Contractor, at his own expense, shall relocate all uncoordinated piping and other plumbing equipment installed should they interfere with the proper installation and mounting of electrical, HVAC equipment, ceilings and other architectural or structural finishes.

C. The Contractor shall coordinate the elevations of all piping and equipment above ceilings and in exposed areas with the work of all other disciplines prior to installation.

D. In areas where more than one trade is required to use common openings in beams, joists, chases, shafts and sleeves for the passage of conduits, raceways, piping, ductwork and other materials, the Contractor must coordinate the positions of all piping and equipment to be furnished under this section so that all items including the materials and equipment of other trades may be accommodated within the space available.

E. The Contractor shall confirm that work installed under this section does not interfere with the clearances required for finished columns, pilasters, partitions, walls or other architectural or structural elements as shown on the Contract Documents.

F. Work that is installed under this Contract which interferes with the architectural design or building structure shall be removed and relocated as required at no additional cost to the Contract.

G. All offsets, fittings, valves, devices and accessories which may be required are to be provided under this Contract. The Contractor shall examine the entire set of Contract Documents and carefully investigate the structural and finish conditions affecting all his work and shall arrange such work accordingly for the complete satisfactory operation of all systems, providing such fittings, traps, valves, devices and accessories as may be required to meet such conditions.

1.13 WARRANTY

A. All equipment furnished and installed under this Contract shall be provided with the manufacturer’s standard warranty unless otherwise noted.
B. The Contractor shall make good all defects in material, equipment, or workmanship disclosed within a period of one (1) year from date of building acceptance by the Owner. The phrase "make good" shall mean to furnish promptly, without charge, all work necessary to remedy the defects to the satisfaction of the Engineer.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. All equipment, materials, accessories, etc. used shall be new and of current production unless specified otherwise. Equipment not specified in the Contract Documents shall be suitable for the intended use and shall be subject to approval by the Engineer.

B. All equipment, products and materials shall be free of defects and shall be constructed to operate in a safe manner without excessive noise, vibration, leakage, or wear.

C. All equipment shall bear the inspection label of Underwriters Laboratories Inc.

D. All equipment and material for similar applications or systems shall be provided from the same manufacturer unless noted otherwise.

E. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be of the same manufacturer as the grooved components.

F. All castings used for coupling housings, fittings, and valve bodies shall be date stamped for quality assurance and traceability.

G. Cast iron soil pipe and fittings shall bear the collective trademark of the Cast Iron Soil Pipe Institute.

2.2 ELECTRICAL WORK

A. Except as otherwise specified or noted, electrical equipment used for plumbing systems shall be as specified herein.

B. Motor controls, system controls, starters, disconnects, pilot lights, push buttons, etc. shall be furnished by the Contractor compatible with the apparatus that it operates. Electrical equipment shall be wired for the voltage, as shown on the Electrical Drawings.

C. The Contractor shall be responsible for coordinating and furnishing equipment of voltage shown on the electrical documents.

D. Electric motors shall be high efficiency, open drip-proof type unless otherwise specified. Motors shall be standard NEMA continuous duty type and shall bear the UL Label. Motors shall be selected with a minimum of 15% safety factory
greater than the fan brake/horsepower (e.g. 4.75BHP would require a nominal 7-1/2 HP motor). The motor service factor shall not be used as part of the safety factor. All motors shall have thermal overload protection. Motors shall meet Table MG-1-12C of EPACT 1992.

E. Motors controlled by a variable frequency drive (VFD) shall be inverter duty rated and fully compatible with the VFD provided.

F. Starters for motors 1/3 HP and smaller shall be manual type, and for 1/2 HP and larger, shall be magnetic type. Starters shall be minimum size 0, combination type (with disconnect and lockable handle) with molded case circuit breaker. Starters for motors with remote or automatic control shall be magnetic. Relays, interlocks and auxiliary contacts shall be provided as specified and required.

G. Magnetic motor starters shall be across-the-line, full voltage, non-reversing type unless otherwise indicated on the Drawings or specified herein.

H. Motor controls shall be either “Hand-Off-Auto” switches or “On-Off” push buttons with one indicating light. “Hand-Off-Auto” switches shall be provided for automatically controlled apparatus.

I. Motor starters that are not an integral part of equipment shall be installed in conformance with Division 26 - Electrical Requirements.

J. All “loose” disconnects and starters shall be installed by Division 26.

K. Power wiring to disconnects, starters, and equipment shall be provided and installed by Division 26. All equipment requiring electrical power shall be provided with disconnect switches at each piece of equipment. Coordinate switch type (fused or non-fused) with equipment characteristics, manufacturer’s recommendations and Electrical Drawings.

L. The Contractor shall provide all system controls, control and interlock wiring 120 volts and less in conduits in accordance with materials and installation requirements of Electrical Section. All starters shall be labeled on face of starter.

M. All starters for 3-phase equipment shall have overload devices in all three (3) phases.

N. Wiring diagrams shall be furnished by the Contractor.

O. Acceptable manufacturers shall be General Electric, Square D, Eaton, Siemens and Allen Bradley.
2.3 PIPING SYSTEMS

A. General

1. The various piping systems are classified as follows, and materials of construction shall be as specified unless otherwise noted on the Drawings.
2. Piping, valves and equipment used in similar applications shall be provided from the same manufacturer unless noted otherwise.

B. Domestic Water System Branch Piping, Underground, 2 Inches and Smaller, Suitable for a Working Pressure of 125 psig

1. Piping Systems
 a. Copper Type K, soft annealed, conforming to Federal Specification WWT-799. Joints and fittings are not permitted below floor slabs with copper Type K soft annealed pipe.

C. Domestic Cold Water and Hot Water Systems Above Ground

1. Piping Systems
 a. Basis of Design
D. Sanitary, Waste and Vent and Storm Drain Systems, Below Ground to 5'-0" Outside Building

1. Piping Systems
 a. Basis of Design
 1) No-hub cast iron soil pipe per CISPI 301 and ASTM A888. Fittings: No hub cast iron fittings per CISPI 301 and ASTM A888. Joints: Cast iron mechanical couplings with neoprene gaskets and stainless steel nuts and bolts. Heavy duty type 304 stainless steel shielded couplings, ASTM C1540. Acceptable manufacturers: Husky SD 4000 or Clamp-All 125.

 b. Deductive Alternates
 1) Schedule 40 DWV PVC pipe, ASTM 1785. Install per ASTM D 2321. Fittings: Schedule 40 DWV PVC, socket type fittings, ASTM 2665. Joints: Solvent joints for PVC, ASTM D-2564. (PVC piping is not acceptable for waste piping receiving discharge higher than 130 degrees F, cast iron piping is to be installed at the central plant,)
mechanical rooms and at all laundry and kitchen equipment discharges.)

c. Single and double sanitary tee fittings are not allowed for the piping to any plumbing fixture; combination wye and eighth bend fittings shall be installed.

d. Double combination fittings shall not be used for connections to horizontal drainage piping; single wye and eighth bend fittings shall be used for all connections.

e. Foam core PVC piping is not acceptable for any drainage system.
f. All cast iron pipe and fittings shall carry an NSF International listing.

E. Sanitary, Waste and Vent Systems and Storm Drainage Systems Above Ground

1. Piping Systems
 a. Basis of Design
 1) No-hub cast iron soil pipe per CISPI 301 and ASTM A888. Fittings: No-hub cast iron fittings per CISPI 301 and ASTM A888. Joints: Joints for no-hub pipe and fittings shall be per CISPI 310, with stainless steel clamps and neoprene sleeve conforming to ASTM D 564. Heavy duty couplings are required on no-hub systems at the base of stack and vertical to horizontal offsets on all sanitary, waste and storm drainage systems. Heavy duty couplings shall conform to the requirements of ASTM Standard C-1540 and shall be type 304 stainless steel shielded couplings with stainless steel worm gear clamps, 15 psi working pressure. Acceptable manufacturers: Husky SD 4000 or Clamp-All 125.
 2) Type DWV copper tube per ASTM B-306 and ANSI H-23.6. Fittings: DWV solder joint fittings per ANSI B16.29 or B16.23. Joints: All solder joints shall be made with a solder consisting of 95% tin and 5% antimony.
 3) Single and double sanitary tee fittings are not allowed for the piping to any plumbing fixture; combination wye and eighth bend fittings shall be installed.
 4) Double combination fittings shall not be used for connections to horizontal drainage piping; single wye and eighth bend fittings shall be used for all connections.
 5) All cast iron pipe and fittings shall carry an NSF International listing.

b. Single and double sanitary tee fittings are not allowed for the piping to any plumbing fixture; combination wye and eighth bend fittings shall be installed.

c. Double combination fittings shall not be used for connections to horizontal drainage piping; single wye and eighth bend fittings shall be used for all connections.

d. Foam core PVC piping is not acceptable for any drainage system.

e. All cast iron pipe and fittings shall carry an NSF International listing.
F. ProSet Fittings

1. Cast in place fire penetration sleeves such as ProSet and Holdrite Hydro Flame may be installed in lieu of block-outs and/or steel sleeves only in areas where the design ceiling clearances are maintained.

2. Code Red stack assemblies manufactured by ProSet Systems are not an acceptable fire stopping method for any system.

2.4 VALVES, FLANGES AND UNIONS

A. General

1. All systems under this section shall be provided with valves to permit complete and sectional control of the system. They shall be located to permit easy operation, replacement and repair. They shall be installed where shown on the Drawings, or as herein specified. Valves to comply with NSF 61-G, NSF 61, and NSF 372. Valves shall be as manufactured by one of the following companies: American, Anvil International, FNW, Kennedy, Kitz, Milwaukee, Nibco, Powell, Stockham, Victaulic, Watts, or approved equal, and shall conform to description listed below.

2. Control valves shall be provided for the domestic hot and cold water supply to all risers and specific areas such as restrooms, fixture groups, equipment, hose bibbs and wall hydrants, food service areas and building separations. Valves shall be located in back-of-house or service areas with access panels or above lay-in ceilings. No access panels will be permitted in public spaces with gypsum ceilings. The tower riser control valves will be provided with an access panel concealed below the lowest guestroom vanity or above the ceiling in the closet in the lowest level unless specifically noted otherwise.

B. Valve Description

1. Gate Valves
 a. 2-1/2" and larger, Victaulic Series 771V grooved ends (steel pipe), Stockham G-634, 175 lb. flanged OS&Y.
 b. 2" and smaller, Milwaukee UP149, low lead, 125 lb., sweat connection. 2-1/2" and larger, Victaulic MasterSeal (steel pipe) and Series 608 (copper tubing); Milwaukee Fig. F-2885, 125 lb., flanged or Apollo 141WD-SE-1 lead free Butterfly valve with 10 pos. lever handle.
 c. 2-1/2" and smaller, Milwaukee BB-SC100, threaded.

2. Check Valves
 a. 2" and smaller, Milwaukee UP509, 200 lb., threaded, low lead.
 b. 2" and larger, Victaulic Series 716, grooved ends.
 c. 2-1/2" and larger, Milwaukee Fig. F-2974, 125 lb. flanged.
 d. 2-1/2" and larger, Stockham G-939, 175 lb. flange.

3. Ball Valves
 a. 2" and smaller, Milwaukee UPBA 100.

4. Plug Valves (Natural/Propane Gas System)
a. 1/2" and larger, Rockwell Nordstrom Fig. 142 or 143 lubricated plug valve, threaded or flanged as required, wrench operated.

b. 1/2" through 2", two-piece full port brass ball valve, FM and AGA approved, Watts series FBV-3 or equal.

5. Balancing Valves (Hot Water Recirculation)
 a. Balancing valves shall be venturi orifice type, bronze or brass body globe type or with brass or chrome ball, a minimum of two differential pressure read-out ports, 300 psi minimum working pressure. A compatible positive shutoff ball valve with memory stop is to be provided if not included with the balancing valve assembly.
 b. Balancing valves shall be Victaulic Series 786 / 787, Flow Design Incorporated (FDI) model AC or MC or approved equal by ITT or Bell and Gossett.
 c. Ball valves are not acceptable for balancing the hot water return system.

6. Backflow Preventers
 a. Backflow preventers shall be installed at all locations required by code and local authorities, at all connections to mechanical equipment, and elsewhere as shown on the Drawings. Backflow preventers shall be reduced pressure principle type and shall be a complete assembly including tight-closing shutoff valves before and after the device. The design shall include test cocks and a pressure-differential relief seating check valves. The device shall meet the requirements of and be certified by ASSE Standard 1013, AWWA Standard C-506, NSF 61-G, NSF 61, NSF 372, and USC Foundation for Cross-Connection Control. A strainer shall be located upstream of the device. Route relief outlet from cone receptor to an air gap fitting for discharge to sanitary sewer.
 b. Acceptable manufacturers are Ames Company, Apollo Valves, Hersey Products, Watts Regulator, and Zurn-Wilkins.

7. Pressure Reducing Valves
 a. A duplex pressure reducing valve station shall be provided on all domestic water systems greater than 80 psi.

8. Flanges
 a. All flanges shall be faced and drilled for not less than 125 pounds steam working pressure complete with necessary adapter, and shall be of size and material of adjacent piping. All flanges shall be faced (raised or flat) to be compatible with connecting valves, equipment, etc. The connection of one raised face flange to a flat face flange shall not be permitted.

9. Unions and Joints
 a. Unions on drainage pipes on fixture side of traps may be slip or flanged joints with soft rubber washers or gaskets. Unions 2" and smaller on copper pipe shall be all brass with ground joint and shall be 250# copper to copper. Unions above 2" shall be flanged with gaskets. Provide union at water and gas connection to all equipment, except plumbing fixtures.
1) Unions and flanges for servicing and disconnect are not required in installations using grooved joint couplings. (The couplings shall serve as disconnect points.)

b. Bathtub waste and overflow joints shall be soldered if required by local authorities to eliminate the requirement for an access panel to bathtub drain connection.

2.5 CLEANOUTS

A. Cleanouts shall be provided where indicated on Drawings and elsewhere as required by code.

1. Cleanouts in pipelines shall consist of cast iron ferrule and heavy duty cleanout plug with square head as scheduled on the Drawings. Where piping is concealed in floors or walls cleanouts shall be installed in or near surface of floor or walls and have countersunk plugs with covers.

B. Cleanouts shall be provided at the base of the stack on all sanitary, waste and drainage stacks. Base of stack cleanouts on piping located within walls or partitions shall be cast iron cleanout tee with countersunk plug and chromium-plated round access cover, J.R. Smith figure 4530 or approved equal.

C. Base of stack cleanouts on hotel, condominium student housing, multi-family projects, etc. shall have the stack located behind the water closet at the lowest level to allow for concealing the base of stack cleanout behind the tank of the water closet.

D. Brass cleanouts shall be solid nut construction.

E. Provide Owner with three (3) wrenches for removing flush cleanout plugs.

2.6 FLOOR DRAINS

A. Setting Grades

1. The plumbing contractor shall obtain exact elevation of finished grade at the top of the drains prior to setting any drains. Drains installed in excess of 1/4" below the adjacent finished floor shall be removed and reset to the correct elevation.

B. Drain Types

1. All floor drain outlets shall be of size noted on the Drawings. All drains shall be equal to the assembly specified. Acceptable manufacturers are as follows: Josam Co., Zurn Co., J.R. Smith Co., Wade, or approved equal. Drains shall be acid-resisting where indicated.

2. Floor drains noted as FD “G” for use in public spaces such as Restrooms, Locker Rooms, Showers, etc., shall be general purpose type. Drains shall be cast iron with 6” square nickel bronze strainer and trap primer.
connection. Drains shall be Jay R. Smith Figure 2005B-L-B6-P050 or approved equal.

3. Floor drains noted as FD “M” for use in mechanical rooms shall be heavy duty type. Drains shall be cast iron shallow type, 12” diameter with ductile iron tractor grate, sediment bucket, and trap primer connection. Secured funnels shall be provided on all drains receiving condensate discharge to eliminate overflow or spillage. Drains shall be Jay R. Smith Figure 2142 series or approved equal. Drains located within rooms considered to be a plenum are to be provided with a deep seal trap and trap primer.

4. Floor or hub drains located within rooms considered to be a plenum are to be provided with a deep seal trap and trap primer.

5. Unless otherwise noted, acceptable manufacturers shall be Josam, Jay R. Smith, Mifab, Watts, and Zurn.

C. Trap Primers

1. Drains not receiving a continuous discharge are to be provided with an automatic trap primer.

2. Trap primers shall be in-line type actuated by flow independent of pressure, pressure activated primers are not acceptable. Josam models 88250 and 88300.

2.7 ACCESS PANELS

A. Group valves together above suspended ceilings, walls, furred spaces to minimize the number of access panels, but with all valves freely accessible for maintenance. Locate all valves within 1'-0" of access point.

B. Furnish access panels of proper size to service concealed valves and cleanouts. Panels shall be of the proper type for material in which they occur and are to be furnished by the Contractor, but installed by the particular trade for the material within which the access panel is installed.

C. Panels shall have flush doors with No.14 USCG steel door and trim No. 16 USCG steel frame, metal wings for keying into construction, concealed hinges, and screwdriver operated stainless steel cam lock. Panels shall be shop coated with one coat of zinc chromate primer. Valves above removable ceilings shall have tile clips by the Contractor for identification.

D. Access panels are not allowed in gypsum ceilings in public spaces.

2.8 INSULATION

A. The following shall be insulated:

1. All domestic cold water piping above grade except at horizontal chase branch piping to individual plumbing fixtures.

2. All hot water and hot water return piping except at horizontal chase branch piping to individual plumbing fixtures.
3. All hot and cold water piping exposed to areas subject to freezing, refer to “Heat Cable for Freeze Protection of Piping” under Part 2 of Section 220000 for additional requirements.

B. Domestic hot, cold, hot water recirculation, and waste drainage piping shall be insulated with 4 lb. density sectional fiberglass insulation with a thermal conductivity not to exceed 0.24 with white all service jacket and vapor barrier. All joints and seams shall be sealed vapor tight. All seams and staples shall then be covered with “All Service Jacket” three-inch wide tape.

C. Materials as specified in this section shall be manufactured by CertainTeed, Johns Manville, Knauf, Owens Corning or equal. Insulation thicknesses shall be as shown in the following table:

<table>
<thead>
<tr>
<th>Piping System Types</th>
<th>Insulation Thickness for Pipe Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fluid Temperature Range</td>
</tr>
<tr>
<td>Domestic Water</td>
<td>Ambient</td>
</tr>
<tr>
<td>Domestic Hot Water and Hot Water Recirculation</td>
<td>43-71</td>
</tr>
</tbody>
</table>

2.9 HEAT CABLE FOR FREEZE PROTECTION OF PIPING

A. Provide electric heat tracing on all domestic water piping and sanitary traps exposed to areas subject to freezing.

B. Provide a complete UL Listed, CSA Certified, or FM Approved system of heating cables, components, and controls to prevent pipes from freezing.

C. Electric heat cable shall be installed linearly along the bottom of the pipe and allowance shall be made for all fittings, valves, pipe supports, etc. Cable shall be installed prior to insulation of the piping system.

D. Electric cable shall be capable of maintaining a minimum water temperature of 40 degrees F at an ambient air temperature of 0 degrees F.

E. The electric cable shall be the self-regulating type that responds to varying localized temperature conditions by varying the heat output along its length. This shall be accomplished by a self-regulating core, which varies its resistance continuously with changes in temperature. A constant wattage heater is unacceptable.

F. Provide a thermostat control, which de-energizes the heating cable when the ambient air temperature is above 40 degrees F (adjustable). The heat cable shall be entirely self-regulating while energized.
G. Provide all power connection hardware, splices, end seals, etc., to accomplish installation. All hardware shall be by the same manufacturer as the cable.

H. Electric heating cable and accessories shall be UL Listed. Electric heating cable shall conform to all requirements of Division 26 - Electrical Requirements.

I. Electric heating cable shall be Raychem XL-Trace or approved equal, 8 watts per foot.

J. All piping shall be insulated with 1" thick fiberglass insulation.

K. Heating-cable circuit shall be protected by a ground-fault device for equipment protection. This requirement is in accordance with section 427-22 of the NEC-2002.

L. All heating cable components shall be UL Listed, CSA Certified, or FM Approved for use as part of the system to provide pipe freeze protection. Component enclosures shall be rated NEMA 4X to prevent water ingress and corrosion. Installation shall not require the installing contractor to cut into the heating-cable core to expose the bus wires. Connection systems that require the installing contractor to strip the bus wires or that use crimps or terminal blocks, shall not be acceptable.

2.10 PIPE SUPPORTS AND HANGERS

A. All piping shall be supported by means of hanger rods and pipe hangers from roof or floor structure using supplementary steel and/or lagbolts. Water supply pipe connecting to pumps, equipment, fixtures or fixture supplies shall be made rigid at the connection point.

1. Piping shall be supported from (new) (existing) concrete construction with Anvil International Fig. 282 inserts or drilled expansion anchors.
2. Piping shall be supported from new steel construction with Anvil International Fig. 131 beam clamp, Fig. 61 beam clamp, Fig. 66 welded beam attachment or Fig. 60 washer plate with all-thread rod.
3. Piping and brackets shall be supported from hollow block construction using drilled masonry holes and cadmium plated toggle bolts.
4. Piping shall be supported from wood truss construction with plated lag screws or bolts, B-3227 and B-3228.
5. Pipe supports shall not be attached to floor or roof deck.
6. Acceptable manufacturers are: Anvil, B-Line and FNW.

B. Unless otherwise noted, hangers and clamps shall be as listed below (all model numbers are B-Line Systems):

1. Cast iron/steel pipe - B3100 or B3109.
2. Insulated water pipe - B3100 or B3109 with B3151 placed over insulation protection saddle.
3. Uninsulated bare copper pipe - B3170 CTC plastic coated.
4. All supports and mounting hardware are to be galvanized, cadmium plated, or factory enamel painted.

5. All supports on insulated piping systems shall be sized to fit outside the insulation and shall be provided with insulation inserts and shields at each hanger or support point.

C. Branch piping to fixtures in chases shall be supported with plastic or copper clamp type supports:

D. Maximum spacing between pipe hangers shall be:

1. Steel pipe
 a. 1-1/4" and smaller: 6'-0"
 b. 1-1/2" – 2": 8'-0"
 c. 2-1/2" and larger: 10'-0"

2. Cast iron soil pipe: 2" and larger: 10'-0"

3. Copper tubing:
 a. 1/2" – 1-1/4": 5'-0"
 b. 1-1/2" – 2": 8'-0"
 c. 2-1/2" and larger: 10'-0"

4. PVC/CPVC and all plastic pipe:
 a. 1-1/4" and smaller: 3'-0"
 b. 1-1/2" and larger: 4'-0"

5. Pex Piping
 a. 1" and smaller: 18"
 b. 1¼" inch and larger: 32"

E. At least one hanger shall occur within 2'-0" from where change in direction takes place. Where pipes extend down or up to other floors, pipe clamps shall be provided on each floor to support vertical risers. Vertical piping drops shall be rigidly anchored to structure at the top and bottom offsets and at eight foot increments along the vertical drop.

F. Special approved hangers that require less installation space are to be used where required due to ceiling space limitations.

G. All connections to pumps and other vibrating machinery shall be provided with stainless steel braided flexible hose connections. Connections to potable water systems shall meet ANSI/NSF 61 design standards.

2.11 FLASHING

A. Vent pipes passing through roof shall be flashed watertight.

B. The roof connections shall meet the approval of the manufacturer of the roofing materials and shall comply with the roof bond requirements.
C. All vent piping shall be offset above ceilings or in attic space and as shown on the Drawings to penetrate roofs on the least visible sides of building.

2.12 FLOOR, WALL AND CEILING PLATES

A. Furnish and install heavy gauge chromium plated steel wall and ceiling plates on all exposed pipes in finished areas where they pass through walls, ceilings, etc. Plates shall be of type that will remain permanently in position and where pipes are insulated they shall be of size necessary to cover insulated pipe.

2.13 GALVANIC PROTECTION

A. Insulate joints between dissimilar metals with suitable isolation gasket and bolts with fiber ferrules and washers and/or suitable armored insulation fittings by Clearflow, Crane, Capital, or Epco, so there will be no contact between the metals or with insulating bushings.

2.14 PIPING SYSTEMS IDENTIFICATION

A. A marker showing the service and an arrow indicating the direction of flow shall be applied on all of the following piping systems applicable to the project installed under this section of the Specifications:

1. Domestic hot, cold and hot water recirculation water piping
2. Gas piping
3. Sanitary, waste and vent piping

B. Piping identification shall be applied on all piping systems in areas of exposed construction and in areas with accessible or lay-in ceilings. The piping shall be labeled at each wall and floor penetration (both sides), and at connections to equipment. In addition, straight runs of piping shall be labeled at intervals not greater than 25 feet.

C. The letter size and background color shall conform to the Identification of Pipe System ANSI A-13-1. The vinyl plastic markers shall be as manufactured by Seton Name-Plate Company, W. H. Brady Company, or Westline products.

D. Each valve in the Plumbing and Fire Protection systems is to be provided with an individually numbered valve tag.

E. Valve tags are to be brass or plastic laminate, 1-1/2” minimum diameter with brass chain and hook for securing to the valve.

F. Valve tags will include a “P” or “FP” lettering designation to indicate the appropriate system. Numbering shall be consecutive for each service of either the Plumbing or Fire Protection systems.

G. A printed list or schematic drawing shall be compiled for each system indicating the location and detailed description of the system or equipment served.
H. One copy of each list shall be framed and mounted at the location designated by the Building Engineer. An additional copy of each list is to be included in the Operations and Maintenance Manual.

2.15 EQUIPMENT LABELING

A. All equipment shall be labeled. This shall include all pumps, water heaters, storage tanks, and other similar equipment.

B. Equipment labeling shall be one of the following, unless noted or specified otherwise.

1. Permanently attached plastic laminate signs with 1" high lettering.
2. Stencil painted identification, 2" high letters, with standard fiberboard stencils and standard black (or other appropriate color) exterior stencil enamel.

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. All equipment and materials shall be completely installed, adjusted, and fully operational with all accessories and connections.

B. Equipment, piping, ductwork, etc. shall fit into the spaces provided in the building and shall be installed at such times and in such a manner as to avoid damage and as required by the job progress. The Contractor shall coordinate work with other trades and locate work described herein to avoid interferences with structural, electrical and architectural work. Equipment, accessories and similar items requiring normal servicing or maintenance shall be accessible.

C. The Engineer reserves the right to direct the removal of any item which, in his opinion, does not present an orderly and reasonably neat or workmanlike appearance. Such removal and replacement shall be done when directed by the Engineer and without additional cost to the Owner.

D. Mounting heights, unless otherwise noted, are to the finished bottom of the device.

E. All work shall be designed and installed to comply with the requirements for the seismic design category and use group for the area in which the building is constructed.

3.2 EXCAVATION, TRENCHING AND BACKFILLING

A. The Contractor shall perform all excavation to install the work herein specified and as indicated on the Drawings. During excavation, material for backfilling shall be piled back from the banks of the trench to avoid overloading and to prevent slides and cave-ins. All excavated materials not to be used for backfill shall be removed and disposed of by the Contractor. Grading shall be done to prevent surface water from flowing into trenches and others excavation and any
water accumulating therein shall be removed by pumping. All excavation shall be made by open cut. No tunneling or boring shall be done except under pavement.

B. The bottom of the trenches shall be graded to provide uniform bearing and support for conduits, cables, or duct bank on undisturbed soil at every point along its entire length. Overdepths shall be backfilled with loose, granular, moist earth, and tamped in 12" layers. Remove unstable soil that is not capable of supporting equipment or installation and replace with specified material for a minimum of 12" below invert of equipment or installation.

C. The trenches shall be backfilled with the excavated materials approved for backfilling, consisting of earth, loam, sandy clay, sand and gravel or soft shale, free from large clods of earth and stones, deposited in 6" layers and tamped until the crown of the pipe is covered by a minimum of 6" of tamped earth. The backfill under and beside the pipe shall be compacted for pipe support. Backfill shall be brought up evenly on both sides of the pipe so that the pipe remains aligned. In instances where the manufacturer's installation instructions for materials are more restrictive than those prescribed by the code, the material shall be installed in accordance with the more restrictive requirement. The backfilling shall be carried on simultaneously on both sides of the trench so that injurious pressures do not occur. The compaction of the filled trench shall be at least equal to 95% of the maximum density as determined by the Standard Proctor Test. Settling the backfill with water will not be permitted. Reopen any trenches not meeting compaction requirements or where settlement occurs, refill, compact, and restore the surface to the grade and compaction indicated, mounded over and smoothed off. A metallic lined underground warning tape shall be provided 12" below finished grade. The tape shall be identified as to the type of line per ANSI standard nomenclature and color.

D. Provide a layer of sand at least 6" deep under all plastic pipe installed in soil. Bell holes shall be excavated to ensure that the sewer pipe rests for its entire length upon a solid trench bottom.

E. Perform excavation and backfilling work in accordance with applicable portions of the earthwork section.

3.3 STORAGE AND PROTECTION OF MATERIALS

A. During construction, all equipment shall be properly protected against damage, defacing and freezing with shipping cartons, plastic sheeting, shipping covers, etc.

B. All open ends of piping and equipment shall be sealed with nipples and caps, plugs, test plugs until final connection to system is made.

C. All equipment and piping shall be protected to prevent entrance of foreign matter and debris by covering exposed openings during construction.
D. Handle and store materials in accordance with manufacturer’s and supplier’s recommendations and in manner to prevent damage to materials during storage and handling. Replace damaged materials.

E. Equipment and materials shall not be installed until such time as the environmental conditions of the job site are suitable to protect the equipment or materials. Equipment or materials damaged or which are subjected to these elements are unacceptable and shall be removed from the premises and replaced.

3.4 CUTTING AND PATCHING

A. Work shall include all cutting, patching, masonry and carpentry required as part of the equipment installation when not provided by other sections of these specifications.

B. All work shall be performed as specified under architectural specification section for cutting and patching.

3.5 CONCRETE WORK

A. Construct curbs, pads, vaults and similar supports for equipment where required.

B. Provide 3” thick housekeeping pads at floor mounted equipment a minimum of 3” larger than the entire area occupied by equipment. Dowel pads to structural slab.

C. Perform concrete work in accordance with applicable portions of Concrete sections. Minimum compressive strength of concrete shall be same as specified for slabs on grade.

3.6 CLEANING

A. At all times, the premises shall be kept reasonably clean and free of undue amounts of waste, trash and debris by periodic cleaning and removal. After completion, all foreign material, trash and other debris shall be removed from the job site.

B. After all equipment has been installed, but prior to testing and balancing, all equipment, piping, etc. shall be thoroughly cleaned both inside and out.

C. After testing and balancing of systems as specified and just prior to Owner review and acceptance, all systems shall be finally cleaned and shall be left ready for use.

3.7 PAINTING

A. Painting, except as otherwise specified, will be done under another section of the specifications, but the Contractor shall leave all surfaces of work free of rust, dirt and grease.
B. The Contractor shall touch-up to match original finish any equipment scratched in shipment or installation. Touch-up painting of plumbing equipment shall be part of the plumbing work.

C. Provide one coat of rust preventive primer on all new structural steel supports and new ferrous surfaces which are not galvanized (this includes piping systems). Rust preventative painting shall be part of the plumbing work.

D. All painting and coating shall match the original and shall conform to the requirements detailed in other sections of these specifications. Do not paint over nameplates on equipment, nonferrous hardware, accessories or trim.

3.8 EQUIPMENT SUPPORT

A. Major equipment supports (framed structural openings, etc.) shall be furnished and installed by others as shown on the Drawings. The plumbing work shall include, the furnishings and installation of all miscellaneous equipment supports, structural members, rods, clamps and hangers required to provide adequate support of all equipment.

B. Unless otherwise shown on the Drawings, all equipment, piping, and accessories shall be installed level, square, and plumb.

C. All equipment, piping, etc. supported by structural joists shall be supported by the top chord only of such joists. Hangers shall not be attached to the bottom chord of any joists.

3.9 PIPE PENETRATIONS

A. Sleeves shall be installed in all masonry or concrete walls, floors, roofs, etc. for pipe penetrations. Sleeves for pipe shall be Schedule 40 black steel. Sleeves shall be sized to provide a minimum of 1/4” clearance between the sleeve and pipe.

B. The 1/4” minimum clearance shall be provided between the sleeve and the insulation on insulated piping systems. A gap of the insulation shall be omitted at each side of a rated wall penetration to allow for the required fire stopping.

C. As far as possible, all pipe penetrations shall be provided for at the time of masonry or concrete construction. Where drilling is required, only core drills shall be used. Star drills shall not be used.

D. All pipes penetrating walls or floors of any construction shall be installed with escutcheon plates on both sides of the penetration securely fastened to the wall or floor. In exposed areas, escutcheon plates shall be chrome plated. All escutcheon plates shall be sized to completely conceal the penetration.

E. Pipe penetrations through exterior walls shall be sealed watertight with expandable link type seals by Thunderline, Linkseal or Engineer approved equal.
F. All pipe and duct penetrations of fire, smoke, or fire and smoke-rated assemblies shall be fire-stopped as required to retain the integrity of the UL rated assembly. Fire barrier products shall be as manufactured by Tremco, Hilti, 3M, Metacaulk, Nelson, or approved equal.

3.10 FLASHING

A. All piping penetrating roofs shall be flashed in an approved manner, shall be watertight, and shall conform to the requirements detailed in other sections of these specifications.

B. Flashing for piping shall be sheet lead of not less than 6 pounds per square foot, shall have a base not less than 2 square feet, and shall extend up over and into the open end of the pipe. All flashing shall be properly caulked and sealed.

3.11 PIPING SYSTEMS

A. Water Piping - General

1. Pipe used in piping assembly must be clean of dirt and obstructions and shall have ends square and reamed before putting into the fittings.
2. All piping must be true and plumb with proper pitch for draining of the soldering.
3. All domestic water lines serving flush valve fixtures and washing machines shall be protected from water hammer by shock absorbers. Where shock absorbers are required they shall be as manufactured by Josam Mfg. Company, J. R. Smith, Sioux Chief Ind., Precision Plumbing or Zurn Mfg. Co. and shall conform to the Plumbing and Drainage Institute published requirements.
4. All connections to water heaters, tanks and equipment shall be made with unions or flanges. Insulated piping systems shall be installed to provide space for insulation.
5. Grooved joint shall be installed in accordance with the manufacturer’s written recommendations. Grooved ends shall be clean and free from indentations, projections, or roll marks. The gasket shall be molded and produced by the coupling manufacturer of an elastomer suitable for the intended service. The coupling manufacturer’s factory trained representative shall provide on-site training for the contractor’s field personnel in the use of grooving tools and installation of product. The representative shall periodically visit the job site to ensure best practices in grooved product installation are being followed. (A distributor’s representative is not considered qualified to conduct the training.)

B. Sanitary Waste, and Vent Piping - General

1. Pipes shall be plumb and parallel to building walls, beams and columns unless otherwise indicated. All horizontal lines are to be evenly pitched and properly secured with iron or steel hangers, unless noted otherwise. A pitch of 1/4 inch per lineal foot shall be maintained on all soil, and waste
lines, wherever possible. Where long runs of piping require less pitch due to space restrictions, a less pitch shall be allowed on main lines four (4) inches and over in size, but in no event should any pipeline have a slope less than 1/8 inch per foot.

2. All soil and waste pipes shall be extended out full size through the roof or connected to a common vent as shown on the Drawings.

3. Main vent stacks shall run parallel to the soil pipe stacks and shall connect to the vent continuation of the soil stack at least three (3) feet above the rim of the highest plumbing fixtures on the stack. Vent stacks shall also be connected at the base or horizontal offset of the soil stack through a Y and 1/8 bend or an upright Y fittings. Offsets in vent pipe shall be made with 45 degree fittings wherever possible. Horizontal vent lines shall pitch toward the waste line.

4. Threaded joints shall have American National taper screw thread with graphite and oil compound applied to the male threads.

5. Sanitary and vent stacks are to be run straight and plumb and all offsets shall be made at an angle of not less than 45 degrees.

6. All existing sanitary and vent systems re-used within the buildings shall be inspected and rodded or pressure flushed to restore the piping to full flow capacity.

C. Mounting heights, unless otherwise noted, are to the centerline of the equipment and/or device.

3.12 TESTING OF PIPING SYSTEMS

A. General

1. All piping systems shall be subjected, before being insulated or concealed, to testing with water or air as noted and shall hold tight at the pressure head stated for the time interval required without adding air or water. While any system is being tested required head or pressure shall be maintained until all joints are inspected.

2. All tests shall be witnessed by the inspector having jurisdiction and the Owner’s Representative, with a minimum 48-hour notice given these authorities.

3. All equipment, material, labor and testing mediums required for testing any of the various systems or any part thereof shall be furnished by the Contractor.

4. All connected equipment, accessories, etc. shall be isolated from piping systems prior to testing.

B. Sanitary Piping Systems

1. Water test shall be applied to these drainage systems either in their entirety or in sections as required, after rough piping has been installed. If the system is tested in sections, each opening shall be tightly closed except the highest opening in the section under test. All sections shall be tested with a minimum of 10 feet of head. In testing successive sections, at least the upper 10 feet of the next section shall be tested so that no...
joint of piping in the building shall be submitted to a test of less than 10 feet of head. The water shall be kept in the system for at least 30 minutes before inspection starts; the system shall then be made tight at all points.

2. Any points of the drainage systems to be tested with air instead of water shall be made by attaching an air compressor testing apparatus to any suitable opening and after closing all other inlets or outlets, forcing air into the system until there is a minimum gauge pressure of 5 psi. This pressure shall be held without the introduction of additional air for a period of at least 30 minutes.

3. Exterior connections shall be tested as part of the interior systems.

C. Interior Water Piping Systems

1. Upon completion of the entire water supply system or a section of it as required, it shall be tested prior to connection of fixtures and proved tight under a water/air pressure of 150 psi. Pressure shall hold for a period of one hour without introducing additional water/air. Water used for testing shall be from a potable source of supply. Defective joints or piping shall be replaced as required and all piping shall be retested.

D. Exterior Water Piping System

1. All exterior domestic water piping shall be tested to 150 psi for a period of two hours.

E. Defective Work

1. If inspection or tests show defects, such defective work or material shall be replaced and inspection and tests shall be repeated. All repairs to piping shall be made with new material. Caulking of screwed joints or holes is not acceptable.

F. Additional Tests

1. Provide all additional tests such as smoke or pressure tests as required by the regulations or as directed by authorities making the inspection.

2. Provide for any repeated test as directed by the Owner’s Representative, to make all systems tight as required.

3. Visual inspections of joints, valves, etc. shall be made as directed by the Engineer.

3.13 DISINFECTION OF WATER SYSTEM – INTERIOR AND EXTERIOR

A. Prior to project completion, all potable water piping systems shall be disinfected per local code requirements.

B. Whenever the authority having jurisdiction does not specify disinfection procedures, the new water piping system shall be thoroughly disinfected with a solution containing not less than 50 parts per million of available chlorine. The
chlorinating material shall be either liquid chlorine or sodium hydrochloride solution and shall be introduced into the system and drawn to all points in the system. The disinfection solution shall be allowed to remain in the system for a period of eight hours, during which period all valves and faucets shall be opened and closed several times. After disinfection, the solution shall be flushed from the system with clear water until the residual chlorine content is not greater than 0.2 parts per million.

C. This work is to be supervised or performed by an approved chemical testing laboratory and results sent to Engineer or his representative for verification.

3.14 DOMESTIC HOT WATER SYSTEM BALANCING

A. The test and balance contractor shall provide testing, adjusting and balancing of the hot water system, once the system is fully installed and operational. Preliminary and final reports shall be prepared and issued to the General Contractor, Architect and Engineer.

B. Preparation of the hot water system for balancing:

1. Confirm outlet temperature of the system at water heaters and/or storage tanks.
2. Verify recirculation pump operation and rotation.
3. Confirm/adjust setpoint of each individual riser balancing valve to flow a minimum of 0.5 gpm or as otherwise noted on the documents.

C. The test and balance report shall indicate the following:

1. Pressure, temperature and flow in gpm at the discharge side of each balancing valve referencing the valve tag number.
2. Pressure, temperature and flow in gpm at the suction side of each recirculating pump.

D. Copies of the final approved balancing report are to be included in the O and M manuals as noted in "Permits" under Part 1 of Section 220000.

3.15 FIXTURE CONNECTIONS AND SUPPORTS

A. Wall fixtures shall be hung by means of carrier type fixture supports as manufactured by J.R. Smith, Josam, Mifab, Wade or Zurn.

3.16 SLEEVES

A. Furnish and install pipe sleeves around all piping passing through masonry walls, floors, beams, etc. Sleeves shall be of such diameter as to allow pipe to pass through easily and permit expansion and contraction of pipe. Where pipes are insulated, the sleeves shall be of such diameter as to allow the insulated pipe to pass through easily. The sleeves shall be placed before the pouring of concrete and before construction of walls. Sleeves for vertical risers shall extend a minimum of 1" above the floor slab. Sleeves to outside walls below grade shall
be caulked or provided with expansion type mechanical seals as required to make them waterproof.

3.17 INSTALLATION OF UNIONS

A. Unions shall be located as shown on plans and as required by equipment so piping and equipment can be easily dismantled. Unions shall not be installed in any location where they are not readily accessible.

3.18 TRAPS

A. All fixtures, drains, etc. shall be provided with traps, unless specifically shown or specified otherwise. Traps shall be set in an upright position, level and true, and shall be vented as shown and required. All exposed traps shall be provided with cleanout plugs.

3.19 CLEANOUT INSTALLATION

A. Furnish and install cleanouts in soil and waste lines as required by Code and/or job conditions, as shown on the Drawings and as follows: At or near the end of each branch and main drainage line, horizontal lines at intervals as required by code. All cleanouts shall be readily accessible, with plugs easily removable for cleanout lines. Cleanouts at the base of vertical piping shall be held within 2'-0" from finished floor unless otherwise indicated.

3.20 FLASHING INSTALLATION

A. All pipes passing through roofs shall be flashed in an approved manner. Flashing shall be watertight.

B. Roof connections shall meet the approval of the manufacturer of roofing material and shall comply with roof bond requirements.

C. The Contractor is to inspect all existing plumbing system roof penetrations and repair/replace flashing as required to provide a watertight installation.

3.21 EQUIPMENT AND MATERIAL PROTECTION

A. During construction all equipment shall be properly protected against damage, defacing and freezing with shipping cartons, plastic sheeting, shipping covers.

B. All open ends of piping and equipment shall be sealed with nipples and caps, plugs, test plugs until connection to system is made.

3.22 SPACE REQUIREMENTS

A. Piping, apparatus and equipment shall fit into the space provided in the building or within the property and shall be installed at such time and in such manner as to avoid damage to the building structure or property as required by the job
progress. Equipment, apparatus and accessories requiring normal servicing or maintenance shall be made easily accessible.

END OF SECTION 22 00 00
SECTION 22 13 13 - FACILITY SANITARY SEWERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipe and fittings.
 2. Nonpressure and pressure couplings.
 3. Expansion joints and deflection fittings.
 4. Backwater valves.
 5. Cleanouts.
 7. Manholes.

1.3 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Expansion joints and deflection fittings.
 2. Backwater valves.
B. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
B. Profile Drawings: Show system piping in elevation. Draw profiles to horizontal scale of not less than 1 inch equals 50 feet and to vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.
C. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
D. Field quality-control reports.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
B. Protect pipe, pipe fittings, and seals from dirt and damage.
C. Handle manholes according to manufacturer’s written rigging instructions.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Sewerage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of service.
 2. Do not proceed with interruption of service without Owner’s written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. PVC Cellular-Core Sewer Piping:
 1. Pipe: ASTM F 891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solvent-cemented joints.
 2. Fittings: ASTM D 3034, per Owner’s requirements, PVC socket-type fittings.

B. PVC Corrugated Sewer Piping:
 2. Fittings: ASTM F 949, PVC molded or fabricated, socket type.

C. PVC Profile Sewer Piping:
 2. Fittings: ASTM D 3034, PVC with bell ends.

D. PVC Type PSM Sewer Piping:
1. Pipe: ASTM D 3034, per Owner's requirements, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
2. Fittings: ASTM D 3034, PVC with bell ends.

E. PVC Gravity Sewer Piping:

1. Pipe and Fittings: ASTM F 679, wall thickness per Owner's requirements, PVC gravity sewer pipe with bell-and-spigot ends and with integral ASTM F 477, elastomeric seals for gasketed joints.

F. PVC Pressure Piping:

1. Pipe: AWWA C900, Class 100, Class 150, and Class 200 PVC pipe with bell-and-spigot ends for gasketed joints.
2. Fittings: AWWA C900, Class 100, Class 150, and Class 200 PVC pipe with bell ends.

G. PVC Water-Service Piping:

1. Pipe: ASTM D 1785, Schedule 40 and Schedule 80 PVC, with plain ends for solvent-cemented joints.

2.2 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:

1. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
2. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 b. Fernco Inc.
c. **Logan Clay Pipe.**

d. **Mission Rubber Company; a division of MCP Industries, Inc.**

e. **NDS.**

f. **Plastic Oddities; a division of Diverse Corporate Technologies, Inc.**

3. **Description:** Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Shielded, Flexible Couplings:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. **Cascade Waterworks Mfg.**

 b. **Dallas Specialty & Mfg. Co.**

 c. **Mission Rubber Company; a division of MCP Industries, Inc.**

3. **Description:** ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

E. Ring-Type, Flexible Couplings:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. **Fernco Inc.**

 b. **Logan Clay Pipe.**

 c. **Mission Rubber Company; a division of MCP Industries, Inc.**

3. **Description:** Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

F. Nonpressure-Type, Rigid Couplings:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. **ANACO-Husky.**
3. Description: ASTM C 1461, sleeve-type, reducing- or transition-type mechanical coupling, molded from ASTM C 1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

2.3 CLEANOUTS

A. PVC Cleanouts:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. Canplas LLC.
 b. IPS Corporation.
 c. NDS.
 d. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 f. Zurn Light Commercial Products Operation; Zurn Plumbing Products Group.

3. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.4 MANHOLEs

A. Standard Precast Concrete Manholes:

1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
2. Diameter: 48 inches minimum unless otherwise indicated.
3. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.
4. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.
5. Riser Sections: 4-inch minimum thickness, of length to provide depth indicated.
6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.
7. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
8. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
9. Steps: Individual FRP steps; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
10. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:

1. Description: ASTM C 913; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading, of depth, shape, and dimensions indicated, with provision for sealant joints.

2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.

4. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.

5. Steps: Individual FRP steps; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.

6. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

7. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser, with 4-inch minimum-width flange and 26-inch diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SANITARY SEWER."

2. Material: ASTM A 48, Class 35 gray iron unless otherwise indicated.

D. Manhole-Cover Inserts:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. FRW Industries; a Syneco Systems, Inc. company.
 b. Knutson Enterprises.
 c. L. F. Manufacturing, Inc.
 d. Parson Environmental Products, Inc.
3. Description; Manufactured, plastic form, of size to fit between manhole frame and cover and designed to prevent stormwater inflow. Include handle for removal and gasket for gastight sealing.

4. Type: Solid.

2.5 CONCRETE

A. General: Cast-in-place concrete complying with ACI 318, ACI 350/350R, and the following:

1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615, Grade 60 deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.

1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 a. Invert Slope: 1 percent through manhole.

2. Benches: Concrete, sloped to drain into channel.
 a. Slope: 4 percent.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615, Grade 60 deformed steel.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."
3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.

C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure, drainage piping according to the following:
 1. Install piping pitched down in direction of flow, at minimum slope as indicated on drawings.
 2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
 3. Install piping with 24-inch minimum cover.
 4. Install PVC cellular-core sewer piping according to ASTM D 2321 and ASTM F 1668.
 5. Install PVC corrugated sewer piping according to ASTM D 2321 and ASTM F 1668.
 6. Install PVC profile sewer piping according to ASTM D 2321 and ASTM F 1668.
 7. Install PVC Type PSM sewer piping according to ASTM D 2321 and ASTM F 1668.
 8. Install PVC gravity sewer piping according to ASTM D 2321 and ASTM F 1668.

G. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:
 1. Join PVC cellular-core sewer piping according to ASTM D 2321 and ASTM F 891 for solvent-cemented joints.
2. Join PVC corrugated sewer piping according to ASTM D 2321.
3. Join PVC profile sewer piping according to ASTM D 2321 for elastomeric-seal joints or ASTM F 794 for gasketed joints.
4. Join PVC Type PSM sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
5. Join PVC gravity sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.

3.4 MANHOLE INSTALLATION

A. General: Install manholes complete with appurtenances and accessories indicated.
B. Install precast concrete manhole sections with sealants according to ASTM C 891.
C. Install FRP manholes according to manufacturer’s written instructions.
D. Form continuous concrete channels and benches between inlets and outlet.
E. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.
F. Install manhole-cover inserts in frame and immediately below cover.

3.5 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

3.6 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.
C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.
3.7 CONNECTIONS

A. Refer to industry standards and requirements for additional information regarding nonpressure, gravity-flow drainage piping connections to building’s sanitary building drains.

B. Refer to industry standards and requirements for additional information regarding force-main piping connections to building’s sanitary force mains. Terminate piping where indicated.

C. Make connections to existing piping and underground manholes.

1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes by cutting opening into existing unit large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.

 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.

4. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

D. Refer to industry standards and requirements for additional information regarding connections to grease, oil, and sand interceptors.

3.8 CLOSING ABANDONED SANITARY SEWER SYSTEMS

A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:

1. Close open ends of piping with at least 8-inch thick, brick masonry bulkheads.
2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.

B. Abandoned Manholes: Excavate around manhole as required and use either procedure below:

1. Remove manhole and close open ends of remaining piping.
2. Remove top of manhole down to at least 36 inches below final grade. Fill to within 12 inches of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.

C. Backfill to grade according to Section 31 20 00 "Earth Moving."

3.9 IDENTIFICATION

A. Comply with requirements in Section 31 20 00 "Earth Moving" for underground utility identification devices. Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.

1. Use detectable warning tape over ferrous piping.
2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.

3.10 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate report for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 b. Close openings in system and fill with water.
 c. Purge air and refill with water.
 d. Disconnect water supply.
 e. Test and inspect joints for leaks.
6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Option: Test plastic gravity sewer piping according to ASTM F 1417.
 b. Option: Test concrete gravity sewer piping according to ASTM C 924.
7. Force Main: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig.
 a. Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
 b. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.
8. Manholes: Perform hydraulic test according to ASTM C 969.
C. Leaks and loss in test pressure constitute defects that must be repaired.
D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.11 CLEANING
A. Clean dirt and superfluous material from interior of piping. Flush with potable water.
SECTION 22 16 00 - NATURAL GAS PIPING SYSTEM

PART 1 - GENERAL

1.1 SYSTEM

A. Provide a complete system of natural gas piping from gas meter to all natural gas burning equipment and appliances.

B. All gas equipment specified herein shall be suitable for use with natural gas system.

1.2 DESIGN STANDARDS

A. The natural gas system shall be designed and installed in accordance with the requirements of the following codes and standards:

2. NFPA 54 - National Fuel Gas Code

PART 2 - PRODUCTS

2.1 PIPE AND FITTINGS

A. Underground Piping

1. Schedule 40 black steel pipe, ASTM A53 with polyethylene jacket, welded joints and standard weight black steel butt weld or socket weld fittings, ASTM A243.
2. Polyethylene pipe, ASTM 2513, with heat fusion joints and fittings, ASTM D2513.

B. Aboveground Piping

1. Schedule 40 black steel pipe, ASTM A53 with welded joints and standard weight black steel butt weld fittings, ASTM A234 or socket weld fittings, ASTM A105.
2. Schedule 40 black steel pipe, ASTM A53, with 150 pound steel slip-on welding flanges, ASTM A181, for connection to flanged valves and equipment.
4. Copper tubing as permitted by Gas Code and local authorities.
2.2 JOINTS

A. Threaded joints shall be made with a pipe compound specifically listed as resistant to reaction with liquefied petroleum gas and shall be applied to male threads only. After cutting and prior to threading, pipe shall be reamed and shall have burrs removed.

B. Welded joints shall be fusion welded in accordance with the American Standards Code for pressure pipe, ASME B31.1, Section 6.

C. Flanged joints shall be faced true, provided with ring type gasket, and made square and tight. Flanges shall have raised or flat faces to mate with adjacent flanges of valves.

2.3 UNIONS

A. Unions in steel piping shall be 150 pound socket welded carbon steel conforming to ASME B.16.11 or class 150 malleable iron threaded fittings conforming to ASME B.16.3.

2.4 VALVES

A. Valves 3" in size and larger shall be semi-steel plug valves with cast iron body, lubricated cast iron plug, flanged ends, and wrench operated for 175 pound WOG. Valve shall be Rockwell Nordstrom Fig. 143 or equal.

B. Valves 2-1/2" in size and smaller shall have bronze body and plug, socket welded ends, and square head for 125 WOG. Valve shall be Crane or Fig. 250 or equal.

C. Full port ball valves 2" in size and smaller shall have brass body with chrome plated brass ball with threaded or socket welded ends, 600 psi WOG, FM approval, AGA approval. Valve shall be Watts series FBV-3 or equal.

D. Lubricated plug valves shall be lubricated at the factory and sealant shall be suitable for natural gas. Provide two valve wrenches for each type of valve specified.

E. Acceptable valve manufacturers are Rockwell Nordstrom, Crane, FNW, Stockham, Powell, Walworth, or Milwaukee.

2.5 PRESSURE REGULATING VALVES

A. Pressure regulator shall be cast iron, ductile iron or stainless steel, corrosion-resistant spring-loaded type with internal pressure relief, 175 psi working pressure. Provide threaded ends for piping 2" and smaller, flanged ends for piping 2-1/2" and larger. All regulator vents shall be extended to the exterior unless otherwise specified. Regulators equipped with and labeled for use with an approved vent-limiting device shall not require a vent to the exterior.
Acceptable manufacturers are Fischer Regulators, Jordan Valve, Maxitrol, Rockwell and Sensus.

B. Low pressure regulators supplied from medium and high pressure gas systems shall be lock-up type high gas pressure regulators and shall be installed a minimum of ten feet upstream of the equipment inlet connection.

2.6 PROTECTIVE COATING

A. Underground steel service entry piping shall be furnished with factory applied plastic coating and field coating at joints conforming to AWWA Standard C-203. All valves, fittings, and joints in underground piping shall be field coated using a heat-applied coal tar enamel tape, using two coats of heavy mastic, using “Scotchwrap,” “CT Tapecoat” or “X-Tru-Tape.” Field coating shall extend over mill wrapping a minimum of 4 inches. Damaged coating shall be repaired as specified for valves, fittings, and joints.

2.7 CATHODIC PROTECTION

A. All underground gas piping shall be cathodically protected. Provide a minimum of two 17-pound magnesium anodes containing 6% aluminum and 3% zinc alloy. Anodes shall be distributed equally along the pipe run, but spacing shall not exceed 100 feet between anodes. Each anode shall be attached to the pipe by the Caldwell or brazing process. The connecting wire shall be buried in backfill composed of 75% gypsum, 20% bentonite and 5% sodium sulphate. Wherever the underground gas piping rises above grade, provide an insulating dielectric fitting.

2.8 PIPE SUPPORTS & HANGERS

A. All piping shall be supported by means of hanger rods and pipe hangers from roof or floor construction using supplementary steel and/or lagbolts.

1. Piping shall be supported from existing concrete construction with drilled expansion anchors.
2. Piping shall be supported from new steel construction with Anvil International Fig. 131 beam clamp, Fig. 61 beam clamp, Fig. 66 welded beam attachment or Fig. 60 washer plate with all-thread rod.
3. Piping and brackets shall be supported from hollow block construction using masonry drilled holes and toggle bolts.
4. Piping shall be supported from wood truss construction with plated lag screws or bolts, B-3227 and B-3228.

B. Unless otherwise noted, hangers and clamps shall be as listed below (all model numbers noted are B-Line Systems):

1. Gas pipe – B3100 or B3109.
2. All supports and mounting hardware are to be galvanized or cadmium plated.
C. Maximum spacing between pipe hangers shall be:

1. 1/2": 6'-0"
2. 3/4"-1": 8'-0"
3. 1-1/4" and larger: 10'-0"

D. At least one hanger shall occur within two feet (2'-0") from where a change in direction takes place in the line. Where pipes extend down or up to other floors, pipe clamps shall be provided on each floor to support pipe. Equal manufacturers for hangers and clamps are B-Line Systems, Anvil International, Fee and Mason, PHD Manufacturing, or approved equal.

E. Piping on roofs shall be supported every six feet on piping 1/2" size, eight feet on piping 3/4" – 1" size, and ten feet on piping 1-1/4" and larger, and at each change in direction, with manufactured adjustable height stainless steel pipe stands with integral pipe roller guides or clevis hanger for securing horizontal piping. Pipe stands shall be secured to the roof per the roofing manufacturer’s installation requirements. Pipe stands shall be Miro Industries Model 4-RAH Series or ERICO CADDY Series.

F. Pipe supports for rooftop gas piping may be painted fabricated steel pipe stands with integral pipe guides if approved by the roofing manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. All interior gas systems shall be bonded to the building’s grounding system per the requirements of NEC Section 250. A written statement bearing the names and signatures of the plumbing and electrical contractors indicating compliance with the NEC grounding requirements is to be submitted prior to project close-out.

B. A valved union shall be provided at each connection to a piece of equipment. Equipment provided with a flanged inlet shall have a flanged connection.

C. All valves installed in horizontal lines shall be installed with the stems horizontal or above.

D. All gas piping shall be graded at the maximum slope available to prevent traps. All horizontal lines shall slope to risers and from the risers to the meter or appliance.

E. Drip legs, 6" long, shall be provided in gas piping at ends of horizontal runs, at the base of risers, and at connections to equipment.

F. Provide pressure regulators at all required connections to equipment; regulators shall be provided at the pressure required by the equipment served. Extend all pressure regulator vents individually to the exterior per local code authority requirements.
G. Branch piping shall be taken off the top or sides of horizontal lines, but not from the bottom.

H. Changes in pipe size shall be made with reducing fittings. No bushings will be allowed.

I. No gas piping shall be placed underground inside the building.

J. All interior and exterior ferrous metal gas piping, fittings and supports shall be primed and painted with two (2) coats of exterior grade enamel paint unless galvanized, stainless steel, or coated CSST piping is used. The paint color shall be submitted to the Architect for approval.

K. All gas supply connections to food service equipment are to be provided with an AGA rated flexible connector with quick disconnect coupling. The flexible connector shall be 5'-0" minimum length or longer as required to allow for removal of the food service equipment item.

L. Underground Piping

1. General:
 a. Lay, align, anchor and test pipe and make-up joints. Perform excavating, cleaning, laying, jointing and backfilling as concurrently as possible to maintain uniform installation. Replace or repair damaged materials to condition equal to new material.

2. Excavation and Backfilling:
 a. Care shall be taken not to excavate below depth necessary.
 b. Do not leave unjointed piping in trench overnight. Backfill trenches by filling and tamping in not more than 6" layers after pipes, tanks, or other structures have been installed, tested and approved.

3. Pipe Crossing:
 a. Lay lower pipe, backfill with crushed stone, gravel or concrete as directed and thoroughly compact to level of upper pipe.

3.2 TESTING

A. All piping is to be inspected and purged per the requirements of NFPA 54 and the local authorities' requirements.

B. The entire gas piping system shall be tested with compressed air to 100 psi for a period of two (2) hours.

C. Defective joints or piping shall be replaced as required and the system shall then be re-tested.

END OF SECTION 22 16 00
SECTION 22 40 00 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 220000 - Plumbing General.

1.2 WORK INCLUDED

A. Receipt, unloading, handling, proper storage and protection from damage of all materials.

B. Layout and coordination of work with other trades.

C. The work under this section shall include all labor, materials, accessories, services, and equipment necessary to furnish and install the plumbing fixtures, trim and supports, complete as indicated on the Drawings and as specified herein.

PART 2 - PRODUCTS

2.1 GENERAL

A. All fixtures shall be white, unless otherwise indicated.

B. All water closets shall have fully glazed trapways.

C. All exposed trim to be heavy polished chrome plated brass, unless otherwise indicated. Chrome plated escutcheons are to be provided on all exposed fixture and food service equipment supplies and waste lines.

D. Electric water coolers shall be ARI Certified and shall carry a UL Listing. Units shall use refrigerant which is approved for use without ozone depleting properties. All waterway components are to be certified as lead free.

E. All sinks and lavatories for use by the disabled shall have manufactured insulation shields on all supplies and P-traps per ADA requirements unless the vanities are provided with ADA compliant shrouds.

F. All exposed plumbing fixture items such as faucets and flush valves shall be provided with vandalproof trim.
2.2 CLEANOUTS

A. Cleanouts on exposed piping in unfinished areas shall be heavy duty cast iron with countersunk plug. Cleanouts shall be Jay R. Smith Figure 4220 or approved equal.

B. Cleanouts installed behind walls in finished areas shall be cast iron ferrule type for no-hub or service weight pipe with nickel bronze round frame and cover with securing screws. Cleanouts shall be Jay R. Smith Figure 4472T or approved equal.

C. Cleanouts installed in concrete floors shall be cast iron type with gasket seal ABS plug round adjustable ductile iron cover with securing screw and Speedi-Set outlet connection. Cleanouts shall be Jay R. Smith Figure 4231L-M or approved equal.

D. Cleanouts installed in tile floors shall be cast iron type with gasket seal ABS plug for easy removal, adjustable round nickel bronze top recessed for tile with securing screw and Speedi-Set outlet connection. Cleanouts shall be Jay R. Smith Figure 4151L or approved equal.

E. Cleanouts installed in carpeted areas shall be cast iron type with gasket seal ABS plug, nickel bronze round frame and cover with carpet marker. Cleanouts shall be Jay R. Smith 4031-Y or approved equal.

2.3 PLUMBING FIXTURES

A. The following is a list of acceptable manufacturers for the project:

1. Fixtures: American Standard, Kohler, Toto
2. Faucets: American Standard, Chicago Faucets, Kohler, Moen, Speakman, Symmons and Zurn
3. Stainless Steel Sinks: Elkay, Just, Kohler
4. Trim: American Standard, Brasscraft, Kohler, McGuire and Zurn
5. Drains, Carriers and Hydrants: Josam, Mifab, Prier, Jay R. Smith, Wade and Zurn

B. Plumbing fixtures shall be as scheduled on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. All wall hung fixtures shall be supported on concealed chair carriers furnished complete with all necessary bolts, nuts, washers and gaskets unless noted otherwise. The adjustable nipple between the cast iron fitting and the closet bowl shall be threaded cast iron. Secure all floor pieces to floor slab.
B. All exposed piping in connection with fixtures shall be chromium plated. Where supply and waste lines pass through walls, provide chromium plated escutcheons and firmly secure in place.

C. Provide straight or angle supply valves on inlet supplies to all fixtures.

D. Fixtures, trim and methods of piping and installation shall conform to local plumbing code. All fixture types shall be the product of one manufacturer. All fixtures shall be white unless otherwise noted.

E. Fixtures shall be cleaned, adjusted and left in proper working order before the project is turned over to the Owner. Flush and clean all faucet aerators prior to turn over. Adjust all faucet lever handles to be parallel to adjacent rear wall in the off position.

F. The Contractor shall furnish and install protective guards as required to protect fixtures against damage by normal operations of other trades. Bathtubs shall be provided with tub liners at all times during construction.

G. Caulk all floor and counter top mounted fixtures and behind all wall-hung plumbing fixtures with white, non-shrinking, silicone caulking eliminating all voids and cracks.

H. Coordinate the mounting height of all fixtures with the Architect prior to installation.

I. The Contractor shall obtain exact information relative to finish grade of the top of the floor drains. All floor drains shall be set flush with finished floors.

J. Cleanouts shall be provided where indicated on drawings and elsewhere as required by code.

K. Where test tees are installed at the base of the stack or on the stack, they may be used as a cleanout.

L. Provide the Owner with three (3) wrenches for removing flush cleanout plugs.

END OF SECTION 22 40 00
SECTION 23 00 00 - HVAC GENERAL

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. Refer to Division 1 - General Requirements and any and all Supplementary or Special Requirements, all of which apply to work described in Division 23 - HVAC as if written in full herein.

B. The scope of work described in these Specifications and/or indicated on the Drawings shall include the furnishing of all materials, equipment, appurtenances, accessories, connections, labor, etc. required and/or necessary to completely install, clean, inspect, adjust, test, balance and leave in safe and proper operating condition all HVAC systems. All HVAC work shall be accomplished by workmen skilled in the various trades involved.

C. The Drawings and Specifications are complementary to each other and what is called for by one shall be as binding as if called for by both. If a discrepancy exists between the Drawings and Specifications, the higher implied cost shall be included in the bid, and the Architect shall be notified of the discrepancy in writing.

1.2 CODES AND STANDARDS

A. All HVAC work shall conform to all ordinances and regulations of the City, County and State where the work will take place, including the requirements of all authorities having jurisdiction. The following codes, standards and references shall be observed as a minimum:

1. The 2012 International Codes
2. State Amendments to the Code
3. National Fire Protection Association (NFPA) Standards and Guidelines
4. Local and State Fire Marshal requirements
5. Local Building and Inspection Department requirements
6. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE)
 d. Other Standards and Guidelines as applicable
7. Sheet Metal and Air Conditioning Contractors’ National Association, Inc. (SMACNA) Manuals
8. Underwriters Laboratories Inc. (UL)
9. Americans with Disabilities Act (ADA)
B. If Code or other requirements exceed the provisions shown on the Contract Documents, the Engineer shall be notified in writing. Where requirements of the Contract Documents exceed Code requirements, work shall be furnished and installed in accordance with the Contract Documents. Any work done contrary to these requirements shall be removed and replaced at the Contractor's expense.

1.3 WORK INCLUDED

The HVAC Systems installed and work performed under this Division of the Specifications shall include, but not necessarily be limited to:

A. Airside Systems
 1. Equipment: including fans, unitary air conditioners, air handling units, fan-coil units, make-up air units, dedicated outdoor air units, furnaces, split systems, etc.
 2. Ductwork and Accessories: including sheet metal, duct-board, kitchen hood and dishwasher exhausts, flexible ductwork, fire and smoke dampers, access doors, etc.
 3. Air Terminal Devices: including powered induction units, variable air volume valves, etc.
 4. Air Distribution Devices: including louvers, registers, grilles, diffusers, etc.

B. Refrigerant and Water Systems
 1. Equipment: including pumps, air separators, expansion tanks, water chillers, cooling towers, heat exchangers, boilers and space heating water heaters, feed-water systems, condensing units, etc.
 2. Piping, Tubing and Accessories: including pipe, refrigerant tubing, valves, solenoids, thermal expansion valves, strainers, air vents, pipe and equipment drains, condensate drains, etc.

C. Equipment, Ductwork and Piping Supports
 1. Equipment Mounts: including roof curbs, concrete housekeeping pads, equipment rails, miscellaneous steel, etc.
 2. Hangers and Support Devices: including inserts, hanger rods, unistrut, cross-bracing, anchor bolts, pipe anchors, restraints, etc.
 3. Vibration Isolation and seismic restraint: including inertia bases, flexible couplings, expansion devices, snubbers, springs, waffle pads, seismic restraints, etc.

D. Insulation
 1. Ductwork Insulation: including exterior duct wrap, internal duct liner, fire wrap, etc.
 2. Piping and Equipment Insulation: including preformed, board and wrap.

E. Miscellaneous HVAC Equipment: Unit heaters, wall heaters, roof hoods, heat tracing, etc.
F. Automatic Temperature Controls

1. Decentralized: including all thermostats, control dampers, control valves, programmable controllers, line and low-voltage wiring, smoke detectors, pressure sensors, gas sensors, control logic, etc.

2. Building Automation System (BAS): same as above but networked to a central human-machine computer interface, including all software and programming, display graphics, etc.

G. Labor and Equipment: including project management, supervision, tradesmen, lifts, fork-trucks, cranes, scaffolding, saws, wrenches, etc.

H. Equipment and Valve Identification

I. Start-up and Commissioning

J. Demonstration and Owner Training

K. Testing, Adjusting and Balancing

1.4 ENGINEER’S DRAWINGS

A. The locations, arrangement and extent of equipment, devices, ductwork, piping, and other appurtenances related to the installation of the HVAC work shown on the Drawings are approximate and define the intent of the design. The Contractor shall not scale Engineer’s Drawings, but shall refer to the architectural drawings for exact dimensions of building components. Should a conflict exist between the architectural and engineering drawings regarding dimensions and scale, the Contractor shall notify the Architect of the discrepancy.

B. Materials, equipment or labor not indicated but which can be reasonably inferred to be necessary for a complete installation shall be provided. Drawings and Specifications do not undertake to indicate every item of material, equipment, or labor required to produce a complete and properly operating installation.

1.5 EQUIPMENT, MATERIALS AND BID BASIS

A. Manufacturers’ names, model numbers, etc. cited on the Drawings and in the Specifications are for the purpose of describing type, capacity, function and quality of equipment and materials required. All project design and coordination between disciplines has been performed as if the named manufacturer and specific piece of equipment will be provided to the project by the Contractor.

B. Alternate equipment and/or materials other than that named on the Drawings and in the Specifications may be proposed for use, but all equipment and materials shall conform entirely to the specified base items. Proposed alternate equipment shall be substantially equal in size, weight, construction and capacity. Alternate equipment and materials shall be submitted only as full equivalent to the
equipment and materials specified, with sufficient supportive documentation and technical literature to demonstrate quality, performance, and workmanship without doubt or question. Requests for prior approval of alternate products shall be made at least ten (10) days prior to the bid date and as required by Division 1 - General Requirements. The Engineer shall consider the use of the alternate equipment based on the supportive documentation made available to him, and shall approve or disapprove any proposed alternates. The decision of the Engineer shall, in all cases, be final.

C. The Contractor shall coordinate the installation of all HVAC equipment proposed for use in this project with all building trades (architectural, structural, electrical, etc.). Coordination shall be accomplished prior to, and shall be reflected in, the equipment submittals for approval. When the Contractor requests substitution of alternate equipment, it is with the knowledge that he shall be responsible for any and all costs required by the substitution, including necessary engineering and construction revisions in his or any other contract or trade to satisfy the design intent shown on the Plans and described in the Specifications.

D. All materials exposed within HVAC plenums shall have a flame-spread index of not more than 25 and a smoke-developed rating index of not more than 50 unless otherwise allowed by code.

1.6 SUBMITTALS

A. The Contractor shall prepare, submit and obtain Engineer’s review of all manufacturers’ data on the HVAC equipment and systems prior to ordering, purchasing or installing any equipment or materials. Six (6) hard copies of the complete submittal are required, five of which will be reviewed and returned by the engineer. Electronic submittals (e.g. .pdfs, etc.) may be acceptable, if approved by the architect and described in Division 1 - General Requirements. All submittals shall be transmitted simultaneously in hard ring binders (or in a single .zip file), with the associated specification sections cited and the items submitted clearly identified. Partial submittals will be returned without review. Submittals, as a minimum, shall include:

1. All HVAC items scheduled on the Drawings
2. Equipment arrangement, ductwork and piping drawings. Contractor drawings shall be prepared at a minimum scale of 1/8" = 1'-0". A scale of 1/4" = 1'-0" scale is preferred. Drawings shall be indicative of actual equipment purchased and shall show all offsets, transitions, fittings, dampers, valves, hanger locations, etc. Sections are required in spatially tight areas (e.g. kitchens, laundries, central plants, mechanical rooms, etc.) The following will guide the Contractor as to minimum drawing detail required:
 a. Clearly indicate top and bottom of duct and pipe elevations. All elevations shall be coordinated as to not conflict with structural, plumbing, electrical and architectural trades.
 b. Indicate all offsets (both vertical and horizontal).
 c. Indicate graphically all duct and pipe joints and their lengths.
d. Submit duct and pipe-work fabrication schedule indicating duct size range with minimum duct material gauges, pipe schedule being used, duct and pipe connection joint types, section lengths, duct reinforcement type and spacing, etc.

e. Indicate graphically all ductwork to be fabricated with internal duct liner.

f. Indicate all insulation for ductwork and piping.

g. Indicate all dampers and valves as shown on design documents and called for in the specifications.

h. Indicate all flexible connectors where required by specifications and notes.

3. Flexible ductwork, duct-board, insulation and linings
4. Dampers, louvers, air distribution devices
5. Manufacturer’s cut sheets of all piping and tubing materials
6. Where split systems are used in a “long line application,” submit manufacturer’s refrigerant line set routing drawings and engineered calculations supporting the recommended suction and liquid line sizes. Identify and provide cut sheets of any and all accessories required to make the system complete, functional and reliable.

7. Refrigerant type and charge (lbs.) for each item of equipment utilizing refrigerant.

8. Valves, thermometers, pressure gauges

9. Roof curbs, equipment supports, hanger systems, vibration isolators, seismic restraints

10. Control equipment, systems and diagrams

11. Test and balance reports

B. All submittal approvals required by any code or enforcement authority, insurance underwriter, etc. shall be obtained prior to being submitted to the Engineer.

C. Review of submittals by the Engineer does not relieve the Contractor from responsibility for complying with all requirements of the Contract Documents. Furthermore, it shall be the responsibility of the Contractor to coordinate the requirements (roof penetrations, wall penetrations, floor penetrations, curbs, electrical, etc.) of all approved equipment with the other trades and disciplines.

D. All submittals shall be identified by the equipment mark or tag identification numbers shown on the Contract Drawings. Each individual submittal item shall be marked to show which specification section pertains to the item.

E. The Contractor shall provide a written statement confirming coordination of voltage requirements for all HVAC equipment requiring an electrical connection. Statement shall bear the names and signatures of the HVAC and electrical contractors. A photocopied reproduction of the below statement is acceptable.
VOLTAGE COORDINATION STATEMENT

This statement is to confirm that the voltages of the equipment provided under this specification have been coordinated with the Electrical Drawings, as well as with the Electrical Contractor.

HVAC Contractor: ____________________________
Project Manager Name: _______________________
Project Manager Signature/Date: ________________

Electrical Contractor: _________________________
Project Manager Name: _______________________
Project Manager Signature/Date: ________________

F. Provide Material Safety Data Sheet (MSDS) or letter from manufacturer certifying the VOC content for each adhesive, sealant, paint and coating.

G. VOC Content: Submit adhesive and sealants product information or MSDS showing VOC Content information for all applicable products specified under this section. All applicable products in this section must meet low VOC content as specified by LEED Specification Section 018113 Sustainable Design Requirements.

1.7 PERMITS

A. The Contractor shall obtain all permits and inspections required for the installation of the HVAC work and pay all charges incident thereto. He shall deliver copies of all certificates of permit and inspection to the Architect.

1.8 COORDINATION OF TRADES

A. The Contractor shall give full cooperation to other trades, and shall furnish all information necessary to permit the work of all trades to be installed satisfactorily and with the least possible interference or delay.

B. Piping and other HVAC equipment shall not be installed without first coordinating the installation of same with other trades. The Contractor, at his own expense, shall relocate all uncoordinated ductwork, piping and other HVAC equipment installed should they interfere with the proper installation and mounting of electrical, plumbing equipment, ceilings and other architectural or structural finishes.
C. The Contractor shall coordinate the elevations of all ductwork, piping and equipment above ceilings and in exposed areas with the work of all other disciplines prior to installation.

D. In areas where more than one trade is required to use common openings in beams, joists, chases, shafts and sleeves for the passage of conduits, raceways, piping, ductwork and other materials, the Contractor must coordinate the positions of all piping and equipment to be furnished under this section so that all items including the materials and equipment of other trades may be accommodated within the space available.

E. The HVAC Contractor shall confirm that his work does not interfere with the clearances required for finished columns, pilasters, partitions, walls or other architectural or structural elements as shown on the Contract Documents.

F. Work that is installed under this Contract which interferes with the architectural design or building structure shall be removed and relocated as required at no additional cost to the Contract.

1.9 OPERATION AND MAINTENANCE MANUALS

A. The Contractor shall prepare a minimum of two (2) instruction manuals, one of which shall be submitted to the Architect for the Engineer’s review. Manuals shall describe installation, operation and maintenance of all HVAC equipment and shall include copies of control schematics, sequences of operation, function and operations of all components, as well as the Contractor’s name, address, and telephone number. Manuals shall also contain one copy of all manufacturers’ drawings, pamphlets, data, parts lists, and instruction manual for each piece of equipment. Upon approval, one copy shall be delivered to the Owner; one copy shall be kept by the Contractor. The pamphlets and drawings are to be neatly bound in (a) 3-ring binder(s).

1.10 AS-BUILT DRAWINGS

A. The Contractor shall maintain a record of all changes in the work from that shown in the Contract Documents. The record shall be by red-line mark-up on the most current set of Engineer’s Drawings kept in the field office. After all work is completed, the Contractor shall prepare a set of “as-built” reproducible drawings of similar type and quality as the Engineer’s Drawings. As-built drawings shall accurately depict actual final arrangement of all HVAC items. As-built drawings shall be delivered to the Architect.

1.11 WARRANTY

A. All equipment furnished and installed under this Contract shall be provided with the manufacturer’s standard warranty unless otherwise noted.

B. All reciprocating and scroll air conditioning compressors shall be provided with an extended 5-year parts warranty.
C. The Contractor shall make good all defects in material, equipment, or workmanship disclosed within a period of one (1) year from date of building acceptance by the Owner. The phrase "make good" shall mean to furnish promptly, without charge, all work necessary to remedy the defects to the satisfaction of the Engineer.

PART 2 - PRODUCTS

2.1 GENERAL

A. All equipment, materials, accessories, etc. used shall be new and of current production unless specified otherwise. Equipment not specified in the Engineer's Drawings shall be suitable for the intended use and shall be subject to approval by the Engineer.

B. All equipment, products and materials shall be free of defects and shall be constructed to operate in a safe manner without excessive noise, vibration, leakage, or wear.

C. All equipment shall bear the inspection Label of Underwriters Laboratories Inc.

D. All equipment and material for similar applications or systems shall be provided from the same manufacturer unless noted otherwise.

E. The VOC content of all products in this section shall not exceed the VOC limits established in Section 018113 Sustainable Design Requirements.

F. VOC Content: Submit adhesive and sealants product information or MSDS showing VOC Content information for all applicable products specified under this section. All applicable products in this section must meet low VOC content as specified by LEED Specification Section 018113 Sustainable Design Requirements.

2.2 ELECTRICAL WORK

A. Except as otherwise specified or noted, electrical equipment used for HVAC systems shall be as specified herein.

B. Motor controls, system controls, starters, disconnects, pilot lights, push buttons, etc. shall be furnished by the HVAC Contractor compatible with the apparatus that it operates. Electrical equipment shall be wired for the voltage shown on the Electrical Engineer's Drawings.

C. Electric motors shall be high efficiency, open drip-proof type unless otherwise specified. Motors shall be standard NEMA continuous duty type and shall bear the UL Label. Motors shall be selected with a minimum of 15% safety factor greater than the fan brake/horsepower (e.g. 4.75 BHP would require a nominal 7-1/2 HP motor). The motor service factor shall not be used as part of the safety
factor. All motors shall have thermal overload protection. Motors shall meet Table MG-1-12C of EPACT 1992.

D. Motors controlled by a variable frequency drive (VFD) shall be inverter duty rated and fully compatible with the VFD provided.

E. Starters for motors 1/3 HP and smaller shall be manual type, and for 1/2 HP and larger, shall be magnetic type. Starters shall be minimum size 0, combination type (with disconnect and lockable handle) with molded case circuit breaker. Starters for motors with remote or automatic control shall be magnetic. Relays, interlocks and auxiliary contacts shall be provided as specified and required.

F. Magnetic motor starters shall be across-the-line, full voltage, non-reversing type unless otherwise indicated on the Drawings or specified herein. Starters for motors 75 HP and greater shall be solid state, reduced voltage type.

G. Motor controls shall be either “Hand-Off-Auto” switches or “On-Off” push buttons with one indicating light. “Hand-Off-Auto” switches shall be provided for automatically controlled apparatus.

H. Motor starters that are not an integral part of HVAC equipment shall be installed in conformance with Division 26 - Electrical requirements.

I. All “loose” disconnects and starters shall be installed by Division 26.

J. Power wiring to disconnects, starters, and equipment shall be provided and installed by Division 26. All equipment requiring electrical power shall be provided with disconnect switches at each piece of equipment. Coordinate switch type (fused or non-fused) with equipment characteristics, manufacturer’s recommendations and electrical drawings.

K. The Contractor shall provide all system controls, control and interlock wiring 120 volts and less in conduits and in accordance with materials and installation requirements of Division 26 - Electrical.

L. All starters shall be labeled on the face of the starter with a semi-rigid plastic laminate nameplate with 1" high white letters on a black background securely affixed to the equipment. The label shall indicate equipment served by the starter (equipment tag used on the Drawings). Labels shall be furnished and installed by the Contractor.

M. All starters for 3-phase equipment shall have overload devices in each phase.

N. Wiring diagrams shall be furnished by the Contractor.

O. Acceptable manufacturers shall be General Electric, Square D, Eaton, Siemens and Allen Bradley.
2.3 AIR FILTERS

A. All filters shall be U.L. 900 classified.

B. Filters shall be pleated disposable type (MERV 6 minimum) unless specified otherwise.

C. Install one set of new filters in air handling equipment during construction and install a new set prior to test and balance. Fan powered induction units shall have a temporary roll filter media installed at the plenum air inlet during construction. Remove temporary filter media prior to test and balance. Clean and vacuum all inlets prior to test and balance.

D. Temporary roll filter media shall be provided at the inlets to all air handling equipment operated during construction. Remove temporary filter media prior to test and balance. Clean and vacuum all inlets prior to test and balance.

PART 3 - EXECUTION

3.1 GENERAL

A. All equipment and materials shall be completely installed, adjusted, and fully operational with all accessories and connections.

B. Equipment, piping, ductwork, etc. shall fit into the spaces provided in the building and shall be installed at such time and in such a manner as to avoid damage and as required by the job progress. The Contractor shall coordinate work with other trades and locate work described herein to avoid interferences with structural, electrical and architectural work. Equipment, accessories and similar items requiring normal servicing or maintenance shall be accessible.

C. The Engineer reserves the right to direct the removal of any item which, in his opinion, does not present an orderly and reasonably neat or workmanlike appearance. Such removal and replacement shall be done when directed by the Engineer and without additional cost to the Owner.

D. Listed mounting heights are to the finished bottom of the device unless otherwise noted.

E. All work shall be designed and installed to comply with the requirements for the seismic design category and use group for the area in which the building is constructed.

3.2 STORAGE AND PROTECTION OF MATERIALS

A. During construction, all equipment shall be properly protected against damage, defacing and freezing with shipping cartons, plastic sheeting, shipping covers, etc.
B. All open ends of piping and equipment shall be sealed with nipples and caps, plugs, and test plugs until final connection to system is made.

C. All equipment, piping and ductwork shall be protected to prevent entrance of foreign matter and debris by covering exposed openings during construction.

D. Handle and store materials in accordance with manufacturer’s and supplier’s recommendations and in a manner to prevent damage to materials during storage and handling. Replace damaged materials.

E. Equipment and materials shall not be installed until such time as the environmental conditions of the job site are suitable to protect the equipment or materials. Equipment or materials damaged or which are subjected to these elements are unacceptable and shall be removed from the premises and replaced.

3.3 CUTTING AND PATCHING

A. The work shall include all cutting and patching required as part of the HVAC installation. Refer to Division 1 - General Requirements.

3.4 CONCRETE WORK

A. Construct curbs, pads and similar supports for equipment where required.

B. Provide 4” thick housekeeping pads for all floor mounted equipment, extending 6” beyond the area occupied by the equipment. Dowel pads to structural slab.

C. Perform concrete work in accordance with applicable portions of Division 3 - Concrete. Minimum compressive strength of concrete shall be same as specified for slabs on grade.

D. Mix and install grout for HVAC equipment base bearing surfaces and anchors. Provide forms as necessary and place grout to completely fill equipment bases.

3.5 EQUIPMENT SUPPORTS

A. Major equipment supports (structural steel frames, framed structural slab and wall openings, etc.) shall be furnished and installed by others; however, the HVAC work shall include furnishing and installation of all miscellaneous equipment supports, structural members, rods, clamps and hangers required to provide adequate support of all HVAC equipment.

B. Unless otherwise shown on the Drawings, all HVAC equipment, piping, and accessories shall be installed level, square, and plumb.

C. All equipment, piping, etc. supported by structural bar joists shall be supported only by the top chord of the joists. Hangers shall not be attached to the bottom chord of any joists.
3.6 PIPE AND DUCTWORK PENETRATIONS

A. Sleeves shall be installed in all masonry or concrete walls, floors, roofs, etc. for pipe and ductwork penetrations. Sleeves for pipe shall be schedule 40 black steel. Sleeves for ductwork shall be 20-gauge galvanized steel. Sleeves shall be sized to provide a minimum of 1/4” clearance between the sleeve and pipe or duct. For insulated pipes or ducts, the clearance shall be between the sleeve and the insulation.

B. As far as possible, all pipe and ductwork penetrations shall be provided for at the time of masonry or concrete construction. Where drilling is required, only core drills shall be used. Star drills shall not be used.

C. All pipes penetrating walls or floors of any construction shall be installed with escutcheon plates on both sides of the penetration securely fastened to the wall or floor. In exposed areas, escutcheon plates shall be chrome plated. All escutcheon plates shall be sized to completely conceal the penetration.

D. Ductwork penetrating walls or floors of any material shall be installed with closure plates on both sides of the penetration. Pipe penetrations through exterior walls shall be sealed weather-tight with expandable link type seals by Thunderline, Linkseal, or Engineer approved equal.

E. All pipe and duct penetrations of fire, smoke, or fire and smoke-rated assemblies shall be fire-stopped as required to retain the integrity of the UL-rated assembly. Fire barrier products shall be as manufactured by Tremco, Hilti, 3M, Metacaulk, Nelson, or approved equal. Refer to Division 7 - Thermal and Moisture Protection.

3.7 FLASHING

A. All piping and ductwork penetrating roofs shall be flashed in an approved manner, shall be watertight, and shall conform to the requirements detailed in Division 7 - Thermal and Moisture Protection.

3.8 EQUIPMENT LABELING

A. All HVAC equipment shall be labeled. This shall include all central plant, air handling or air conditioning equipment, air terminals, and other similar and miscellaneous equipment.

B. Labels for air terminals or other devices shall be located for optimum visibility through access panel or removed ceiling tiles.

C. Equipment labeling shall be one of the following, unless noted or specified otherwise:

1. Permanently attached plastic laminated signs with 1” high lettering
2. Stencil painted identification, 2" high letters, with standard fiberboard stencils and standard black (or other appropriate color) exterior stencil enamel

3.9 VALVE TAGS

A. Each valve in the HVAC system is to be provided with an individually numbered valve tag.

B. Valve tags are to be brass or plastic laminate, 1½" minimum diameter with brass chain and hook for securing to the valve.

C. Valve tags will include a designation to indicate the appropriate system. Numbering shall be consecutive for each service of the hot, chilled, steam, condensate return, or condenser water systems.

D. A printed list or schematic drawing shall be compiled for each system indicating the location and detailed description of the system or equipment served.

E. One (1) copy of each list shall be framed and mounted at the location designated by the Building Engineer. An additional copy of each list is to be included in the Operations and Maintenance Manual.

3.10 CLEANING

A. At all times, the premises shall be kept reasonably clean and free of undue amounts of waste, trash and debris by periodic cleaning and removal. After completion, all foreign material, trash and other debris shall be removed from the job site.

B. After all equipment has been installed, but prior to testing and balancing, all equipment, piping, ductwork, etc. shall be thoroughly cleaned both inside and out.

C. All water piping shall be chemically flushed and cleaned prior to circulating water through equipment.

D. After cleaning, filters shall be installed where required and all systems shall be tested and balanced.

E. After testing and balancing and just prior to Owner review and acceptance, all systems shall be finally cleaned and left ready for use.

3.11 PAINTING

A. Painting will be done under Division 9 - Painting except as otherwise noted, but the HVAC Contractor shall leave all surfaces of work free of rust, dirt and grease.
B. The HVAC Contractor shall touch-up any equipment scratched in shipment or during installation to match original finish. Touch-up painting of HVAC equipment shall be part of the HVAC work.

C. Any visible ductwork through grilles, registers and diffusers shall be painted flat black.

D. Provide one coat of rust preventive primer on all new structural steel supports and new ferrous surfaces not galvanized, including HVAC piping. Rust preventive painting shall be part of the HVAC work. Rust preventive paint shall be “Rust Destroyer” by Advanced Protective Products, Inc., Fairlawn, NJ, (201) 794-2000. Product shall have a 5-year warranty when applied directly over rust. Clean and prepare surface per manufacturer’s recommendations.

E. All painting and coating shall match the original finish and shall conform to the requirements detailed in Division 9 - Finishes.

F. Do not paint over equipment nameplates, nonferrous hardware, accessories or trim.

3.12 PRESSURE TESTING

A. Unless otherwise specified herein, all HVAC piping shall be tested as required by Code to 1-1/2 times the rated system pressure or 100 psig, whichever is greater. Care shall be taken to isolate all equipment not suitable for this test pressure by installing pipe caps or blank flanges at the equipment connections. All valves and fittings shall be tested under pressure.

3.13 PERFORMANCE AND DEMONSTRATION TESTS

A. All testing and demonstration of any and all HVAC systems required for acceptance by any authorities having jurisdiction shall be included as part of the HVAC work. This shall include the furnishing of any and all testing equipment, smoke generation devices, and any other required equipment or accessories, and all necessary labor required to perform any required tests or demonstrations. The Contractor shall coordinate and verify all devices, equipment and sequence of testing and/or events with such authorities having jurisdiction. The Contractor shall perform a minimum of two (2) satisfactory preliminary tests or demonstrations prior to any formal tests and/or demonstrations for any code authorities, and shall give a minimum of five (5) days advance notice to the Engineer of any and all preliminary tests and/or demonstrations, indicating the date and time of such tests.
3.14 TRAINING

A. Upon completion of the work, the Contractor shall conduct operation and training session(s) for the Owner's key operating personnel. These sessions shall be of sufficient length and duration to adequately explain the design intent and proper operating and maintenance techniques for all HVAC equipment and systems. After these sessions are completed, the Contractor shall provide a copy of a signed statement by the Owner that his personnel are thoroughly familiar with and capable of operating all HVAC equipment and systems.

END OF SECTION 23 00 00
SECTION 23 02 00 - HVAC DEMOLITION, ADDITIONS & RENOVATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Refer to specification section 23 00 00 - HVAC General, all of which applies to work described in this section as if written in full herein.

B. Furnish all labor, equipment, materials and incidentals required to remove and/or make-safe the existing equipment, pipe, fittings, valves and appurtenances indicated on the Drawings, and not required for the proper operation of the new HVAC system. Removal will be consistent with the final configuration of the new systems as indicated and as required by the Architect. The equipment and piping identified shall be removed from their present locations and shall be removed from the site or stored as specified hereinafter.

C. Perform all work required to tie-in the new work to the existing systems and to adapt the existing systems to the new work. Refer to the Engineer’s Drawings for the intended final HVAC system configuration.

D. Before removal of any electrically operated equipment, coordinate carefully to assure that power and control wiring has been disconnected and/or locked out, tagged out and made-safe.

E. It should be noted that some HVAC systems are to remain. If any of these systems are damaged during the progress of construction or demolition, they shall be repaired or replaced to the satisfaction of the Architect without incurring additions to the Contract.

PART 2 - PRODUCTS - Not Applicable

PART 3 - EXECUTION

3.1 GENERAL

A. Prior to the ordering or purchasing of any equipment or materials or the layout or installation of any new work, the Contractor shall examine the premises and verify any and all of the existing conditions under which he will be obliged to operate, or that will in any manner affect the work under this Contract.

B. Unless specifically noted to be removed, existing equipment, piping, ductwork, etc. is to remain. Any equipment, piping or appurtenances removed which are necessary for the operation of the existing system shall be replaced to the satisfaction of the Architect without incurring additions to the Contract.

C. When encountered in work, protect, brace, and support existing, active services as necessary for proper execution of the work. Relocate existing, active services
encountered as necessary or as shown on the Contract Documents. Do not prevent or disturb operation of active services that are to remain. Notify all utility companies or municipal agencies having jurisdiction prior to modifying services.

D. Where work makes temporary shutdown of services unavoidable, shut down at night or at such times as approved by the Owner, which will cause the least interference with scheduled operations. Arrange work to assure that services will be shut down only during time actually required to make the connection to the existing work.

E. All ductwork, pipe, fittings, tubing, insulation, hangers and supports, etc. that are demolished or damaged shall become the property of the Contractor upon removal. The materials shall be removed immediately from the site and shall not be reused.

F. Any existing property damaged by the Contractor while performing any work shall be replaced with new materials to match existing conditions; however, any existing insulation that is damaged shall be replaced as specified for new insulation.

G. Wherever piping is removed for disposition, adjacent pipe and headers that are to remain in service shall be blanked off or plugged and then anchored in an approved manner. Piping passing through floors that is to be removed shall be cut or ground flush with the floor and filled with grout flush with adjacent floor.

H. Equipment to be retained by the Owner shall be carefully removed from the present location, cleaned, packaged and immediately stored at a place on-site as designated by the Owner.

I. The Contractor shall take all necessary precautions against damaging the material and equipment to be stored. The Contractor shall repair all damage resulting from his operations, as directed by and to the satisfaction of the Architect. Itemized lists of materials removed and stored shall be recorded and submitted to the Owner at the completion of construction. The list shall include a physical description of all items, how they are packaged and where they are stored.

J. Where work under this project requires extension, relocation, reconnection or modifications to existing equipment or systems, the existing equipment or systems shall be restored to their original and operating condition.

K. Where pipes, control devices and wiring which are to remain in service, but are disconnected for the removal or relocation of equipment or because of building alterations, they shall be reconnected.

L. All thermostats and temperature sensors that are to remain in service shall be removed and stored in a safe place or covered in plastic and protected from construction/demolition. Prior to construction, catalog all existing thermostats to be reused and verify proper operation. Notify the Architect at this time of any
inoperable thermostats. Any thermostats damaged or found to be inoperable at turnover shall be replaced by the Contractor at no additional cost.

END OF SECTION 23 03 00
SECTION 23 05 48 - NOISE AND VIBRATION CONTROL

PART 1 - GENERAL

1.1 DESCRIPTION

A. Furnish and install vibration control devices, materials, and related items. Perform all work as shown on the Drawings and as specified herein to provide complete vibration isolation systems in proper working order.

1.2 MATERIAL AND EQUIPMENT

A. Vibration isolation mounts shall be supplied by one of the following approved manufacturers:

1. Amber/Booth Co. (Houston, TX) A.B.
2. Mason Industries, Inc. (Hauppauge, NY) M.I.
3. Kinetics Noise Control, Inc. (Dublin, OH) K.N.C.
4. Vibration Eliminator Co., Inc. (Copiague, NY) V.E.
5. Vibration Mountings & Controls, Inc. (Butler, NJ) V.M.&C

B. Unless otherwise specified, supply only new equipment, parts and materials.

C. Substitutions of equal equipment beyond the alternatives listed will be permitted only with the written permission of the Architect. Accompany each request for acceptance of substitute equipment with manufacturer’s certified data proving the equivalence of the proposed substitute in quality and performance. The Architect shall be the final judge of the validity of the data submitted.

D. Unless otherwise approved by the Architect, field-installed vibration isolation equipment shall be furnished by a single manufacturer or his authorized representative, who shall also be responsible for all work specified in this section to be performed by the manufacturer.

1.3 REQUESTS FOR CHANGE

A. Any requests for changes to the specifications must be submitted in writing at least ten (10) days prior to bid closing. Approval will be given through a written addendum.

1.4 QUALITY ASSURANCE

A. Coordinate the size, location, and special requirements of vibration isolation equipment and systems with other trades. Coordinate plan dimensions with size of housekeeping pads.
B. Provide vibration isolators of the appropriate sizes, with the proper loading to meet the specified deflection requirements.

C. Supply and install any incidental materials such as mounting brackets, attachments and other accessories as may be needed to meet the requirements stated herein, even if not expressly specified or shown on the Drawings, without claim for additional payment.

D. Verify correctness of equipment model numbers and conformance of each component with manufacturer’s specifications.

E. Should any rotating equipment cause excessive noise or vibration when properly installed on the specified isolators, the Contractor shall be responsible for rebalancing, realignment, or other remedial work required reducing noise and vibration levels. Excessive is defined as exceeding the manufacturer’s specifications for the unit in question.

F. Upon completion of the work, the Architect or Architect’s representative shall inspect the installation and shall inform the installing contractor of any further work that must be completed. Make all adjustments as directed by the Architect that result from the final inspection. This work shall be done before vibration isolation systems are accepted.

1.5 SUBMITTALS

A. Refer to related sections elsewhere for procedural instructions for submittals.

B. Before ordering any products, submit shop drawings of the items listed below. The shop drawings must be complete when submitted and must be presented in a clear, easily understood form. Incomplete or unclear presentation of shop drawings may be reason for rejection.

1. A complete description of products to be supplied, including product data, dimensions, specifications, and installation instructions.

2. Detailed selection data for each vibration isolator supporting equipment, including:
 a. The equipment identification mark;
 b. The isolator type;
 c. The actual load;
 d. The static deflection expected under the actual load;
 e. The specified minimum static deflection.

3. Steel rails, steel base frames, and concrete inertia bases showing all steel work, reinforcing, vibration isolator mounting attachment method, and location of equipment attachment bolts.

4. Special details necessary to convey complete understanding of the work to be performed.

C. Submission of samples may be requested for each type of vibration isolation device. After approval, samples will be returned for installation at the job if
requested. All costs associated with submission of samples shall be borne by the Contractor.

1.6 DESIGN REQUIREMENTS

A. Design isolators for equipment installed outdoors to provide adequate restraint to withstand the force as required by code to any exposed surface of the isolated equipment. Isolators for outdoor equipment shall have bolt holes for attachment to equipment and to supports. The vibration isolation Vendor shall submit verifying shear and over turning calculations, for their product and equipment installation arrangement, stamped by a licensed Professional Engineer. The design and supply of miscellaneous support steel above and below isolators will not be the responsibility of the vibration isolation manufacturer.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATOR TYPES

A. General

2. Isolators installed out-of-doors shall have base plates with bolt holes for fastening the isolators to the support members.

3. Isolator types are scheduled to establish minimum standards. At the Contractor's option, labor-saving accessories can be an integral part of isolators supplied to provide initial lift of equipment to operating height, hold piping at fixed elevations during installation and initial system filling operations, and similar installation advantages. Accessories and seismic restraint features must not degrade the isolation performance of the isolators.

4. Static deflection of isolators shall be as provided in the EXECUTION section and as shown on the Drawings. All static deflections stated are the minimum acceptable deflection for the mounts under actual load. Isolators selected solely on the basis of rated deflections are not acceptable and will be disapproved.

B. Type FSN (Floor Spring and Neoprene)

1. FSN isolators shall be freestanding and laterally stable without any housing. Spring diameter shall be not less than 0.8 of the compressed height of the spring at the rated load. Springs shall have a minimum additional travel-to-solid equal to 50% of the rated deflection. Springs shall be so designed that the ratio of horizontal stiffness to vertical stiffness is approximately 1. Mounts shall have leveling bolts.

2. The spring element in the isolator shall be set in a neoprene cup and have a steel washer or a flat surface in contact with the neoprene to distribute the load evenly over the bearing surface of the neoprene. Alternatively, each isolator shall be mounted on a Type NP isolator. If the
NP isolator is used, a rectangular bearing plate of appropriate size shall be provided to load the pad uniformly within the manufacturer's recommended range. If the isolator is to be fastened to the building and the NP isolator is used, the holes in the isolator base plate shall be oversized and GROMMETS shall be provided for each base plate bolt hole.

3. If the basic spring isolator has a neoprene friction pad on its base and an NP isolator is to be added to the base, a galvanized steel, stainless steel or aluminum bearing plate shall be used between the friction pad and the NP isolator. If the isolator is outdoors, bearing plates shall not be made of galvanized steel. The NP isolator, bearing plate and friction pad shall be permanently adhered to one another and to the bottom of the isolator base plate.

4. Type FSN isolators shall be one of the following products with the appropriate neoprene pad (if used) selected from Type NP or approved equal:
 a. Type SW A.B.
 b. Type SLF M.I.
 c. Type FDS K.N.C.
 d. Type OST V.E.
 e. Series AC V.M.&C.

C. Type FSNTL (Floor Spring and Neoprene Travel Limited)

1. FSNTL isolators shall be freestanding and laterally stable without any housing. Spring diameter shall be not less than 0.8 of the compressed height of the spring at the rated load. Spring shall have a minimum additional travel-to-solid equal to 50% of the rated deflection. Springs shall be so designed that the ratio of horizontal stiffness to vertical stiffness is approximately 1. Mounts shall have leveling bolts. Mounts shall have vertical travel limit stops to control extension when weight is removed. The travel limit stops shall be capable of serving as blocking during erection of the equipment. A minimum clearance of 1/4" shall be maintained around restraining bolts and between the limit stops and the spring to avoid interference with the spring action.

2. The spring element in the isolator shall be set in a neoprene cup and have a steel washer or a flat surface in contact with the neoprene to distribute the load evenly over the bearing surface of the neoprene. Alternatively, each isolator shall be mounted on a Type NP isolator. If the NP isolator is used, a rectangular bearing plate of appropriate size shall be provided to load the pad uniformly within the manufacturer's recommended range. If the isolator is to be fastened to the building and the NP isolator is used, the holes in the isolator base plate shall be oversized and GROMMETS shall be provided for each base plate bolt hole.

3. If the basic spring isolator has a neoprene friction pad on its base and an NP isolator is to be added to the base, a galvanized steel, stainless steel or aluminum bearing plate shall be used between the friction pad and the NP isolator. If the isolator is outdoors, bearing plates shall not be made of galvanized steel. The NP isolator, bearing plate and friction pad shall
be permanently adhered to one another and to the bottom of the isolator base plate.

4. Type FSNTL isolators shall be one of the following products, with the appropriate neoprene pad (if used) selected from Type NP or approved equal:
 a. Type CT A.B.
 b. Type SLR M.I.
 c. Type FLS K.N.C.
 d. Type KW V.E.
 e. Series AWR V.M.&C.

D. Type FN (Floor Neoprene)

1. NP isolators shall be neoprene-in-shear type with steel reinforced top and base. All metal surfaces shall be covered with neoprene. The top and bottom surfaces shall be ribbed. Bolt holes shall be provided in the base and the top shall have a threaded fastener. The mounts shall include leveling bolts that may be rigidly connected to the equipment.

2. Type FN isolators shall be one of the following products or approved equal:
 a. Type RVD A.B.
 b. Type ND M.I.
 c. Type RD K.N.C.
 d. Type D44 V.E.
 e. Series RD V.M.&C.

E. Type FNC (Floor Neoprene Constrained)

1. FNC isolators shall incorporate bridge-bearing neoprene elements with all-directional restraint. The mount shall consist of a ductile iron casting containing two (2) separated and opposing molded neoprene elements. The elements shall prevent the central threaded sleeve and attachment bolt from contacting the casting during normal operation. Bolt holes shall be provided in the base and the top shall have a threaded fastener.

2. Type FNC isolators shall be one of the following products or approved equal:
 a. Type BR M.I.
 b. Series RSM V.M.&C.

F. Type PCF (Pre-compressed Fiberglass)

1. PCF isolator blocks shall be made of molded inorganic glass fiber that is individually coated and sealed with an impervious elastomeric membrane. Fiberglass shall be severely overloaded during the manufacturing process to stabilize the material into a product that is permanent and has consistent, predictable dynamic properties.

2. Type PCF isolators shall be one of the following products or approved equal:
 a. Type KIP K.N.C.
G. Type NP (Neoprene Pad)

1. NP isolators shall be one layer of 5/16" to 3/8" thick ribbed or waffled neoprene. The pads shall be sized so that they will be loaded within the manufacturer’s recommended range.

2. Type NP isolators shall be one of the following products or approved equal:
 a. Type NR A.B.
 b. Type W M.I.
 c. Type NPS K.N.C.
 d. Type 200N V.E.
 e. Series Maxi-Flex V.M.&C.

H. Type DNP (Double Neoprene Pad)

1. DNP isolators shall be formed by two layers of 1/4" to 3/8" thick ribbed or waffled neoprene, separated by a galvanized steel, stainless steel or aluminum plate. If the isolator is outdoors, the plate shall not be made of galvanized steel. These layers shall be permanently adhered together. The pads shall be sized so that they will be loaded within the manufacturer’s recommended range.

2. Type DNP isolators shall be formed from one of the following products or approved equal:
 a. Type NR A.B.
 b. Type WSW M.I.
 c. Type NPS K.N.C.
 d. Type 200N (Multilayers) V.E.
 e. Series Maxi-Flex V.M.&C.

I. Type HSN (Hanger Spring and Neoprene)

1. HSN isolators shall consist of a freestanding and laterally stable steel spring and a neoprene element in series, contained within a steel housing. Spring diameters and hanger housing lower hole sizes shall be large enough to permit the hanger rod to swing through a 30 degrees arc before contacting the housing. Alternatively, other provisions shall be made to allow for a 30 degrees arc of movement of the bottom hanger rod without contacting the isolator housing. Spring diameter shall be not less than 0.8 of the compressed height of the spring at the rated load. Spring elements shall have a minimum additional travel-to-solid equal to 50% of the rated deflection. The neoprene element shall be designed to have a 0.3" minimum static deflection. The deflection of both the spring element and the neoprene element shall be included in determining the overall deflection of Type HSN isolators.

2. A pre-compressed glass fiber element may be substituted for the neoprene element.

3. Type HSN isolators shall be one of the following products or approved equal:
 a. Type BSR-A A.B.
 b. Type 30N M.I.
c. Type SRH or SFH K.N.C.
d. Type SNRC V.E.
e. Type RSH 30A or RSHSC V.M.&C.

J. Type HN (Hanger Neoprene)

1. HN isolators shall consist of a neoprene-in-shear element contained within a steel housing. A neoprene neck bushing shall be provided where the hanger rod passes through the hanger housing to prevent the rod from contacting the hanger housing.

2. A pre-compressed glass fiber element may be substituted for the neoprene element.

3. Type HN isolators shall be one of the following products or approved equal:
 a. Type BRD-A A.B.
 b. Type HD M.I.
 c. Type RH or FH K.N.C.
 d. Type 3C V.E.
 e. Type RHD V.M.&C.

2.2 EQUIPMENT BASES

A. Type BSR (Base - Steel Rail)

1. Steel rail bases shall consist of structural steel sections sized to provide a rigid beam that will not twist, deform, or deflect in any manner that will negatively affect the supported equipment or the vibration isolation mounts. Rail bases shall include mounting brackets for attachment of vibration isolators.

2. Type BSR bases shall be one of the following products or approved equal:
 a. Type C or CIS A.B.
 b. Type R or ICS M.I.
 c. Type KRB or KFB K.N.C.
 d. Type CS V.E.
 e. Type WFR V.M.&C.

B. Type BSF (Base - Steel Frame)

1. Steel frame bases shall consist of structural steel sections sized, spaced, and connected to form a rigid base which will not twist, rack, deform, or deflect in any manner which will negatively affect the supported equipment or the vibration isolation mounts. Frames shall be adequately sized to support basic equipment units and motors plus any associated pipe elbow supports, duct elbow supports, electrical control elements, or other components closely related and requiring resilient support in order to prevent vibration transfer to the building structure. The depth of steel frame bases shall be at least 1/10 the longest dimension of the base supported between isolators and not less than 6". The base footprint shall be large enough to provide stability for supported equipment.
2. Frame bases shall include side mounting brackets for attachment to vibration isolators. Mounting brackets shall be located on the sides of the base that are parallel to the axis of rotation of the supported equipment.

3. Type BSF bases shall be one of the following products or approved equal:
 a. Type WX A.B.
 b. Type WFSL M.I.
 c. Type SFB K.N.C.
 d. Type HB V.E.
 e. Series WFB V.M.&C.

C. Type BIB (Base - Inertia Base)

 1. Inertia bases shall be formed of stone-aggregate concrete (150 lb/cu. ft.) and appropriate steel reinforcing cast between welded or bolted perimeter structural steel channels. Inertia bases shall be built to form a rigid base that will not twist, rack, deform, deflect, or crack in any manner that would negatively affect the supported equipment or the vibration isolation mounts. Inertia bases shall be adequately sized to support basic equipment units and motors plus any associated pipe elbow supports, duct elbow supports, electrical control elements, or other components closely related and requiring resilient support in order to prevent vibration transfer to the building structure. Inertia base depth shall be at least 1/12 the longest dimension of the base supported between isolators and not less than 6". The base footprint shall be large enough to provide stability for supported equipment. Inertia bases shall include side mounting brackets for attachment to vibration isolators. Mounting brackets shall be located on the sides of the base that are parallel to the axis of rotation of the supported equipment. Concrete may be provided by the General Contractor.

 2. Frame and reinforcement for Type BIB bases shall be one of the following products or approved equal:
 a. Type CPF A.B.
 b. Type KSL or BMK M.I.
 c. Type CIB-L or CIB-H K.N.C.
 d. Type SN V.E.
 e. Series MPF or WPF V.M.&C.

2.3 RESILIENT PENETRATION SLEEVE/SEAL

 A. Resilient penetration sleeve/seals shall be field-fabricated from a pipe or sheet metal section that is 1/2" to 3/4" larger than the penetrating element in all directions around the element, and shall be used to provide a sleeve through the construction penetrated. The sleeve shall extend 1" beyond the penetrated construction on each side. The space between the sleeve and the penetrating element shall be packed with glass fiber or mineral wool to within 1/4" of the ends of the sleeve. The remaining 1/4" space on each end shall be filled with acoustical sealant to form an airtight seal. The penetrating element shall be able to pass through the sleeve without contacting the sleeve. Alternatively, prefabricated sleeves accomplishing the same result are acceptable.
2.4 RESILIENT LATERAL SUPPORTS

A. These units shall either be a standard product of the vibration isolator manufacturer, or be custom fabricated from standard components. These units shall incorporate neoprene isolation elements similar to Type FN that are specifically designed to provide resilient lateral bracing of ducts or pipes.

B. Resilient lateral supports shall be one of the following products or approved equal:

1. Type Custom A.B.
2. Type ADA M.I.
3. Type RGN K.N.C.
4. Type VERG or VPL V.E.
5. Type MDPA V.M.&C.

2.5 FLEXIBLE DUCT CONNECTIONS

A. Flexible duct connections shall be made from coated fabric. The clear space between connected parts shall be a minimum of 3", and the connection shall have a minimum of 1.5" of slack material.

2.6 FLEXIBLE PIPE CONNECTIONS

A. Flexible pipe connections shall be fabricated of multiple plys of nylon cord, fabric, and neoprene; and shall be vulcanized so as to become inseparable and homogeneous. Flexible connections shall be formed in a double sphere shape, and shall be able to accept compressive, elongating, transverse, and angular movements.

B. The flexible connections shall be selected and specially fitted, if necessary, to suit the system temperature, pressure, and fluid type. In addition, suitable flexible connections should be selected, if possible, which do not require rods or cables to control extension of the connector.

C. Connectors for pipe sizes 2" or smaller shall have threaded female union couplings on each end. Larger sizes shall be fitted with metallic flange couplings.

D. Flexible pipe connections shall be one of the following or an approved equal:

1. Type 2600 or 2655 A.B.
2. Type Twin Sphere Metraflex
3. Type MFTNC or MFTFU M.I.
4. Double Sphere Flexible Connectors V.E.
5. Series VMT or VMU V.M.&C.
2.7 THRUST RESTRAINTS

A. Thrust restraints shall consist of a spring element in series with a neoprene pad. The unit shall be designed to have the same deflection due to thrust-generated loads as specified for the isolators supporting the equipment. The spring element shall be contained within a steel frame and be designed so it can be pre-compressed at the factory to allow for a maximum of 1/4" movement during starting or stopping of the equipment. Allowable movement shall be field-adjustable. The assembly shall be furnished complete with rods and angle brackets for attachment to both the equipment and the adjacent fixed structural anchor. The thrust restraints shall be installed on the discharge of the fan so that the restraint rods are in tension. Assemblies that place the rods in compression are not acceptable. The holes in the spring restraint brackets through which the restraint rods pass must be oversized to prevent contact between the brackets and rods.

B. Thrust restraints shall be one of the following products or an approved equal:

1. Type TRK A.B.
2. Type HSR K.N.C.
3. Type WB M.I.
4. Thrust Restraint V.E.

2.8 GROMMETS

A. Grommets shall be made of neoprene or neoprene impregnated duct that is specially formed to prevent bolts from directly contacting the isolator base plate, and shall be sized so that they will be loaded within the manufacturer's recommended load range.

B. Grommets shall either be custom made by combining a neoprene washer and sleeve, or be one of the following products or an approved equal:

1. Type Isogrommets MBIS, Inc. (Bedford Heights, OH)
2. Type WB Barry Controls (Brighton, MA)
3. Type HG Mason Industries Inc. (Hauppauge, NY)

2.9 ACOUSTICAL SEALANT

A. Sealants for acoustical purposes as described in this specification shall be silicone or one of the resilient, non-hardening sealants indicated below:

1. Acoustical sealant D.A.P.
2. BR-96 or AC-20 (AC-20 FTR - Fire Rated) Pecora
3. Sonoloc Sanborn
4. Acoustical Sealant #834 (Acrylic Latex) Tremco
5. Acoustical sealant U.S.G.
PART 3 - EXECUTION

3.1 APPLICATION

A. General

1. Refer to the PRODUCTS section of this specification for vibration isolation devices identified on the Drawings or specified herein.

2. The static deflection of all isolators specified herein is the minimum acceptable deflections for the mounts under actual load. Isolators selected solely on the basis of rated deflection are not acceptable and will be disapproved.

B. Major Equipment Isolation

1. Unless otherwise shown or specified, all floor-mounted major equipment shall be set on housekeeping pads. See architectural or structural drawings for details.

2. Types and minimum static deflections of vibration isolation devices for major equipment items shall be as scheduled on the Drawings or specified hereunder.

3. Flexible duct connections shall be installed at all fan unit intakes, fan unit discharges, and wherever else shown on the Drawings.

4. Flexible pipe connections shall be installed at all pipe connections to vibration-isolated equipment in the positions shown on the Drawings.

5. Electrical connections to vibration-isolated equipment shall be flexible, as called for in the electrical portion of the specification.

6. Thrust restraints shall be installed on all suspended fans and on all floor-mounted fans developing 4" or more of static pressure, unless the horizontal component of the thrust force can be demonstrated to be less than 10% of the equipment weight.

C. Miscellaneous HVAC Equipment Isolation

1. Miscellaneous pieces of HVAC equipment, such as converters, pressure reducing stations, dryers, strainers, storage tanks, condensate receiver tanks, and expansion tanks, which are connected to isolated piping systems, shall be vibration-isolated from the building structure by Type NP or Type HN isolators (selected for 0.1" static deflection), unless their position in the piping system requires a higher degree of isolation as called for under Pipe Isolation.

D. Pipe Isolation

1. All chilled water, condenser water, hot water, steam, refrigerant, drain and engine exhaust piping that is connected to vibration-isolated equipment shall be isolated from the building structure within the following limits:

 a. Within mechanical rooms;
b. Within 50' total pipe length of connected vibration-isolated equipment (chillers, pumps, air handling units, pressure reducing stations, etc.);

c. At every support point for piping that is greater than 4" in diameter.

2. Piping shall be isolated from the building structure by means of vibration isolators, resilient lateral supports, and resilient penetration sleeve/seals.

3. Isolators for the first three support points adjacent to connected equipment shall achieve one half the specified static deflection of the isolators supporting the connected equipment. When the required static deflection of these isolators is greater than 1/2", Type FSN or HSN isolators shall be used. When the required static deflection is less than or equal to 1/2", Type FN or HN isolators shall be used. All other pipe support isolators within the specified limits shall be either Type FN or HN achieving at least 1/4" static deflection.

4. Where lateral support of pipes is required within the specified limits, this shall be accomplished by use of resilient lateral supports.

5. Pipes within the specified limits that penetrate the building construction shall be isolated from the building structure by use of resilient penetration sleeve/seals.

6. Provide flexible pipe connections as called for under Major Equipment above and wherever shown on the Drawings.

E. Duct Isolation

1. All sheet metal ducts and air plenums that are within mechanical rooms or within a distance of 50' total duct length of connected vibration-isolated equipment (whichever is longer) shall be isolated from the building structure by Type FN, PCF or HN isolators. All isolators shall achieve 0.1" minimum static deflection.

2. Ducts within the specified limits that penetrate the building construction shall be isolated from the building structure by use of resilient penetration sleeve/seals.

3. Flexible duct connections shall be provided as called for above under Major Equipment and wherever shown on the Drawings.

3.2 INSTALLATION OF VIBRATION ISOLATION EQUIPMENT

A. General

1. Locations of all vibration isolation devices shall be selected for ease of inspection and adjustment as well as for proper operation.

2. Installation of vibration isolation equipment shall be in accordance with the manufacturer’s instructions.

B. Isolators

1. All vibration isolators shall be aligned squarely above or below mounting points of the supported equipment.
2. Isolators for equipment with bases shall be located on the sides of the bases which are parallel to the equipment shaft unless this is not possible because of physical constraints.

3. Locate isolators to provide stable support for equipment, without excess rocking. Consideration shall be given to the location of the center of gravity of the system and the location and spacing of the isolators. If necessary, a base with suitable footprint shall be provided to maintain stability of supported equipment, whether or not such a base is specifically called for herein.

4. If a housekeeping pad is provided, the isolators shall bear on the housekeeping pad and the isolator base plates shall rest entirely on the pad.

5. Hanger rods for vibration-isolated support shall be connected to major structural members, not the floor slab between major structural members. Provide suitable intermediate support members as necessary.

6. Vibration isolation hanger elements shall be positioned as high as possible in the hanger rod assembly, but not in contact with the building structure, and so that the hanger housing may rotate a full 360 degrees about the rod axis without contacting any object.

7. Parallel running pipes may be hung together on a trapeze that is isolated from the building. Isolator deflections must be the greatest required by the provisions for pipe isolation for any single pipe on the trapeze. Do not mix isolated and un-isolated pipes on the same trapeze.

8. Pipes, ducts and equipment shall not be supported from other pipes, ducts and equipment.

9. Resiliently isolated pipes, ducts and equipment shall not come in rigid contact with the building construction or rigidly supported equipment.

10. The installed and operating heights of equipment supported by Type FSNTL isolators or with Type RC-2 isolation bases shall be identical. Limit stops shall be out of contact during normal operation. Adjust isolators to provide 1/4" clearance between the limit stop brackets and the isolator top plate, and between the travel limit nuts and travel limit brackets.

11. Adjust all leveling bolts and hanger rod bolts so that the isolated equipment is level and in proper alignment with connecting ducts or pipes.

C. Bases

1. No equipment unit shall bear directly on vibration isolators unless its own frame is suitably rigid to span between isolators and such direct support is approved by the equipment manufacturer. This provision shall apply whether or not a base frame is called for on the schedule. In the case that a base frame is required for the unit because of the equipment manufacturer's requirements and is not specifically called for on the equipment schedule, a base frame recommended by the equipment manufacturer shall be provided at no additional expense.

2. Unless otherwise indicated, there is to be a minimum operating clearance of 1" between steel rails, steel frame bases or inertia bases and the floor beneath the equipment. The isolator mounting brackets shall be...
positioned and the isolators adjusted so that the required clearance is maintained. The clearance space shall be checked by the Contractor to ensure that no construction debris has been left to short circuit or restrict the proper operation of the vibration isolation system.

3. Isolation bases shall be installed in strict accordance with the manufacturer’s instructions.

D. Flexible Duct Connections

1. Prior to installation of the flexible connection, sheet metal ducts and plenum openings shall be squarely aligned with the fan discharge, fan intake, or adjacent duct section, and the gap between connected parts shall be uniform. Flexible duct connections shall not be installed until this provision is met. There shall be no metal-to-metal contact between connected sections, and the fabric shall not be stretched taut.

E. Flexible Pipe Connections

1. Install flexible pipe connections in strict accordance with the manufacturer’s instructions.

F. Thrust Restraints

1. Thrust restraints shall be attached on each side of the fan parallel to the thrust force. This may require custom brackets or standoffs. The body of the thrust restraint shall not come in contact with the connected elements. Thrust restraints shall be adjusted to constrain equipment movement to the specified limit.

G. Grommets

1. Where grommets are required at hold down bolts of isolators, bolt holes shall be properly sized to allow for grommets. The hold down bolt assembly shall include washers to distribute load evenly over the grommets. Bolts and washers shall be galvanized.

H. Resilient Penetration Sleeve/Seals

1. Maintain an airtight seal around the penetrating element and prevent rigid contact between the penetrating element and the building structure. Fit the sleeve tightly to the building construction and seal airtight on both sides of the construction penetrated with acoustical sealant.

END OF SECTION 23 05 48
SECTION 23 05 93 - TESTING, ADJUSTING AND BALANCING (TAB)

PART 1 - GENERAL

1.1 DESCRIPTION

A. Refer to specification section 23 00 00 - HVAC General, all of which applies to work described in this section as if written in full herein.

B. The work described by this section of the specifications consists of furnishing all materials, instruments, labor, and appurtenances to test, adjust and balance all of the HVAC systems furnished and installed under Division 23 of the specifications.

C. The TAB agency shall be a subcontractor of the General Contractor and shall not report to or be paid by the HVAC Contractor. The HVAC subcontractor shall be responsible to cooperate with and provide for the balancing subcontractor any and all materials, services, labor, etc. to facilitate completion of the balancing work.

1.2 QUALITY ASSURANCE

A. The TAB agency and its specialist shall be certified members of Associated Air Balance Council (AABC) or certified by the National Environmental Balance Bureau (NEBB) to perform TAB service for HVAC, and vibration and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. The TAB agency shall have been in business for at least the past five years and must be free of disciplinary action by either the AABC or the NEBB during that time.

B. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity of this project and must be certified so by the TAB agency in writing.

C. The basic instrumentation shall be calibrated to accuracy requirements by its manufacturer, AABC or NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems. Provide calibration history of the instruments to be used for test and balance purpose.

D. One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by the ASHRAE Handbooks and requirements stated herein shall be the basis for planning, procedures, tolerances and reports. Final report shall cite the exact names of publications used as a basis or reference for the TAB work or reports.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Provide plastic plugs to seal holes drilled in ductwork for test purposes.

B. Provide for repair of insulation removed or damaged for TAB work to match installation.

PART 3 - EXECUTION

3.1 TAB PROCEDURES

A. TAB shall be performed in accordance with the requirements of the Standard under which the TAB agency is certified, either AABC or NEBB.

B. During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.

C. Adjustment of the temperature controls shall be coordinated by the TAB work specialist in conjunction with the Automatic Temperature Control Company’s Engineer. Both shall cooperate to simulate a complete cycle for every system in every mode of operation (automatic, economizer, fire emergency, etc.).

D. Coordinate TAB procedures with any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project.

3.2 AIR SYSTEMS TAB

A. Systems shall be tested, adjusted and balanced so that air quantities and temperatures at outlets are as shown on the Contract Drawings and so that the distribution from supply outlets is uniform over the face of each outlet.

B. Direct reading velocity meters may be used for comparative adjustment of individual outlets, but air quantities in ducts having velocities of 1,000 feet per minute or greater shall be measured by means of pitot tubes and inclined gauge manometers. Instrument test opening enclosures shall be provided as required at the direction of the TAB agency.

C. Adjustments shall be made in such a manner that splitter and volume adjusters close to air outlets will have the least pressure drop consistent with volume requirements. Primary balancing shall be obtained by adjustment of the dampers at branch duct take-offs. Adjustable fan drives shall be used for making final adjustments of total air quantities. Additional dampers or other air volume adjusters required to accomplish the balancing and adjusting shall be furnished and installed as part of the HVAC work.
D. Artificially load air filters by partial blanking to produce air pressure drop of at least 90 percent of the design final pressure drop.

E. Check and readjust factory set minimum and maximum air terminal unit flow rates if necessary. Balance air distribution on full cooling maximum. Reset room thermostats and check operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when in the maximum heating mode.

F. Adjust fan speeds to provide design air flow. Adjust V-belt drives, including fixed pitch pulley requirements.

G. After completion of the testing, adjusting and balancing of the air systems, six (6) copies of a recognized complete set of reports showing the minimum following information shall be submitted to the Engineer for review:

1. Systems inspection narrative on equipment and installation for conformance with design
2. Duct Air Leakage Test Report
3. Systems Readiness Report
4. TAB report covering flow balance and adjustments, performance tests, vibration tests and sound tests. Required information:
 a. Location of each air outlet or inlet. This shall be presented in the form of a reduced size floor plan showing outlet number keyed to the outlet number in the report.
 b. Dimensions or size of each outlet or inlet
 c. Type and manufacturer of diffusers, grilles, registers. Indicate duty as supply, return, exhaust, etc.
 d. Cfm of air as indicated on the Drawings for each outlet or inlet with corresponding velocity
 e. Velocity of air as measured and corresponding cfm at which system has been balanced and adjusted, for each outlet or inlet
 f. Velocity of air measured and corresponding cfm, after each complete system has been balanced and adjusted, for each main branch or zone duct at the supply fan, the return fan and the exhaust fan, as the case may be
 g. After each complete system has been balanced and adjusted, the total cfm at fan discharge, the total return air to the apparatus, the total outside air to the apparatus, static pressure at fan outlet, total static pressure for apparatus, fan speed, motor amperage for each phase and voltage

5. Narrative of uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements

H. The above testing, adjusting and balancing shall be performed for the first season of the year, cooling season or heating season, which occurs at the completion of the building. Additional balancing and adjusting which may be
required for the season of the year next following shall be performed as part of the work under this specification.

3.3 VIBRATION TESTING

A. Furnish instruments and perform vibration measurements for all rotating HVAC equipment of 1/2 horsepower and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.

B. Record initial measurements for each unit of equipment on test forms and submit a report to General Contractor. Where vibration readings exceed the allowable tolerance, the HVAC Contractor shall correct the problem and the TAB agency shall verify the corrections are done for final reporting.

3.4 SOUND TESTING

A. Perform and record required sound level measurements in approximately 15% of all rooms as designated by the General Contractor.

B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.

C. Where measure sound levels exceed specified levels, the installing contractor or equipment manufacturer shall take remedial action approved by the General Contractor and the necessary sound tests shall be repeated.

3.5 MARKING OF SETTINGS AND TEST PORTS

A. Following the approval of the final TAB Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the General Contractor.

B. The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

END OF SECTION 23 05 93
SECTION 23 07 00 - HVAC INSULATION

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 23 00 00 - HVAC General.

1.2 WORK INCLUDED

A. The work done under this section shall include all labor, materials, accessories, services and equipment necessary to furnish and install all insulation, complete, as indicated on the Drawings and as specified herein.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Materials as specified in this section shall be manufactured by Armstrong, Johns-Manville, Knauf, Pittsburgh-Corning, Certainteed, Pabco, Dow Chemical, Owens Corning or approved equal.

B. Insulation thicknesses shall be as shown in the following table:

<table>
<thead>
<tr>
<th>Piping System Types</th>
<th>Minimum Pipe Insulation</th>
<th>Insulation Thickness for Pipe Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Temperature Range</td>
<td>1 in. and Less</td>
<td>1-1/4 to 2 in.</td>
</tr>
<tr>
<td>Refrigerant or Brine (°C)</td>
<td>(°F)</td>
<td>2-1/2 to 4 in.</td>
</tr>
<tr>
<td>Below</td>
<td>Runouts to Individual</td>
<td>5 and 6 in.</td>
</tr>
<tr>
<td>4.5</td>
<td>Terminal Units (not</td>
<td>8 in. and Large</td>
</tr>
<tr>
<td></td>
<td>exceeding 12 ft. in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>length)</td>
<td></td>
</tr>
</tbody>
</table>

C For chilled water piping located in attics and other unconditioned spaces (excluding return air plenums), increase the pipe insulation thickness by 1/2" for pipe sizes up through 8". Insulation for piping 10" and larger shall be 2-1/2" thick.

C. Unless noted otherwise, the abovementioned piping systems inside the building shall be insulated with a 5 lb/cu. ft. (nominal) density sectional fiberglass insulation with a thermal conductivity (k factor) not to exceed 0.24. The jacket shall be fire retardant with a suitable vapor barrier. All joints and seams shall be sealed vapor tight. All joints and seams shall be lapped in place to form a continuous vapor barrier covering. All seams shall then be covered with "All Service Jacket" (ASJ) 3" wide tape. The tape shall match the jacket.
The tape shall be squeegeed in place to provide complete adhesion of the tape to the jacket and to provide a continuous vapor barrier covering. Exterior water piping shall be heat traced (Refer to Section 232113 - Piping and Accessories).

D. Piping installed outdoors shall be insulated with cellular glass insulation, Pittsburgh-Corning “Foamglas” or approved equal. Insulation thickness required to prevent condensation shall be determined by the manufacturer for worse case ambient conditions.

1. Install with all service jacket and in accordance with manufacturer’s recommendations.
2. Where heat tracing is specified, oversize insulation to allow space for heat tape.

E. Equipment shall be insulated in the same manner as specified for the associated piping. Suitable provisions shall be made for breaking flanges as may be required for maintenance. Hot water pumps do not get insulated unless specifically called for. The following equipment, but not limited to, requires insulation: expansion tanks, air separators, chemical treatment “shot type” feeders, storage tanks, etc.

F. Provide high density preformed pipe insulation inserts at all pipe hangers. Inserts shall be equal to Foamglas by Pittsburgh Corning or calcium silicate. Provide ribbed hanger saddles by Centerline, Buckaroos, Inc. or approved equal.

G. All exposed insulated piping in mechanical rooms below 10'-0" AFF shall be protected by a corrugated aluminum jacket with bands 3'-0" on center.

H. Ductwork

1. All supply air ducts with heated or cooled air shall be insulated. All return ducts in concealed and unheated areas shall be insulated.
2. Toilet and general exhaust ductwork exhausting air conditioned air and routed in attic spaces shall be insulated.
3. Ductwork described in 1. and 2. above shall be insulated with 2" thick fiber glass blanket type, 3/4 lb/cu. ft. with reinforced foil faced vapor barrier (R-5 min.). Insulation shall be securely adhered to ductwork. All joints shall be sealed with 3" wide strips of foil faced vapor barrier tape and applied to form a continuous vapor seal.
4. Ducts within mechanical rooms shall be insulated with 1" thick, 3 lb/cu. ft. rigid fiberglass board with an R factor of not less than 5 (K = 0.235 at 75 degrees F mean temperature) with reinforced foil vapor barrier. Insulation shall be secured to ductwork with stick pins and speed washers. All joints and stick pin terminations shall be sealed with 3" wide strips of vapor barrier material and applied to form a continuous vapor seal.

I. All outside air ducts shall be insulated. Outside air ducts located within mechanical rooms shall be rigid fiberglass board as described above. All other outside air ducts shall be blanket type insulated as described above.
J. Sheet metal supply, return, and outside air ductwork in non-air conditioned areas shall be insulated with 2" thick 1½" lb/cu. ft. fiberglass blanket duct insulation with foil faced vapor barrier (R-6 min.).

K. Piping and/or breeching exposed to the weather and designated to be insulated shall be insulated in the same way it is insulated within the building for concealed areas. It shall then be weatherproofed with corrugated aluminum jacketing. It shall have 3/16" corrugations and shall be 0.016" thick with a factory attached moisture barrier continuously laminated across the full width of the jacketing. All pipe fittings, valves and specialties exposed to the weather shall be insulated and weatherproofed with aluminum jacketing. Childers Universe-E11 Jacs of the same metal as the jacketing shall be used. Jacketing shall have a 2" lap at all joints. Longitudinal laps shall be on the underneath side of horizontal runs and slightly offset from one another. The outside of the longitudinal lap shall also have a 1" hem turned under. All laps shall be made with weatherproof mastic. Wrap the jacketing tightly and smoothly and secure with aluminum or stainless steel bands. Bands shall not be more than 12" on center and a strap shall be placed at the circumferential laps. The lap shall have adequate mastic to make a tight joint. Excess mastic shall be removed from the outside to provide a neat and professional appearance.

L. Provide insulating tape over all piping specialties to prevent condensation such as drain valves, drain plugs, combination temperature/pressure test plugs, etc.

M. All insulation must meet applicable codes for Flame Spread and Smoke developed ratings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Shop drawing submittals shall include a complete package of materials and methods intended for use as described in this section.

B. All work shall be in strict accordance with applicable codes, ordinances and the manufacturer's recommendations.

C. All work shall be performed in a professional workmanlike manner and standard trade practice. It shall be smooth in appearance and suitable for finish painting.

D. All exterior piping shall be installed with a corrugated aluminum jacket with bands 3’-0” on center.

E. Fiberglass pipe insulation shall be applied to clean (free of rust) dry pipe prior to leak testing. Chilled and condenser water systems shall not be operated until the insulation is completely installed with a vapor barrier in place.

END OF SECTION 23 07 00
PART 1 - GENERAL

1.1 DESCRIPTION

A. All work in this section shall be subject to the provisions of Section 230000 - HVAC General.

B. Furnish and install all material, labor, accessories shown on the drawings and as specified herein to completely install all ductwork systems.

C. Ductwork systems shall be classified as follows:

1. Static pressure class +2 in. wg - from constant volume air handling unit, and terminal unit to supply diffusers, and all return and exhaust ductwork.
2. Static pressure class +4 in. wg - from VAV air handling unit to PIU/VAV.

D. Ductwork shall be constructed according to the latest edition of SMACNA ductwork construction standards applicable to the system pressures described above, and the system material construction.

E. Duct sizes shown on the drawings are nominal inside clear.

1.2 SUBMITTALS

A. For all fire dampers, combination fire and smoke dampers, and smoke dampers, submit UL approved installation instructions for each specific application.

PART 2 - PRODUCTS

2.1 DUCTWORK

A. All ductwork shall be constructed of galvanized steel sheets of the thickness listed in the SMACNA manuals for the pressures referenced above, or of 1" thick (1½" thick if required by the applicable energy code) resin bonded fiberglass with fire resistant foil-scrim-kraft vapor barrier.

B. Rectangular sheet metal duct elbows shall be smooth radius type without turning vanes or square (or mitered) type with turning vanes. Sharp throat elbows (ASHRAE Fitting No. CR3-2) shall not be permitted. Round sheet metal duct elbows shall be smooth radius type without turning vanes, gored type or mitered type with turning vanes.
C. Unless otherwise indicated, elbows shall have a centerline radius of not less than 1½ times the width of the duct. Where space limitations necessitate use of short radius or square elbows, provide turning vanes.

D. Fiberglass ductwork shall be UL-181 listed class 1 duct material with a minimum thermal conductivity of 0.23 at 75 degrees F.

E. Fiberglass ductboard shall be Johns-Manville “Superduct” Type 475, Knauf air duct Type E1-475 or Certainteed “Toughgard.”

2.2 FIRE DAMPERS

A. Fire dampers shall be installed at all locations where ductwork or supply or return air openings penetrate any floor, wall or partition with a fire rating.

B. All fire dampers shall be of the “Dynamic” type as classified in UL Standard 555.

C. Fire dampers shall have a rating compatible with the floor, wall or partition, shall be tested to UL Standard 555 and be labeled for the intended installation (horizontal or vertical).

D. Maximum pressure drop: 0.10” wg; provide ductwork transitions as required so as not to exceed maximum pressure drop.

E. Fire Resistance Rating: 1½ hours unless noted otherwise indicated on drawings for 3 hours.

F. Closure device: Each fire damper shall be equipped with a factory installed heat responsive device (fusible link) rated to close the damper when temperature at the damper reaches: 165°F.

G. Airflow Closure Rating:

1. Dynamic fire dampers shall be selected for the velocity and pressure rating of the intended installation. Refer to the plans and schedules for airflow rates (CFM) and pressures (in. wg).

2. Dampers shall have a minimum velocity rating of 2000 fpm at a pressure rating of 4 in. wg.

3. Dampers in systems operating above 2000 fpm or 4 in. wg shall be selected for a velocity rating of 4000 fpm at a pressure rating of 6 in. wg or a velocity rating of 6000 fpm at a pressure rating of 8 in. wg as required.

H. Types:

1. Curtain Style: for use in systems up to 4000 fpm velocity; Type B or C with the blade stack out of the airstream (Type A with the blade stack in
the airstream may be used behind grilles or where space conditions do not permit the use of a Type B damper).

a. **Construction:**
 1) Frame: Galvanized steel (in gauges required by manufacturer’s UL listing).
 2) Blade design: interlocking galvanized steel
 3) Sleeves: Damper shall be supplied as a single assembly with a factory sleeve.
 4) Retaining Angles: Damper shall be supplied with factory retaining angles sized to provide installation overlap in accordance with the manufacturer’s UL listing.
 5) Duct Transition Connection: breakaway type

2. **Round:** for use in systems up to 2000 fpm velocity.

a. **Construction:**
 1) Frame: Galvanized steel (in gauges required by manufacturer’s UL listing).
 2) Blade design: single galvanized steel blade (in gauge required by manufacturer's UL listing).
 3) Retainer plate(s): supplied with damper.
 4) Sleeves: Length as required per wall thickness.
 5) Duct Transition Connection: breakaway type.

3. **Multi-blade:**
 a. Up to 2000 fpm velocity: Triple vee-groove type blade.
 b. 2000-4000 fpm velocity: Fabricated double skin airfoil type blade.
 c. **Construction:**
 1) Frame: Galvanized steel with mitered and interlocking corners (in gauges required by manufacturer’s UL listing).
 2) Blade design: 16 ga. galvanized steel strengthened by three longitudinal 1” deep Vee grooves running the entire length of each blade. Each blade shall be symmetrical relative to its axle pivot point, presenting identical performance characteristics with air flowing in either direction through the damper. Provide symmetrical blades of varying size as required to completely fill the damper opening.
 3) Sleeves: Damper shall be supplied as a single assembly with a factory sleeve.
 4) Retaining Angles: Damper shall be supplied with factory retaining angles sized to provide installation overlap in accordance with the manufacturer’s UL listing.
 5) Duct Transition Connection: breakaway type.

I. All dampers shall be installed in strict accordance with the manufacturer’s UL approved installation details.

J. Where fire dampers are required in a fibrous glass ductboard system, provide sheet metal sleeve per manufacturer’s UL installation instructions. Verify gage of sleeve and attachment angle with governing code authorities. Installation shall also conform to SMACNA Figure 5-9 “Fibrous Glass Duct Installation”.

Atlanta Beltline Inc.
Ductwork and Accessories 233100 - 3
2.3 CONTROL DAMPERS

A. Automatic control dampers shall be installed as shown on the drawings and shall be controlled as described in the 230900 - Automatic Controls section of these specifications.

B. Unless indicated otherwise, dampers shall be of the opposed blade type constructed of minimum 18-gauge galvanized steel and shall have rigidly constructed blades less than 6" wide and shall have duct mounting flanges.

C. Dampers shall be the low leakage type with replaceable blade and jamb seals. Maximum pressure drop for dampers operating in systems exceeding 2000 fpm shall be 0.10" wg.

D. Outside air supply and exhaust openings shall be provided with a Class 1A motorized damper with a maximum leakage rate of 4 cfm/ft² (20.3 L/s · m²) at 1.0 in. wg (249 Pa) when tested in accordance with AMCA 500D.

1. Gravity (non-motorized) dampers having a maximum leakage rate of 20 cfm/ft² (101.6 L/s · m²) at 1.0 in. wg (249 Pa) when tested in accordance with AMCA 500D may be used in any one of the following conditions:
 a. In buildings for exhaust and relief dampers.
 b. In buildings of less than three stories in height above grade.
 c. For ventilation air intakes and exhaust and relief dampers in buildings of any height in Climate Zones 1, 2 and 3.
 d. Where the design outdoor air intake or exhaust capacity does not exceed 300 cfm (141 L/s).

 Gravity (non-motorized) dampers for ventilation air intakes shall be protected from direct exposure to wind.

2. Dampers smaller than 24 inches (610 mm) in either dimension shall be permitted to have a leakage rate of 40 cfm/ft² (203.2 L/s · m²) at 1.0 in. wg (249 Pa) when tested in accordance with AMCA 500D.

2.4 FLEXIBLE DUCT CONNECTORS

A. Install flexible duct connectors at connections of sheet metal duct to motor driven equipment, or otherwise noted. Flexible duct connectors shall be glass fabric coated with neoprene, suitable for the intended service. Flexible duct connectors shall be Duro Dyne Excelon or approved equal. Install per manufacturer’s instructions, and support sheet metal ductwork so that no weight is supported by the flexible duct connector.

B. Flexible connectors exposed to the weather shall be UV and ozone resistant.

C. Fabrics, coating and adhesives shall be tested in accordance with UL 701 and have a maximum flame spread/smoke developed rating of 25/50.

D. Flex duct connectors shall also be provided at building expansion joints.
2.5 ACCESS DOORS

A. Hinged, gasketed and latched access doors and/or panels shall be installed at each fire and smoke damper, each duct mounted smoke detector, each valve, at each duct mounted balancing damper or any other mechanical equipment or device that requires accessibility. Doors and panels shall be sized (minimum 18" x 18", duct size allowing), and located to optimize access to dampers, detectors, and other equipment for service and replacement. Access doors in ductwork shall be per SMACNA Standards. Access panels in walls, ceilings or other surfaces shall be coordinated with architectural finishes and selected by the architect.

B. Access doors shall be designed for five times the pressure of the duct in which it is mounted.

C. Access doors for fire dampers, combination fire/smoke dampers and smoke dampers in medium pressure (+4 in.wg and higher) duct systems shall be the implosion type designed to prevent excessive negative pressure downstream resulting in collapsed ductwork. At the contractor's option, the access door may be an integral feature of the damper assembly.

D. Access doors for grease exhaust ducts shall be in accordance with NFPA 96 (latest edition). Vertical grease ducts shall have an access door at each floor level in an inconspicuous location.

2.6 FLEXIBLE DUCTWORK

A. Flexible ductwork shall be UL Class 1 air duct.

B. Flexible ductwork shall be installed between main supply ducts and diffusers. Length shall be a maximum of 8'-0" long, except in residential applications, where the length shall be as indicated.

C. Flexible ductwork shall be Thermaflex M-KE R-6 (R value = 6.0 minimum or as required by local energy code) flexible air duct or approved equal. Duct size shall be the same size as the diffuser neck it serves.

D. Take-offs for sheet metal ductwork shall be made using a spin-in type fitting with air scoop and balancing damper.

E. Flexible duct connections to ceiling diffusers shall be installed without kinks or sags to provide unrestricted airflow. Provide Flex Flow Elbow supports by Thermaflex.

2.7 DUCT INSULATION

A. Also refer to Section 230700 - HVAC Insulation.
B. Supply air ductwork a minimum of 15 linear feet (or as indicated) downstream of low pressure air handling equipment and terminal units shall be internally lined with 1½” thick acoustical duct liner/insulation (minimum R-6 or greater where required by code) Johns Manville Linacoustic RC or approved equal.

1. Duct liner shall be securely fastened to ductwork with stick pins, speed washers and adhesive. Leading edges of liner in medium pressure ductwork shall have a sheetmetal nosing.
2. Exposed edges and butt joints shall be “buttered” with duct sealer.

C. Supply air ductwork a minimum of 50 linear feet (or as indicated) downstream of static pressure class +4 in. wg air handling equipment shall be internally lined with 1½” thick acoustical duct liner/insulation, (minimum R-6 or greater where required by code) Johns Manville Linacoustic RC or approved equal.

D. Return air ductwork, sound boots and transfer ducts shall have 1” thick liner, Johns Manville Linacoustic RC or approved equal.

1. Refer to Section 230700 - HVAC Insulation for return air ductwork requiring external insulation.

E. Round duct liner shall be 1” thick fiberglass duct liner/insulation (minimum R-4 or greater where required by code) Johns Manville Spiracoustic Plus or approved equal.

PART 3 - EXECUTION

3.1 DUCTWORK

A. All ductwork shall be installed in accordance with applicable SMACNA Standards according to the pressure class described in PART 1 - GENERAL.

B. Ductwork shall be supported as recommended by SMACNA Standards from structural members. Ductwork shall not be allowed to rest on ceilings, light fixtures or structural members. Ductwork supported from joists shall be supported from the top chord of all joists.

C. All ductwork accessories shall be installed in strict accordance with manufacturer’s recommendations.

D. Ductwork that is designed to operate at static pressures in excess of 3 in. wg and all ductwork located outdoors shall be leak-tested in accordance with SMACNA Standards. Representative sections totaling no less than 25% of the total installed duct area for the designated pressure class shall be tested. All sections shall be selected by the building owner or the designated representative of the building owner. Positive pressure leakage testing is acceptable for negative pressure ductwork. The maximum permitted duct leakage shall be:
Arthur Langford Jr. Park Site Improvements
Section 23 31 00
Ductwork and Accessories

\[L_{\text{max}} = C_L P^{0.65} \]

where
\[L_{\text{max}} = \text{maximum permitted leakage, cfm/100 ft}^2 \text{ duct surface area} \]
\[C_L = 6, \text{ duct leakage class, cfm/100 ft}^2 \text{ duct surface area at 1 in. wg} \]
\[P = \text{test pressure, which shall be equal to the design duct pressure class rating, in. wg} \]

All ductwork seams shall be sealed with mastic to provide a system that is within the recommended SMACNA leakage limits. Six (6) copies of the ductwork test report shall be submitted to the Engineer prior to the Contractor’s request for final payment.

E. All ductwork shall be cleaned inside and out prior to system start up, and shall be left in a neat and orderly manner.

F. Duct sizes shown on drawings are inside clear dimensions.

G. Unless otherwise approved, ducts shall be true to dimensions indicated, straight and smooth on the inside with neatly finished joints, securely anchored to the building in an approved manner, and installed to be completely free from vibration under all conditions of operation. Exact routing of ductwork will be dependent on location of framing members. Route ductwork to avoid cutting framing members.

H. Brace ducts not more than 60 inches on center.

I. Make slip joints in the direction of air flow.

J. Offset ducts around obstructions where possible. Where duct must encompass obstruction, area of duct shall remain constant.

K. Duct tapers shall not exceed 1:4 ratio and transformations 30 degrees between air flow and diverging or converging air flow.

L. Provide access doors for access to all equipment, dampers and motors concealed by sheet metal.

M. Where applicable, provide seismic bracing and restraints for ductwork per ASCE 7-10 and the latest edition of the SMACNA Seismic Restraint Manual. Also refer to Section 230548 Noise and Vibration Control.

3.2 BALANCING DAMPERS

A. Install manual volume dampers where indicated on the drawings and where required to properly balance the air distribution system.

B. Provide an opposed blade damper behind the face of each supply register which shall be adjustable through the face of the register with a screwdriver.
C. Provide a butterfly damper in the neck of each supply diffuser unless noted otherwise.

END OF SECTION 23 31 00
SECTION - 23 34 00 UNITARY EXHAUST AND SUPPLY FANS AND VENTILATORS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Refer to specification section 230000 - HVAC General, all of which applies to work described in this section as if written in full herein.

B. Furnish and install all unitary exhaust and supply fans and ventilators of the size, type, capacity and characteristics as shown on the equipment schedules and herein described.

C. Acceptable manufacturers include only those whose products have been in satisfactory use in similar service for not less than five (5) years.

D. Electrical Standards: Provide electrical motors and products which have been listed and labeled by Underwriters Laboratories Inc. and comply with NEMA Standards.

E. Certification, Fan Performance: Provide fans whose performance is certified by AMCA under the specified conditions.

PART 2 - PRODUCTS

2.1 CEILING-CENTRIFUGAL AND CABINET FANS

A. Units shall be direct-drive type with back-draft damper, acoustically insulated cabinets and speed controller.

PART 3 - EXECUTION

3.1 GENERAL

A. All units shall be installed in accordance with manufacturer’s recommendations and as shown on the Drawings.

B. Ceiling-centrifugal and cabinet fans shall be supported from structural members and shall not rest on the ceiling, on lights or on structural members.

C. Units shall be interlocked and controlled as indicated on the Drawings.

D. Ceiling-mounted units shall be installed with ceiling grilles flush with the ceiling.

E. Electrical connection to the fan motor shall be made through the roof opening inside the roof curb.

END OF SECTION 23 34 00
SECTION 23 37 00 - LOUVERS, GRILLES, REGISTERS AND DIFFUSERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Furnish and install all louvers, grilles, registers and diffusers of the size, type, capacity, and characteristics as shown on the equipment schedules and described herein.

B. Equipment schedules and specifications are based on the one manufacturer listed in the schedule. Other manufacturers of equal quality and performance may be submitted to the Engineer for review. When substitution of equipment is made, the Contractor shall be responsible for the costs of any item and engineering and construction revisions necessary in his or any other contract or trade that may be required to satisfy plans and specifications.

PART 2 - PRODUCTS

2.1 LOUVERS

A. Louver components (heads, jambs, sills, blades, etc.) shall be factory assembled by the manufacturer into a complete unit. Louver sizes too large for shipping shall be built-up by the Contractor from factory assembled louver sections to provide the overall sizes required.

B. Louver design shall incorporate structural supports required to withstand a wind load of 20 lbs. per square foot.

C. All louver performance data submitted for approval shall bear the AMCA Certified Ratings Seal for Air Performance and Water Penetration.

D. All louvers shall have a standard factory applied finish coating with color selection made by the Architect at the time of shop drawing approval. Color charts shall be submitted with louver shop drawings.

2.2 GRILLES, REGISTERS AND DIFFUSERS

A. Units shall be of the type, size, and construction as scheduled on the Drawings.

B. Unless otherwise noted on the Drawings, all units shall be supplied with a factory finish of white baked enamel.

C. Grilles, registers and diffusers shall be ordered with borders compatible with the ceiling system type in which they are installed.
D. Aluminum devices shall be used for all areas subject to excessive moisture or humidity (e.g. showers, pools, bathrooms, etc.).

PART 3 - EXECUTION

3.1 LOUVERS

A. Louvers shall be installed according to manufacturer’s recommendations, and shall be caulked and sealed at the frame and flanges to make the installation weatherproof.

B. Combination louver dampers shall be installed with required damper operators and linkage mechanisms and shall be field adjusted for full opening/closure stroke. Louvers shall be interlocked as indicated on the Drawings.

3.2 GRILLES, REGISTERS AND DIFFUSERS

A. All units located in ceiling tiles shall be centered or shall be on quarter points of 2 ft. x 2 ft. tiles.

B. Where a line of sight allows the ductwork, wall or ceiling structure to be seen behind any units, such ductwork, wall or ceiling structure shall be painted with nonflammable flat black paint to minimize visibility.

C. All units not installed on T-bar ceiling grids shall be securely fastened to adjacent structures.

D. Where air distribution devices are installed in inaccessible ceilings, provide spin-in with scoop without volume damper. Provide opposed blade damper in neck of air distribution device with access to damper control through face.

END OF SECTION 23 37 00
SECTION 23 81 17 - SINGLE-PACKAGED VERTICAL AIR CONDITIONERS (VTAC)

PART 1 - GENERAL

1.1 DESCRIPTION

A. Furnish and install direct-expansion, single-packaged, vertical air conditioning units of the size and capacity shown on the equipment schedule. The units shall be completely factory assembled and tested, and shall include compressor, evaporator and condenser coils, hot gas reheat coil, fans, and motors, wiring terminal and control transformer. Units shall be rated in accordance with ARI and shall be UL or ETL Listed.

B. Equipment scheduled and specifications are based on Johnson Controls D series units. When substitution of equipment is made, the Contractor shall be responsible for the cost of any item and engineering and construction revisions necessary in his or any other contract that may be required to satisfy plans and specification.

C. Proposed equipment substitution (other manufacturers) shall be submitted to Architect/Engineer for approval prior to bid.

PART 2 - PRODUCTS

2.1 GENERAL

A. All units shall be factory assembled, piped, and fully charged with refrigerant (R-410a). Units shall be ETL listed and carry an ETL label. Units shall be approved for 0" clearance. All units shall be run-tested to check operation.

2.2 REFRIGERATION SYSTEM

A. All models shall utilize high-efficiency “Scroll” type, R-410A, hermetic compressors. Compressors shall be mounted on rubber isolators to minimize vibration transmission. Internal motor overload protection shall be provided. External high pressure and low pressure cut-out switches are included in each compressor control circuit. All 8-20 ton models shall have two individual scroll compressors.

B. Units shall have two independent refrigeration circuits, and ship with a nitrogen holding charge only. Each refrigeration circuit includes an adjustable thermal expansion valve (with external equalizer), liquid line filter drier, sight glass/moisture indicator, a high refrigerant pressure safety switch, a low refrigerant pressure switch (for compressor protection), and service gauge ports.
2.3 AIR-HANDLING SECTION

A. All cabinets shall be completely constructed of heavy gauge corrosion-resistant steel. The entire unit interior (both evaporator and condensing section) shall be insulated with 1/2” thick, 2-lb. density insulation. Service panels shall be equipped with lifting handles for ease of removal and handling. Duct flanges for condenser discharge, condenser intake, and evaporator discharges shall be provided with the unit for field installation. Duct flange on evaporator return shall be incorporated into the filter frame.

B. The evaporator and condenser coils shall be constructed of internally enhanced copper tubes mechanically bonded to enhanced-surface aluminum fins. Both coils shall be employed in a draw-thru configuration. Large evaporator coil face area minimizes potential for water blow-off.

C. Forward curved, double inlet and double width centrifugal blowers shall be used for both evaporator and condenser air movement. Blower wheels shall be fabricated of galvanized steel. Blowers employ solid steel shafts, supported in permanently lubricated ball bearings. All blowers shall be belt driven. Variable-pitch motor sheaves allow for field adjustment of blower rpm. Motor shall be 1750 RPM, open drip proof design.

D. All models shall be shipped with 2-inch thick medium-efficiency throwaway filters factory installed.

E. The unit shall have a single point power connection.

F. Evaporator drain pan shall be fabricated of 304 stainless steel material. The 3/4” NPT drain connection fitting is also fabricated of 304 stainless steel.

G. Unit shall be provided with factory installed modulating hot gas reheat coil and controls.

H. Unit mounted disconnect switch.

I. Condensate overflow switch shall be mounted in the evaporator drain pan and in the event of an alarm, shutoff power to unit compressor.

J. Head pressure control damper kit will allow unit operation down to 0 F ambient. Damper assembly mounts on condenser air exhaust.

2.4 CONTROLS

A. All units are completely factory wired with all necessary controls. Current overload protection is provided on both evaporator and condenser motors with external manual reset overload protection. The 24 volt control circuit includes an oversized transformer with an internal circuit breaker.

B. The control system microprocessor board shall be specifically designed for air-cooled unit operation.
1. Unit shall be complete with self-contained low-voltage control circuit.
2. Unit shall incorporate a lockout circuit which provides reset capability at the space thermostat or base unit, should any of the following standard safety devices trip and shut off compressor.
 a. Loss-of-charge/Low-pressure switch
 b. High-pressure switch
 c. Condensate Overflow protection switch
3. Unit shall operate with conventional thermostat designs and have a low voltage terminal strip for easy hook-up.
4. Unit control board shall have on-board diagnostics and fault code display
5. Standard controls shall include anti-short cycle and low voltage protection.
6. Control board shall monitor each refrigerant safety switch independently.
7. Control board shall retain last 5 fault codes in non-volatile memory which will not be lost in the event of a power loss.

2.5 WARRANTY

A. Warranty shall be for parts on the entire unit for one (1) year and extended warranty for compressor for second through fifth year.

PART 3 - EXECUTION

3.1 GENERAL

A. Units shall be installed as shown on the Drawings and in strict accordance with the manufacturer’s recommendations.

B. Units shall be installed level.

C. Units shall be installed to allow adequate service to all components and as shown on drawings.

END OF SECTION 23 81 17
SECTIONS 23 82 33 - ELECTRIC DUCT HEATERS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 23 00 00 - HVAC General.

1.2 WORK INCLUDED

A. Receipt, unloading, handling, proper storage and protection from damage of all materials.

B. Layout and coordination of work with other trades.

C. The work under this section shall include all labor, materials, accessories, services, and equipment necessary to furnish and install all electric duct heaters, complete, as indicated on the Drawings and as specified herein.

PART 2 - PRODUCTS

2.1 ELECTRIC DUCT HEATERS

A. Electric duct heaters shall be full flange type of slip-in type if space for side access removal is available.

B. Duct heaters shall be Chromalox, Indeeco, Brasch or Electric Heaters, Inc.

C. Duct heaters shall be constructed in accordance with provisions of the National Electric Code and shall be UL Listed and Labeled.

D. All frame members, terminal boxes and associated metal parts shall be of die-formed steel with corrosion-resisting coating.

E. Heating elements shall be of the hot wire type. Heating banks shall be connected for phase and voltage as indicated on Drawing Schedule. Three phase duct heaters shall consist of equal rated heating elements internally connected to provide a balanced three phase load.

F. Duct heaters shall be furnished with build-in mercury contactors whenever in office areas or above office area ceilings.

G. Duct heater shall be furnished with differential pressure switch (paddle switch is not acceptable), an automatic reset high limit cutout, a thermal cutout with manual reset, control contactors and control transformer (120 volt maximum) all factory pre-wired to a common power terminal.
H. Duct heaters shall be furnished with factory installed combination unfused disconnect switch and door lock to disconnect power voltage to heater. Door lock shall prevent door from being open unless switch is in the off position. A separate toggle switch shall be provided to break any incoming remote control sources.

I. No transition of ductwork (up or down), restriction, or damper will be allowed within 4’ of the upstream side of the heating coil.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Electric duct heaters shall be installed in accordance with manufacturer’s recommendations and details.

END OF SECTION 23 82 33
SECTION 26 00 00 - ELECTRICAL GENERAL

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. General Conditions: Refer to the General Conditions, the Supplementary General Conditions and the Special Conditions, all provisions of which apply to work under this section as if written in full herein.

B. The scope of work to be done under this section of the specifications shall include the furnishing of labor, material, equipment and tools required for the complete installation of systems for power, lighting, signals and all other work indicated on the drawings or as specified herein. A 100% operational building and electrical distribution system up to a connection point for Owner furnished equipment will be provided.

C. The drawings and specifications are complementary to each other and what is called for by one shall be as binding as if called for by both.

1.2 STANDARDS

A. All work shall conform to all ordinances and regulations of the City, County, State and/or other authorities having jurisdiction in accordance with the requirements of the following codes, standards and design guides:

1. The 2011 edition of the National Electrical Code (NFPA 70) with Georgia Amendments
2. The 2012 edition of the International Building Code with Georgia Amendments
4. The National Electrical Safety Code (ANSI C-2)
5. Regulations of the local utility company with respect to metering and service entrance
6. Local city and county ordinances governing electrical work
7. Americans with Disabilities Act (Public Law 101-336)

1.3 PERMITS

A. The Contractor shall obtain all permits and inspections required for the installation of this work and pay all charges incident thereto. He shall deliver to the Architect all certificates of said inspection.

1.4 WORK INCLUDED

The electrical systems installed and work performed under this division of the specifications shall include but not necessarily be limited to those listed below. All
materials and appliances, obviously a part of the electrical systems and necessary to its proper operation, but not specifically mentioned or shown on the drawings, shall be furnished and installed without additional charge.

A. Power Distribution System

B. All lighting systems (indoor and outdoor, normal, emergency and exit) including all fixtures, lamps, plaster and/or tile frames, standards, switches, outlets, wiring, dimmers, contactors, time clocks, photocells, batteries, raceways and other components and fittings required for complete lighting systems

C. Wiring, including power circuit connections for HVAC, plumbing and other mechanical equipment

D. Grounding Systems

E. Temporary service lighting and power system

F. Low voltage system raceways and equipment mounting boards as indicated on the drawings

G. Underground raceway excavation, backfill, and compaction

H. Concrete work for duct banks, manholes, covering, lighting standard bases and equipment bases (where not assigned to General Contractor)

I. Electrical Equipment Identification

J. Supporting Devices for Electrical Components

K. Work as required by electric and telecommunication utilities, as well as the coordination of additional work (i.e. work performed by the utility) with that of other trades

L. Electrical Demolition

1.5 DRAWINGS

A. Drawings are generally diagrammatic and show the arrangement and location of fixtures, equipment and conduit. The Contractor shall carefully investigate the structural and finish conditions affecting his work and arrange his work accordingly. Should conditions on the job make it necessary to rearrange conduit or equipment, the Contractor shall so advise the Engineer and secure approval before proceeding with such work.

B. Where exact locations are required by equipment for stubbing-up and terminating conduit concealed in floor slabs, the Contractor shall request shop drawings, equipment location drawings, foundation drawings, and any other data required by him to locate the concealed conduit before the floor slab is poured.
C. Materials, equipment or labor not indicated but which can be reasonably inferred to be necessary for a complete installation shall be provided. Drawings and specifications do not undertake to indicate every item of material, equipment, or labor required to produce a complete and properly operating installation.

D. Locate pull boxes, panelboards, control pushbuttons, terminal cabinets, safety switches and such other apparatus as may require periodic maintenance, operation, or inspection, so that they are easily accessible. If such items are shown on the plans in locations which are found to be inaccessible, the Engineer must be advised of the situation before work is advanced to the point where extra costs will be involved.

E. All additional circuit connections to panelboards must be preapproved by the Engineer.

F. The location, arrangement and extent of equipment, devices, conduit, and other appurtenances related to the installation of electrical work shown on drawings are approximate. The Contractor shall not scale drawings, but shall refer to the architectural drawings for exact dimensions of building components. Should a conflict exist between the architectural and engineering drawings regarding dimensions and scale, the Contractor shall notify the Architect of the discrepancy.

G. Verify the ceiling type, ceiling suspension systems, and clearance above hung ceilings prior to ordering lighting fixtures. Notify the Engineer of any discrepancies.

H. Review all architectural drawings for door swings, cabinets, counters and built-in equipment.

1.6 OPERATION AND MAINTENANCE MANUALS

A. The Contractor shall prepare a minimum of two (2) instruction manuals, one of which shall be submitted to the Architect for the Engineer's review, describing installation, operation and maintenance of all Electrical equipment. Manuals shall include copies of control schematics, sequences of operation, indicate the function and operations of all components, as well as the Contractor’s name, address, and telephone number. Manuals shall also contain one copy of all manufacturer's drawings, pamphlets, data, parts lists, and instruction manual for each piece of equipment. Upon approval, one copy shall be delivered to the Owner; one copy shall be kept by the Contractor. The pamphlets and drawings are to be neatly bound in a 3-ring binder(s).

1.7 AS-BUILT DRAWINGS

A. The Contractor shall maintain a record of all changes in the work from that shown in the Contract Documents. After all work is completed, the Contractor shall prepare a set of “as-built” reproducible drawings of similar type and quality as the Contract Drawings that reflect all changes and that accurately show actual final construction, and deliver these drawings to the Architect.
1.8 EQUIPMENT, MATERIALS AND BID BASIS

A. Manufacturers’ names, model numbers, etc. as specified on the drawings and herein are for the purpose of describing type, capacity, function and quality of equipment and materials required.

B. Unless “approved equal” is specifically stated, bids shall be based on equipment names in specifications or on drawings as “base” products.

C. “Equal product” and “approved equal” items listed shall conform to specified base items and shall be substantially equal in size, weight, construction and capacities. The “equal” equipment and materials shall be submitted as full equivalent to the equipment and materials specified, with sufficient supportive documentation and technical literature to demonstrate quality, performance, and workmanship without doubt or question. Submittals for “equal” products shall be made at least ten (10) days prior to bid (refer to the General Conditions of these specifications). The Engineer shall consider the use of the “equal” equipment based on the supportive documentation available to him, and shall approve or disapprove any proposed alternates. The decision of the Engineer shall, in all cases, be final.

D. The Contractor shall coordinate the installation of all electrical equipment proposed for use in this project with all building trades (architectural, structural, mechanical, etc.). Coordination shall be accomplished prior to, and shall be reflected in, the submittal of shop drawings for approval. When substitution of equipment is made, the Contractor shall be responsible for the costs of any item and engineering and construction revisions necessary in his or any other contract or trade that may be required to satisfy the plans and specifications.

E. If substitutions are made in lieu of equipment specified, the manufacturer’s literature shall be submitted to the Engineer for approval. In the case of lighting fixtures, full IES photometric test reports for the fixture, lamp(s), and lenses shall be submitted for approval.

1.9 SUBMITTALS

A. The Contractor shall prepare, submit, and obtain Engineer’s review of manufacturers’ submittals on the following equipment and systems prior to ordering, purchasing, or installation of any equipment or materials. All required submittals shall be transmitted simultaneously in hard ring binders with the associated specification section and the item submitted clearly identified. Partial submittals will be returned without review.

1. Submit a listing of all the materials indicated below, with the type of material, manufacturer and catalog or model number for each (where applicable):
 Package #1
 Conductors
 Conduit
2. Submit complete shop drawings of the following when supplied by the electrical contractor:

 Package #2
 Fuses and/or Circuit Breakers
 Panelboards and Cabinets
 Cable Tray and Tray Fittings

 Package #3
 Lighting Fixtures
 Occupancy Sensors

3. Submit test reports as required in section 3.07 - Electrical Testing.

B. All shop drawing approvals required by any code or enforcement authority, insurance underwriter, etc. shall be obtained prior to being submitted to the Engineer.

C. Review of shop drawings by the Engineer does not relieve the Contractor from responsibility for complying with all requirements of the Contract Documents. Furthermore, it shall be the responsibility of the Contractor to coordinate the requirements (roof penetrations, wall penetrations, floor penetrations, curbs, electrical, etc.) of all approved equipment with the other trades and disciplines at no additional cost.

D. All shop drawings shall be identified by the equipment mark or tag identification numbers shown on the Contract Drawings. Each individual submittal item shall be marked to show which specification section pertains to the item.

1.10 RENOVATIONS AND ADDITIONS

A. Prior to the ordering or purchasing of any equipment or materials or the layout or installation of any work, the Contractor shall examine the premises and verify any and all of the existing conditions under which he will be obliged to operate, or that will in any manner affect the work under this Contract.

B. Work requiring interruption of electrical power which would adversely affect the normal operation of the other portions of the Owner’s property, shall be done at a time other than normal working hours and scheduled in advance with the Owner. Normal working hours shall be considered eight a.m. to five p.m. Monday through Friday. Schedule all outages with the Owner prior to the shutdown.

C. Prior to submitting bids on the project, visit the site of the work to become aware of existing conditions which may affect the cost of the project.
D. Where work under this project requires extension, relocation, reconnection or modifications to existing equipment or systems, the existing equipment or systems shall be restored to their original and operating condition.

E. Extend new homeruns or circuit extensions, where required. Disconnect and remove all equipment indicated to be demolished, including outlets, devices, raceways and conductors.

F. Care shall be exercised in the removal and storage of equipment indicated to be relocated or removed and reused. Prior to placing back into service, equipment shall be cleaned, relamped, and marred or chipped paint surfaces touched-up.

G. Provide all coring, cutting and patching to existing walls, floors, etc., required for the removal of existing work or the installation of new work.

H. All equipment removed in the renovation area is to be removed from the site. No existing pipe or materials are to be removed and reused on the renovation.

1.11 COORDINATION OF TRADES

A. The Contractor shall give full cooperation to other trades, and shall furnish all information necessary to permit the work of all trades to be installed satisfactorily and with least possible interference or delay.

B. Work shall not be performed without first coordinating the installation of same with other trades. The Contractor, at his own expense, shall relocate all uncoordinated equipment installed should they interfere with the proper installation and mounting of mechanical equipment, ceilings and other architectural or structural finishes.

C. The Contractor shall coordinate the elevations of all equipment above ceilings and in exposed areas with the work of all other disciplines prior to installation.

D. In areas where more than one trade is required to use common openings in beams, joists, chases, shafts and sleeves for the passage of conduits, raceways, piping, ductwork and other materials, the Contractor must coordinate the positions of all piping and equipment to be furnished under this section so that all items including the materials and equipment of other trades may be accommodated within the space available.

E. The Contractor shall confirm that work installed under this section does not interfere with the clearances required for finished columns, pilasters, partitions, walls or other architectural or structural elements as shown on the Contract Documents.

F. Work that is installed under this Contract which interferes with the architectural design or building structure shall be removed and relocated as required at no additional cost to the Contract.
1.12 WARRANTY

A. All equipment furnished and installed under this Contract shall be provided with the manufacturer’s standard warranty unless otherwise noted.

B. The Contractor shall make good all defects in material, equipment, or workmanship disclosed within a period of one (1) year from date of building acceptance by the Owner. The phrase “make good” shall mean to furnish promptly, without charge, all work necessary to remedy the defects to the satisfaction of the Engineer.

1.13 TEMPORARY LIGHT AND POWER

A. The Contractor shall provide a temporary service of the amperage and voltage required by the Project Manager.

B. Sufficient wiring, outlets and lamps shall be installed to ensure proper lighting in accordance with OSHA, state and municipal codes. Refer to Division 1 specifications for requirements.

1.14 EQUIPMENT REQUIRING ELECTRICAL SERVICE

A. Review all specification sections and drawings including mechanical, plumbing and other equipment drawings and other divisions of the specifications for equipment requiring electrical service. Provide service to and make connections to all such equipment requiring electrical service.

B. Prior to installing material such as electrical equipment, devices, feeders, or branch circuits serving equipment of all other trades, the Contractor shall coordinate with the electrical requirements of the equipment to be installed.

1.15 MECHANICAL SYSTEMS COORDINATION

A. All control wiring for mechanical systems shall be installed under Division 23.

B. Motor controllers (starters) shall be furnished under Division 23 and installed under Division 26, unless specified otherwise.

C. Power wiring to all motors and motor controllers and between motors and controllers shall be provided in Division 26.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. All equipment, materials, accessories, etc. used shall be new and of current production unless specified otherwise. Equipment not specified in the Contract Documents shall be suitable for the intended use and shall be subject to approval by the Engineer.
B. All equipment, products and materials shall be free of defects and shall be constructed to operate in a safe manner without excessive noise, vibration, leakage, or wear.

C. All equipment shall bear the inspection label of Underwriters Laboratories Inc.

D. All equipment and material for similar applications or systems shall be provided from the same manufacturer unless noted otherwise.

E. The published standards and requirements of the National Electrical Manufacturers Association, the American National Standard Institute, the Institute of Electrical and Electronic Engineers, and the American Society of Testing Materials, are made a part of these specifications and shall apply wherever applicable.

2.2 IDENTIFICATION

A. Equipment or devices specified in the individual sections to be identified shall be identified by machine cut stencil unless the equipment is identified by the manufacturer. Identification of flush mounted cabinets and panelboards shall be on the inside of the device. Surface mounted equipment shall be identified on the outside cover.

B. All panelboards supplied by a feeder shall be stencil-labeled to indicate the equipment where the power supply originates.

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Mounting heights, unless otherwise noted, are to be center line of the equipment and/or device except the mounting height of suspended light fixtures which is to the bottom of fixture.

B. All work shall be designed and installed to comply with the requirements for the seismic design category and use group for the area in which the building is constructed.

3.2 EXCAVATION, TRENCHING & BACKFILLING

A. Contractor shall call underground utilities locator company before digging.

B. Barricades shall be provided around open holes and trenches. Temporary bridges shall be provided over trenches cut through major sidewalk routes. Major sidewalk routes shall not be closed to pedestrian traffic.

C. Barriers shall be provided to protect landscaping adjacent to the excavation area.

D. When rocks, concrete or other debris are encountered during excavation, remove completely.
E. Where sidewalk sections must be removed for installation of underground ducts, remove the sidewalk sections completely from joint to joint.

F. Where asphalt must be removed for installation of underground ducts, saw cut the asphalt in two, straight, parallel lines.

G. Backfill excavations in 6-inch layers and mechanically compact to 98 percent compaction.

H. Excavated materials may be used as backfill only if the backfill is sand or clean dirt that is free of rocks and debris over 3/4" in diameter.

I. In landscaped areas, backfill and mechanically compact to a depth of 6 inches below grade.

J. Backfill the last 6 inches with clean topsoil. Reseed lawn areas.

K. Restore concrete sidewalks and asphalt.

L. The Contractor shall perform all excavation to install the work herein specified and as indicated on drawings. During excavation, material for backfilling shall be piled back from the banks of the trench to avoid overloading and to prevent slides and cave-ins. All excavated materials not to be used for backfill shall be removed and disposed of by the Contractor. Grading shall be done to prevent surface water from flowing into trenches and others excavation and any water accumulating therein shall be removed by pumping. All excavation shall be made by open cut. No tunneling shall be done except under pavement.

M. The bottom of the trenches shall be graded to provide uniform bearing and support for conduits, cables, or duct bank on undisturbed soil at every point along its entire length. Overdepths shall be backfilled with loose, granular, moist earth, and tamped. Remove unstable soil that is not capable of supporting equipment or installation and replace with specified material for a minimum of 12" below invert of equipment or installation.

N. The trenches shall be backfilled with the excavated materials approved for backfilling, consisting of earth, loam, sandy clay, sand and gravel or soft shale, free from large clods of earth and stones, deposited in 6" layers and tamped until the crown of the pipe is covered by a minimum of 6" of tamped earth. The backfill under and beside the pipe shall be compacted for pipe support. Backfill shall be brought up evenly on both sides of the pipe so that the pipe remains aligned. In instances where the manufacturer’s installation instructions for materials are more restrictive than those prescribed by the code, the material shall be installed in accordance with the more restrictive requirement. The backfilling shall be carried on simultaneously on both sides of the trench so that injurious pressures do not occur. The compaction of the filled trench shall be at least equal to 98% of the maximum density as determined by the Standard Proctor Test. Settling the backfill with water will not be permitted. Reopen any trenches not meeting compaction requirements or where settlement occurs, refill,
compact, and restore the surface to the grade and compaction indicated, mounded over and smoothed off. A metallic lined underground warning tape shall be provided 12" below finished grade. The tape shall be red for electrical lines and orange for telephone and shall be identified as to the type of line.

O. Perform excavation and backfilling work in accordance with applicable portions of the earthwork section.

3.3 STORAGE AND PROTECTION OF MATERIALS

A. Refer to the general requirements section of the specifications, Division 1, for storage, protection, and handling requirements.

B. Inspect materials upon arrival at project and verify conformance to Contract Documents. Prevent unloading of unsatisfactory material.

C. Store packaged materials in original undamaged condition with manufacturer’s labels and seals intact.

D. Containers which are broken, opened, watermarked, or otherwise damaged materials are unacceptable and shall be removed from premises.

E. Equipment and materials shall not be installed until such time as the environmental conditions of the job site are suitable to protect the equipment or materials. Equipment or materials damaged or which are subjected to these elements are unacceptable and shall be removed from the premises and replaced.

3.4 CONCRETE WORK

A. Construct curbs, pads, vaults and similar supports for electrical equipment where required.

B. Provide 4" thickness housekeeping pads at floor mounted equipment, covering entire area occupied by equipment. Dowel pads to structural slab.

C. Perform concrete work in accordance with applicable portions of Concrete sections. Minimum compressive strength of concrete shall be same as specified for slabs on grade.

3.5 PAINTING

A. Except as otherwise specified, painting shall be accomplished under Painting Section. Surfaces shall be left clean of debris and free from oil and other substances which would prevent paint bond.

B. Touch up finishes of factory painted apparatus where finish is marred during installation.
C. Where galvanizing is broken during fabrication or installation, recoat exposed areas with cold galvanizing compound.

D. Do not paint over nameplates on equipment, nonferrous hardware, accessories or trim.

3.6 WORKMANSHIP

A. Install systems, materials and equipment level and plumb, parallel and perpendicular to other building systems and components.

3.7 ELECTRICAL TESTING

A. Furnish all labor, materials, instruments, supplies, and services and bear all costs for the accomplishment of the tests herein specified or requested at job site. Correct all defects appearing under test, and repeat the tests until no defects are disclosed, leave the equipment clean and ready for use.

B. All grounds, crosses, shorts, etc., must be eliminated from the wiring. Test all lighting fixtures, together with switches and controls; test the operation of all motors, controllers, and other electrical equipment devices.

C. The switchboard and all feeders shall be Meggar tested. A copy of all test reports shall be given to the Engineer.

D. The Contractor shall perform any tests other than herein specified which may be required by the Engineer or the authority having jurisdiction.

E. Perform the following tests after installation but before energizing the equipment. The following tests and procedures apply to all equipment and material that is to be tested under this Contract.

1. Transformers
 a. Visually inspect all components for damage, check bushings and insulators for cracks; transformer casing for evidence of leakage; pressure, temperature and liquid level gauges for proper indications.

2. Ground Resistance
 a. Visually inspect for specified ground connections.
 b. Perform ground resistance test at all connections to switchboards and panelboards.
 c. Use three point or fall of potential method.
 d. Verify single point connection (at the counterpoise) between the grounded and grounding systems.
 e. Additional ground rod is required if resistance is greater than 25 ohms.

3. Panelboards
 a. Visually inspect all components for damage.
 b. Check operation of circuit breakers/fusible switches.
4. Transfer and Other Relay Schemes
 a. Investigate intended function, and verify correct operation.

F. The Engineer shall be notified immediately of any unfavorable test results or indication of faulty equipment. No piece of equipment shall be energized until the test data is evaluated and the equipment is proven acceptable.

G. If the test and inspection data submitted should indicate deficiencies in the operation of the electrical apparatus or in the manufacturer thereof, the Contractor shall promptly implement the necessary adjustments, corrections, modifications and/or replacements necessary to meet the specified requirements.

3.8 TRAINING

A. Upon completion of the work, the Contractor shall conduct operation and training session(s) for the Owner’s key personnel. These sessions shall be of sufficient length and duration to adequately explain the design intent and proper operating and maintenance techniques for all equipment and systems. After these sessions are completed, the Contractor shall provide a copy of a signed statement by the Owner that his personnel are thoroughly familiar with and capable of operating all equipment and systems.

 END OF SECTION 26 00 00
SECTION 26 05 19 - CONDUCTORS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 26 00 00 - Electrical General.

1.2 WORK INCLUDED

A. The work under this section shall include all labor, materials, accessories, services and equipment necessary to furnish and install conductors, complete, as indicated on the Drawings and as specified herein. Provide a complete system of wiring with all feeders and branch circuits as shown on the Drawings. The wiring system shall be complete to each and every outlet and apparatus shown on the Drawings which requires electrical connections.

B. This section includes wires, cables, and connectors for power, lighting, signal, control and related systems rated 600 volts or less.

1.3 COLOR CODING

A. Color coding shall be as follows:

<table>
<thead>
<tr>
<th>120/240 Volt System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase A – Black</td>
</tr>
<tr>
<td>Phase B – Red</td>
</tr>
<tr>
<td>Phase C – Blue</td>
</tr>
<tr>
<td>Neutral – White</td>
</tr>
<tr>
<td>Ground – Green</td>
</tr>
<tr>
<td>Isolated Ground - Green with yellow strip (where applicable)</td>
</tr>
</tbody>
</table>

(Verify color-coding with local code Authority and use local code requirements if and only if the above color code is not acceptable to local authority.)

B. All wire shall be color coded throughout its entire length. Colored phase tape is not allowed.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Wire shall be Southwire/SIMpullTM, Pirelli, Rome, General Cable, Senator, United Copper Industries, Alcan, AFC, or approved equal.

2.2 CONDUCTORS

A. Conductor Material: Unless noted otherwise, conductors shall be copper, 98.5% conductivity except where specifically noted otherwise on Drawings.

B. All wire and cable for feeders and branch circuits shall have copper conductors and shall be 600 volts, 90 degrees C, NEC type conductors with THHN/THWN-2 insulation.

C. Wire No. 8 AWG and larger shall have stranded conductors. Wire No. 10 AWG and smaller shall be solid conductor type.

D. No conductor shall be smaller than No. 12 AWG unless otherwise specified or noted.

E. Branch circuit wiring which supplies more than one fluorescent fixture through the wiring of other fixtures shall be high temperature wire approved for such use.

F. Pulling lubricant is neither required nor allowed for Southwire/SIMpullTM conductors.

2.3 METAL CLAD “MC” CABLE

A. Where allowed by the authority having jurisdiction, the use of metal clad cable is permitted as described below and shall meet all the requirements of the following codes and standards:

1. Underwriters Laboratories Inc. 83, 1479, 1569, and 1581
2. National Fire Protection Association NFPA 70, Article 330
3. All local codes and municipal ordinances.

B. The conductors of the metal clad cable shall comply with Articles 1.03 and 2.02 of this same section.

C. MC cable shall be limited to branch circuits concealed in walls or above ceilings. Unless noted otherwise, metal clad cable may not be run directly into surface-mounted panels, cabinets, switches or other devices. All circuit homeruns shall be installed in conduit and shall be routed from the panelboard to the first branch circuit device.

D. MC cable shall not be allowed for wiring to mechanical equipment.
E. Unless noted otherwise, the metal clad cable shall be **MC** with either a
galvanized steel jacket or aluminum interlocked armor, a Mylar assembly
covering tape, rated at 90 degrees centigrade, with either a green insulated
grounding conductor or **MC** Type MC cable with interlocked armor that is listed
and identified for grounding, and rated for a maximum of 600 volts.

F. Refer to National Electrical Code Article 330 for uses not permitted.

G. Cables installed in other than vertical runs through bored or punched holes in
wood or metal framing members, or through notches in wooden framing
members and protected by a steel plate at least 1/16 inches thick, shall be
considered supported and secured where such support does not exceed six (6)
feet intervals.

H. Cables containing four or fewer conductors sized not larger than No. 10 AWG
shall be secured within 12 inches of every box, cabinet, fitting or other cable
termination.

I. Metal clad cable shall not be installed outside the building without written
authorization from the Engineer.

2.4 ACCESSORIES

A. Wire Joints: T & B “Sta-Kon,” Scotchlok Type “R,” Ideal No. 452 or 453, or
Buchanan “B-Cap.”

B. Cable Connectors: Solderless Type O.Z. “circular clamp type” or T & B “lock-tite”
appropriate for the particular application involved.

PART 3 - EXECUTION

3.1 PREPARATION

A. Lubricant: No grease, oil or lubricant other than powdered soapstone or
approved pulling compound shall be used to facilitate the pulling of wires.
Lubricant shall not be used for conductors with SIMpull™ insulation.

3.2 INSTALLATION

A. Complete electrical systems shall be provided as shown on the Drawings and/or
as specified herein.

B. Wires shall be pulled without excessive strain to prevent damage to conductor or
insulation. Provide pull boxes as required to facilitate pulling of wire.

C. Prior to energizing, all service and feeder cables shall be tested with megohm
meter to determine insulation resistance levels. Test report shall be submitted to
the Engineer.
D. Each raceway indicated by symbol on Drawings shall contain three (3) No. 12 AWG wires unless otherwise noted, scheduled or indicated. Hatch marks on raceway symbols indicate the number of conductors in a raceway when the number exceeds three (3).

E. At each fixture or device outlet, a loop or end of wire not less than 6" long shall be left for connection to fixture or device.

F. Splices, taps and connections shall be made up as follows:

1. Wire sizes No. 10 AWG and smaller with wire nuts.
2. Wire and cable of sizes No. 8 AWG and larger, with insulated mechanical or crimped connectors.

G. Perform conductor tests as described in Section 260000 - Electrical General.

END OF SECTION 26 05 19
PART 1 - GENERAL

1.1 DESCRIPTION
A. The work required under this section of the Specifications consists of furnishing, installation and connections of the building grounding system. Exterior branch circuit wiring and feeder conductors extended beyond the building are included. The building electrical system shall be 3-phase, 4-wire grounded delta system supplemented with equipment grounding system. Equipment grounding system shall be established with equipment grounding conductors; the use of metallic raceways for equipment grounding is not acceptable.

1.2 REGULATORY REQUIREMENTS
A. Install a complete grounding system in accordance with the National Electrical Code.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS
A. Provide all materials under this section of the specifications.
B. All materials shall be new, UL Listed, and bear a UL Label.
C. Refer to Section 260519 - Conductors for conductor specification.

2.2 GROUNDING CONDUCTORS
A. Grounding electrode conductor shall be bare or green insulated copper conductor sized as indicated on the Drawings.
B. Equipment grounding conductors shall be green insulated conductors sized as indicated on the Drawings. Where size is not indicated on the Drawings, conductor size shall be determined from the National Electrical Code table on sizes of equipment grounding conductors.
C. Bonding jumpers shall be flexible copper bonding jumpers sized in accordance with the National Electrical Code tables for grounding electrode conductors.

2.3 PANELBOARDS, TRANSFORMERS, AND DISCONNECT SWITCHES
A. Provide each low voltage distribution and branch circuit panelboard with a copper equipment grounding bar brazed or riveted to the associated enclosures or cabinet and an insulated neutral bar.
B. Provide a conductor termination grounding lug bonded to the enclosure of each equipment item.

2.4 DEVICES

A. Each receptacle and switch device shall be furnished with a grounding screw connected to the metallic device frame.

2.5 GROUND RODS

A. Ground rods shall be 3/4" x 10'-0" copper clad steel.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Ground all non-current carrying parts of the electrical system including raceways, equipment frames and enclosures, outlet boxes, junction boxes, and other conductive material in close proximity with electrical circuits.

B. Service entrance and separately derived electrical systems, grounding electrode system

1. The grounded conductor(s) of the electrical service serving the premises wiring system shall be connected to the neutral bus bar in the service equipment which shall be grounded to the cold water system, the ground rod system, and other grounding electrodes specified herein or indicated on the Drawings. Grounding electrode conductors shall be installed rigid, nonmetallic conduit to point of ground connection, unless subject to physical damage in which case it shall be installed in galvanized rigid steel.

2. Make connection to main water line entering the building. Make connections ahead of any valve or fittings whose removal may interrupt ground continuity.

3. Bond together the following systems to form the grounding electrode system. All system connections shall be made to the electrodes as close as possible to the service entrance equipment and each connected at the service entrance equipment neutral bus. Do not connect electrode systems together except at neutral bus.
 a. Cold water piping system
 b. Ground rod system
 c. Rebar in concrete footing
 d. Structural steel metal building frame

4. Ground the neutral of all dry type transformers to either building steel or a common grounding electrode conductor connected to a service ground. Transformers shall be bonded to the nearest available point on the interior water piping system. In reinforced concrete structures building steel shall be considered to be reinforcing steel of vertical columns.
5. Grounding electrode connections to structural steel, reinforcing bars, ground rods, or where indicated on the Drawings shall be with chemical exothermic weld connection devices recommended for the particular connection type. Connections to piping shall be with UL Listed mechanical ground clamps.

6. Where there is more than one service to a building or interconnected buildings, services shall be connected by means of a grounding electrode conductor.

7. Bonding shall be in accordance with the National Electrical Code.

8. Install ground rods where indicated on the Drawings with the top of the ground rods 12 inches below finished grade.

C. Equipment Grounding Conductor

1. Grounding conductors for branch circuits are not shown on the Drawings; however, grounding conductors shall be provided in all branch circuit raceways and cables.

2. Grounding conductors for feeders are typically indicated on the Drawings and the raceway is sized to accommodate grounding conductor shown. Where grounding conductor size is not indicated on the Drawings, conductor shall be in accordance with the equipment grounding conductor table of the National Electrical Code.

D. Other Grounding Requirements

1. Each telephone backboard shall be provided with a No. 6 grounding conductor. When backboard is located in vicinity of electrical service equipment, the “point of grounding” of this conductor shall be the main cold water service with connections made ahead of any valves or joints. Remote backboards shall use building steel as “point of ground.” Terminate conductor by stapling to backboard.

2. At each building expansion joint flexible copper bonding jumpers shall be attached to building structure by chemical weld process. Install bonding jumpers in concealed locations that will not subject connections or jumpers to physical abuse. Install 100' on centers across expansion joints.

3.2 TESTING

A. Upon completion of the ground rod installation, the Contractor shall test the installation in accordance with the “Electrical Testing” section of Section 260000 - Electrical General. Grounding resistance reading shall be taken before connection is made to the building cold water piping system. Ground resistance readings shall not be taken within 48 hours of rainfall.

END OF SECTION 26 05 26
SECTION 26 05 33 - CONDUIT AND RACEWAYS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. This section covers the complete interior and exterior conduit system.

B. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 260000 - Electrical General.

1.2 STANDARDS

A. Industry Standards

 1. Underwriters Laboratories Inc. (UL) Publications
 No. 1: Standard for Flexible Metal Conduit
 No. 6: Standard for Rigid Metal Conduit
 No. 467: Standard for Grounding and Bonding Equipment
 No. 651: Standard for Schedule 40 and 80 Rigid PVC Conduit
 No. 797: Electrical Metallic Tubing - Steel
 No. 1242: Standard for Electrical Intermediate Metal Conduit - Steel

 2. American National Standards Institute (ANSI)
 C-80.1: Rigid Galvanized Conduit
 C-80.3: Electrical Metallic Tubing

1.3 WORK INCLUDED

A. The work under this section shall include all labor, materials, accessories, services and equipment necessary to furnish and install conduits and raceways, complete, as indicated on the Drawings and as specified herein.

B. Other manufacturers of equal quality and performance may be submitted to the Engineer for review. When substitution of equipment is made, the Contractor shall be responsible for the costs of any item and engineering and construction revisions necessary in his or any other contract or trade that may be required to satisfy plans and specifications.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Approved Manufacturers

 1. Metallic Conduit Fittings
 a. Thomas and Betts
 b. Appleton
 c. RACO
 d. Crouse Hinds
2.2 CONDUIT FITTINGS

A. Electrical metallic tubing (EMT) couplings and connectors shall be steel. Malleable iron, pressure cast or die cast fittings are not permitted.

B. Fittings and couplings shall be set-screw type and/or compression type per 3.01.

12. Steel set screw type for 2.5” conduit and larger shall have 2 screws for
connectors and 4 screws for couplings. All connectors shall be insulated throat type.

C. Rigid steel and IMC couplings and connectors shall be standard threaded couplings, locknuts, bushings and elbows. All materials shall be steel. Erickson-type couplings may be used to complete a conduit run.

2.3 NON-METALLIC CONDUIT AND FITTINGS

A. Non-metallic conduit shall be heavy wall, Schedule 40 PVC.

B. Couplings and connectors for non-metallic conduit shall be of the same material and be the product of the same manufacturer of the conduit furnished.

C. PVC conduit for concrete encasement shall be Type DB, UL Labeled for 90 degrees C cables. Fittings shall be Type DB, solvent type, and from the same manufacturer as the conduit.

D. Concrete shall have a minimum strength of 2,500 psi at 28 days.

2.4 CONDUIT SUPPORT

A. Individual conduit hangers shall be galvanized spring steel specifically designed for the purpose and sized appropriately for the conduit type and diameter. Support individual conduits 1-1/2" and smaller with 1/4" threaded steel rods and use 3/8" rods for 2" and larger.

B. Conduit support channels shall be 14-gauge galvanized (or equivalent treatment) channel sized for the amount of conduit to be supported. Channel suspension shall be 3/8" threaded steel rods. Conduit straps shall be spring steel type compatible with channel.

C. Conduit straps shall be single-hole cast metal type or two-hole galvanized metal type. Conduit clamps shall be spring steel type for use with exposed structural steel.

2.5 RIGID METALLIC CONDUIT, INTERMEDIATE METALLIC CONDUIT, AND ELECTRICAL METALLIC TUBING

A. Rigid metallic conduit and intermediate metallic conduit shall be steel and standard thread.

B. Electrical metallic tubing (EMT) shall be steel.

2.6 RIGID METALLIC, INTERMEDIATE METALLIC, AND FLEXIBLE CONDUIT AND FITTINGS

A. Rigid metallic conduit and intermediate metallic conduit shall be steel and standard thread.

B. Flexible conduit shall be steel or aluminum type classified for system grounding.
C. Connectors for flexible conduit shall be insulated throat type rated as suitable for system ground continuity.

D. Flexible conduit used for other than connections to lighting fixtures shall not be less than 1/2" trade size. 3/8" flexible conduit may be used for connection to lighting fixtures when sized according to the National Electrical Code.

E. Flexible conduit used in damp or wet locations shall be liquid tight.

2.7 PULL BOXES

A. Pull boxes shall be constructed of galvanized steel with flat, removable covers fastened with plated steel screws.

B. Pull boxes shall be equipped with keyhole screw slots in the cover to permit removal of the cover without extracting the screws.

C. Pull boxes shall have provisions for grounding.

2.8 CONDUIT PLUGS/CAPS

A. Conduit Plugs/Caps

1. Conduit plugs shall provide a watertight seal at expose ends of conduits.
2. Conduit plugs shall be conduit size specific.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General

1. Minimum size for electrical conduits shall be 1/2" trade size.
2. Minimum size for low voltage conduits shall be 3/4" trade size.
3. Conceal all conduits, except in unfinished spaces such as equipment rooms or as indicated by symbol on the drawings.
4. Leave all empty conduits with a 200 pound test nylon cord pull line.
5. Flattened, dented, or deformed conduits are not permitted and shall be removed and replaced.
6. Fasten conduit support device to structure with wood screws on wood, toggle bolts on hollow masonry, anchors as specified on solid masonry or concrete, and machine bolts, clamps, or spring steel clips, on steel.
7. Protect conduits against dirt, plaster, and foreign debris with conduit caps or plugs, which shall remain in place until all masonry is complete. Protect conduit stub-ups during construction from damage, any damage conduits shall not be used and are to be replaced.
8. All feeder conduits shall be cleared of any dirt, foreign debris, etc.
9. Install conduit with wiring, including homeruns as indicated on the drawings. Any change resulting in a savings in labor or materials is to be made only in accordance with a Contract change. Deviations shall be
Arthur Langford Jr. Park Site Improvements
Section 26 05 33
Conduit and Raceways

made only where necessary to avoid interferences and when approved by Engineer by written authorization.

10. Conduits which penetrate roof membranes shall be installed in accordance with manufacturer’s recommendations and architectural specifications.

11. Seal all conduits entering building from below grade, all conduits entering refrigerated spaces i.e. freezers and coolers, and all conduits entering exterior mounted electrical equipment with insulating electrical putty to prevent entrance of moisture.

12. Separate raceway systems are to be installed for power systems and for control, signal and communications systems. Do not install control, signal or communications cables in the same raceways as branch circuit or feeders cables, unless indicated otherwise on the drawings.

13. Conduit fittings shall be set screw type for dry, indoor environments. Conduit fittings shall be gland and ring compression type for all conduit exposed to outdoor environments or wet locations.

14. Conduit shall be run parallel or at right angles to walls, ceilings, and structural members.

15. Support conduits at intervals not exceeding ten feet and within three feet of each outlet, junction box, fitting, panelboard, enclosure or cabinet. Support conduits from structural steel members with spring steel type or beam conduit clamps and to non-metallic structural members with one-hole conduit straps. For exposed conduits and where conduits must be suspended below structure, single conduit runs shall be supported from structure by hanger rod and conduit clamp assembly, and multiple conduits shall be supported by trapeze type support suspended from structure. Do not attach conduits to ceiling suspension system channels or suspension wires.

16. Attach feeder conduits larger than one inch trade diameter to or from structure on intervals not exceeding twelve feet with conduit beam clamps, one-hole conduit straps or trapeze type support.

17. Where conduits must pass through structural members obtain approval of Architect.

18. Install all conduits or sleeves penetrating or routed within rated fire walls or fire floors to maintain fire rating of wall or floor. Conduit shall not be installed in rated floors or walls if it compromises or violates the fire rating of floor or wall. Refer to architectural documents.

19. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

20. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

21. Telephone and signal system raceways: 2" trade size and smaller: In addition to above requirements, install raceways in maximum lengths of 150 feet and with a maximum of two 90-degree bends or equivalent. Separate lengths with pull or junction boxes where necessary to comply with these requirements.
B. Uses Permitted

1. Conduits installed within concrete floor slabs shall be galvanized rigid steel (GRS), intermediate metal conduit (IMC), Schedule 40, heavy wall PVC, or electrical non-metallic tubing (ENT).

2. Conduit run exterior exposed: Galvanized rigid steel (GRS) or intermediate metal conduit (IMC).

3. Conduits in direct contact with earth shall be Schedule 40, heavy wall PVC. Elbows for underground conduits greater than 200’ in length shall be galvanized rigid steel (GRS), or electrical metallic tubing (EMT) if elbows are concrete encased. Service entrance conduits installed exposed, or concealed in walls or above ceilings, shall be galvanized rigid steel (GRS) or intermediate metal conduit (IMC). Unless indicated otherwise, service entrance conduits shall be installed “outside” of the building as defined by the NEC. Provide concrete encasement where required or as indicated on drawings.

4. All other conduit, unless specified herein, not permitted in accordance with the NEC, or otherwise indicated on the drawings, shall be electrical metallic tubing (EMT). PVC conduit is not allowed in exposed or concealed areas, but only within concrete or below grade. Feeder or branch circuit conduits that emerge from a floor slab in an exposed location shall be galvanized rigid steel (GRS), electrical metallic tubing (EMT) or intermediate metal conduit (IMC). Where conduits emerge from a floor slab in a concealed location (a wall cavity or above ceiling), PVC elbows are permitted, provided that a conduit adaptor for steel conduit is installed at the nearest point at the slab.

5. Use flexible conduit for connections to motors and electrical duct heaters flush mounted lighting fixtures, and any vibrating equipment.
 a. Flexible conduit used for connection of motors, electric duct heaters, and unit heaters, shall not exceed 36 inches in length.
 b. Flexible conduit from outlet box to flush mounted lighting fixture shall not exceed 6 feet in length.
 c. Maintain ground continuity through flexible conduit with green equipment grounding conductor; do not use flexible conduit for ground continuity.
 d. Flexible conduit installed within plenum spaces shall be limited to lengths not exceeding 4 feet.
 e. Liquid tight flexible conduit shall be used to connect equipment in exterior, damp or wet locations.

C. Below Grade Raceway Installations

1. Install top of conduits 2 inches minimum below bottom of building slabs.

D. Raceway Installations within Concrete

1. Conduit shall be run following the most direct route between points.

2. Conduit shall not be installed in concrete where the outside diameter is larger than 1/3 of the slab thickness.
3. Conduits shall not be installed within shear walls unless specifically indicated on the drawings. Conduit shall not be run directly below and parallel with load bearing walls.

4. Protect all conduits entering and leaving concrete floor slabs from physical damage during construction.

5. Provide expansion fittings in all conduits that pass through building expansion joints.

3.2 PULL BOXES

A. Pull boxes shall be secured, independent of the conduit entries into the box. Pull boxes shall be secured to the building structure. In ceiling applications, pull boxes shall not be supported with ceiling wires.

B. Conduits entering pull boxes shall connect to pull boxes using die-cast zinc connectors.

C. Pull boxes shall be free from burrs, dirt and debris.

3.3 MAINTENANCE HOLES/HANDHOLES

A. Maintenance holes/handholes shall be installed on a base of pea gravel at least 12 inches deep.

B. Tops of maintenance holes/handholes shall be level with the existing grade.

C. Ducts should enter as perpendicular to the wall surface as possible.

D. Maintenance holes shall be grounded with four 3/4 inch diameter by 8 foot long ground rods, one driven inside of the maintenance hole at each corner. Connect the ground rods and any duct bank ground conductors together with a No. 4/0 AWG bare, stranded copper ground wire loop. A No. 2 AWG bare stranded copper pigtail from the ground wire loop shall be used to ground the maintenance hole cover frame, ladder support bracket, any metallic concrete inserts and metallic cable racks, and the shields of any cables that are spliced in the maintenance hole.

3.4 CONDUIT PLUGS/CAPS

A. Protect conduits against dirt, plaster, and foreign debris with conduit plugs. Plugs shall remain in place until ready for use.

B. Simplex, triplex or quadplex duct plugs shall be installed in conduits to house and seal cables.

END OF SECTION 26 05 33
SECTION 26 05 34 - OUTLET BOXES AND JUNCTION BOXES

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 260000 - Electrical General.

1.2 WORK INCLUDED

A. The work under this section shall include all labor, materials, accessories, services and equipment necessary to furnish and install outlet and junction boxes, complete, as indicated on the Drawings and as specified herein.

B. Equipment schedules and specifications are based on the one manufacturer listed in the schedule. Other manufacturers of equal quality and performance may be submitted to the Engineer for review. When substitution of equipment is made the Contractor shall be responsible for the costs of any item and engineered and construction revisions necessary in his or any other contract or trade that may be required to satisfy plans and specifications.

1.3 QUALITY ASSURANCE

A. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

B. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.

C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

E. Cast-Metal Pull and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.

F. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.

 1. Metal Enclosures: Steel, finished inside and out with manufacturer’s standard enamel.

G. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturer’s standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key
latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.

1.4 JOB CONDITIONS

A. Protection: Anchor boxes securely to formwork. Provide necessary protection to prevent entry of concrete.

B. Sequencing, Scheduling: Locations of outlets shown on the Drawings are relative and approximate. Exact locations shall be determined on the job and the outlets accurately set according to the architectural drawings, dimensions, casework kneespace, building conditions, furniture positions and Architect’s direction. The right is reserved to change the exact location (10'-0" or less) of any switch, ceiling outlet or other outlet in any room before it is permanently installed without increase in Contract cost.

C. All outlet boxes and junction boxes shall be accessible. Any boxes in non-accessible areas (furred ceilings) shall be set flush with barrier surface at a location approved by the Architect.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: National Electric Products Company, Thomas & Betts/Steel City, Appleton or Raco.

2.2 OUTLET BOXES

A. Standard Outlet Boxes: Boxes and covers shall be galvanized steel not less than 1/16" thick and in every instance, of such form and dimensions as to be adapted to its specific use and location, kind of fixtures to be used and number, size and arrangement of conduits connecting thereto and particularly sized to accommodate the number and size of wires to be contained therein.

B. Ceiling outlet boxes shall be 1-1/2" or 3-3/8" deep, 4" octagonal (or 4" square when required due to number of wires). Plaster rings or device covers need not be provided on ceiling boxes. Provide extension rings on ceiling boxes to accommodate number of conductors in box.

C. Wall outlet boxes for toggle switches and convenience outlets shall be 1-1/2" or 2-1/8" deep, 4" or 4-11/16" square. Provide with single-device covers (or two-device covers where needed). Covers shall be raised type to compensate for thickness of plaster or gypsum board wall finish.

D. Outlet boxes for telecommunication purposes (telephone, data, etc.) shall be 4" x 4" square, 2-1/8" deep. Provide with single device covers (or two-device covers where needed). Covers shall be raised type to compensate for thickness of plaster or gypsum board wall finish.
E. Junction boxes shall be as specified for ceiling and wall outlet boxes. Provide flat covers on ceiling outlets to match ceiling finish. Provide blank device type coverplates on wall outlets, of same materials as specified for device coverplates in same room or area.

F. Outlet boxes where exposed rigid conduit is used shall be cast ferrous alloy, galvanized or cast aluminum.

G. Covers: Where outlet boxes are to be capped, blank coverplates shall be used.

H. Barriers: Provide barriers between devices operating at different voltages or on separate systems such as normal, critical, or life safety.

2.3 FLOOR BOXES

A. Product Description

1. Floor boxes for receptacles and telephone/data outlets shall be rectangular, non-metallic PVC. Boxes shall be suitable for use in slab-on-grade or above grade. Boxes shall include a non-metallic concrete cover to prohibit concrete or debris from entering the box during installation.
2. Provide number of compartments as indicated on drawings.
3. Coverplates and flanges shall be brass.
4. Floor box device covers shall meet UL 514C requirements for scrubwater test standards.

B. Manufacturer

1. Hubbell PFBRG Series
2. Walker/Wiremold 880MP Series
3. Thomas & Betts 640P Series

C. For poke-thru devices, refer to 2.04 D of Section 262726 - Wiring Devices.

2.4 PULL AND JUNCTION BOXES

A. Pull and Junction boxes are not completely indicated. They shall be sized and installed where required in accordance with the NEC.

B. Pull and Junction boxes shall be the suitable NEMA type number to match the environmental conditions.

C. Locations of concealed pull and junction boxes shall be indicated on the record as built drawings for Owner’s record.

2.5 CABINETS, FITTINGS, BOXES: GENERAL

A. Cabinets shall be in accordance with UL 50, “Electrical Cabinets and Boxes” and NEMA 250, Type 1. Electrical cabinets, boxes and fittings shall be as required
for types, sizes, and NEMA enclosure classes. Where not indicated, provide units of types, sizes, and classes appropriate for the use and location. Provide all items complete with covers and accessories required for the intended use. Provide gaskets for units in damp or wet locations.

B. Construction shall be sheet steel, NEMA 1 class except as otherwise indicated. Cabinets shall consist of a box and a front consisting of a 1-piece frame and a hinged door. Arrange door to close against a rabbet placed all around the inside edge of the frame, with a uniformly close fit between door and frame. Provide concealed fasteners, not over 24" apart, to hold fronts to cabinet boxes and provide for adjustment. Provide flush or concealed door hinges not over 24" apart and not over 6" from top and bottom of door. For flush cabinets, make the front approximately 3/4" larger than the box all around. For surface mounted cabinets make from same height and width as box. Furnish metal barriers to separate wiring of different systems and voltage, and furnish accessory feet where required for freestanding equipment.

C. Fasteners for general use shall be corrosion resistant screws and hardware including cadmium and zinc plated items.

D. Fasteners for damp and wet locations shall be stainless steel screws and hardware.

E. Exterior finish shall be gray baked enamel for items exposed in finished locations except as otherwise indicated.

F. Painted interior finish, where indicated, shall be white baked enamel.

G. Fittings for boxes, cabinets, and enclosures shall be in accordance with UL 5148 and shall be zinc plated steel for conduit hubs, bushings and box connectors.

2.6 UNDERGROUND PULL/JUNCTION BOXES

A. Unless noted otherwise, underground enclosures shall be fiberglass, open-bottom and sloped-wall. Covers shall be polymer concrete. Boxes shall be installed in areas expected to experience only light incidental, non-deliberate vehicular traffic (including that from mowers).

B. Enclosures shall meet the load requirements and three-point test procedures specified in the industry standard ANSI SCTE.77 2007. Enclosures shall meet the Tier 8 cover load test (for light traffic) of 12,000 lbs. over a 10" x 10" plate.

C. Manufacturer’s guidelines shall be followed for installation, including 6" gravel bed beneath box for stability and drainage. Concrete collar shall be poured around enclosure to protect the ring and top from impact due to soil erosion.

D. Manufacturer

1. Highline Products
2. OZ-Gedney
PART 3 - EXECUTION

3.1 INSPECTION

A. The location of all wall outlets, including light fixtures, receptacles, switches, etc., shall be checked to see that the outlet will clear any wall fixture, shelving, work tables, sinks, baseboard and fin type convectors, bulletin boards, etc., that will be installed.

B. Exact locations of outlet boxes shall be coordinated with other trades so that outlet will not be covered by ductwork, piping, etc.

C. The approximate locations of outlets are indicated on the Drawings. The exact locations shall be determined at the building. The right is reserved to change, without additional cost, the exact location of any outlet, a maximum of 10’ before it is permanently installed.

3.2 PREPARATION

A. Architectural Placement: Outlets occurring in architectural features shall be accurately centered in same. Space wall switch outlets equidistant from door trims on the strike side of doors as actually installed so that coverplate clears trim. Orientation of outlet boxes (horizontal or vertical) shall be as indicated on architectural elevations.

B. Install all outlet boxes in finished areas flush with wall or ceiling finish. Maintain 1/4” or less space between outlet box front and finish wall surface.

C. All switches at same level shall be installed on one horizontal line as shown on the Drawings.

D. Wall mounted controls, including temperature controls, in a room shall be grouped at the same location and at same mounting heights.

3.3 INSTALLATION

A. At all concealed outlets for electric lights, switches, wall receptacles, etc., standard outlet boxes and plaster rings shall be provided.

B. Outlet boxes shall be firmly anchored in place and shall be provided with approved fixture studs where required. Outlet boxes shall not depend on the coverplate to hold it secure to the wall.

C. Boxes on opposite sides of walls or partitions: Where drawings show back-to-back wiring devices, the devices on opposite sides of the wall shall be offset a minimum of 6”. Through-the-wall type boxes shall not be used. Where boxes will be located on opposite sides of walls or partitions located 24” or closer to each other, moldable putty pads shall be installed to completely cover the
exterior surfaces of the box within the stud cavity with a ball of putty material used to plug the end of each conduit at its connection to the box.

D. All holes cut through new or existing smoke or fire partitions shall be sealed. Sealant shall be 3M Brand Fire Barrier System or approved equal. Seals shall be installed in accordance with manufacturer’s recommendations.

E. All flush boxes in rated walls that are larger than 16 square inches in area shall be backed as follows: 1-hour wall - 1 layer of 5/8” gypsum board; 2-hour rated wall - 2 layers of 5/8” gypsum board. Gypsum shall be fire code and attached to outside surfaces of box(es).

F. Cast aluminum, threaded hub type boxes with gasketed weatherproof covers shall be used for wet locations where box is surface mounted.

G. Location of floor boxes indicated is approximate. The Contractor shall refer to the final furniture layout or request field instructions for the exact location. Consult the Architect prior to installation.

END OF SECTION 26 05 34
SECTION 26 09 23 - OCCUPANCY SENSORS

PART 1 - GENERAL

1.1 WORK INCLUDED

A. The Contractor’s work shall include all labor, materials, tools, appliances, control hardware, sensor, wire, junction boxes and equipment necessary for and incidental to the delivery, installation and furnishing of a completely operational occupancy sensor lighting control system, as described herein.

B. The Contractor/supplier shall examine all general specification provisions and drawings for related electrical work required as work under Division 26.

C. The Contractor shall coordinate all work described in this section with all other applicable plans and specifications, including but not limited to wiring, conduit, fixtures, HVAC systems and building management systems.

1.2 EQUIPMENT QUALIFICATION

A. Products supplied shall be from a single manufacturer that has been continuously involved in the manufacturing of occupancy sensors for a minimum of five (5) years. Mixing of manufacturers shall not be allowed.

B. All components shall be UL Listed, offer a 5-year warranty and meet all state and local applicable code requirements.

C. Products shall be manufactured by an ISO 9002 certified manufacturing facility and shall have a defect rate of less than 1/3 of 1%.

D. Wall switch products must be capable of withstanding the effects of inrush current. Submittals shall clearly indicate the method used.

1.3 SYSTEM DESCRIPTION

A. The objective of this section is to ensure the proper installation of the occupancy sensor based lighting control system so that lighting is turned off automatically after reasonable time delay when a room or area is vacated by the last person to occupy said room or area.

B. The occupancy sensor based lighting control shall accommodate all conditions of space utilization and all irregular work hours and habits.

C. The Contractor shall warrant all equipment furnished in accordance to this specification to be undamaged, free of defects in materials and workmanship, and in conformance with the specifications. The supplier’s obligation shall include repair or replacement, and testing without charge to the Owner, all or any
parts of equipment which are found to be damaged, defective or non-conforming and returned to the supplier. The warranty shall commence upon the Owner’s acceptance of the project. Warranty on labor shall be for a minimum period of one (1) year.

1.4 SUBMITTALS

A. Manufacturer shall substantiate conformance to this specification by supplying the necessary documents, performance data and wiring diagrams. Any deviations to this specification must be clearly stated by letter and submitted.

B. Submit a lighting plan clearly marked by manufacturer showing proper product, location and orientation of each sensor.

C. Submit any interconnection diagrams per major subsystem showing proper wiring.

D. Submit standard catalog literature which includes performance specifications indicating compliance to the specification.

E. Catalog sheets must clearly state any load restrictions when used with electronic ballasts.

1.5 SYSTEM OPERATION

A. It shall be the Contractor’s responsibility to make all proper adjustments to assure Owner’s satisfaction with the occupancy system.

1.6 ACCEPTABLE MANUFACTURERS

A. The Watt Stopper, or Pre-Approved Equal: For pre-approval, provide all the information listed under section 1.04 A and 1.04 D a minimum of ten (10) working days prior to initial bid date.

B. The listing of any manufacturer as “acceptable” does not imply automatic approval. It is the sole responsibility of the electrical contractor to ensure that any price quotations received and submittals made are for sensors which meet or exceed the specifications included herein.

PART 2 - PRODUCTS

2.1 GENERAL

A. All products shall be Watt Stopper product numbers.

4. HID Control: DM-100.
5. Outdoor Sensors: EW-100, EW-200, EN-100, EN-200.

B. Wall switch sensors shall be capable of detection of occupancy at desktop level up to 300 square feet, and gross motion up to 1000 square feet.

C. Wall switch sensors shall accommodate loads from 0 to 800 watts at 120 volts; 0 to 1,200 watts at 277 volts and shall have 180 degrees coverage capability.

D. Wall switch products shall utilize Zero Crossing Circuitry, which increases relay life, protects from the effects of inrush current, and increases sensor’s longevity.

E. Wall switch sensors shall have no leakage current to load, in manual or in Auto/Off mode for safety purposes and shall have voltage drop protection.

F. Where specified, wall switch sensors shall provide a field selectable option to convert sensor operation from automatic-ON to manual-ON.

G. Where specified, vandal resistant wall switch sensors shall utilize a hard lens with a minimum 1.0 mm thickness. Products utilizing a soft lens will not be considered.

H. Passive infrared sensors shall utilize Pulse Count Processing and Digital Signature Analysis to respond only to those signals caused by human motion.

I. Passive infrared sensors shall utilize mixed signal ASIC which provides high immunity to false triggering from RFI (hand-held radios) and EMI (electrical noise on the line), superior performance, and greater reliability.

J. Passive infrared sensors shall have a multiple segmented Lodif Fresnel lens, in a multiple-tier configuration, with grooves-in to eliminate dust and residue build-up.

K. Where specified, passive infrared and dual technology sensors shall offer daylighting footcandle adjustment control and be able to accommodate dual level lighting.

L. Dual technology sensors shall be corner mounted to avoid detection outside the controlled area when doors are left open.

M. Dual technology sensors shall consist of passive infrared and ultrasonic technologies for occupancy detection. Products that react to noise or ambient sound shall not be considered.

N. Ultrasonic sensors shall utilize Advanced Signal Processing to adjust the detection threshold dynamically to compensate for constantly changing levels of activity and air flow throughout controlled space.
O. Ultrasonic operating frequency shall be crystal controlled at 25 kHz within +0.005% tolerance, 32 kHz within +0.002% tolerance, or 40 kHz + 0.002% tolerance to assure reliable performance and eliminate sensor crosstalk. Sensors using multiple frequencies are not acceptable.

P. All sensors shall be capable of operating normally with electronic ballasts, PL lamp systems and rated motor loads.

Q. Coverage of sensors shall remain constant after sensitivity control has been set. No automatic reduction shall occur in coverage due to the cycling of air conditioner or heating fans.

R. All sensors shall have readily accessible, user adjustable settings for time delay and sensitivity. Setting shall be located on the sensor (not the control unit) and shall be recessed to limit tampering.

S. In the event of failure, a bypass manual override shall be provided on each sensor. When bypass is utilized, lighting shall remain on constantly or control shall divert to a wall switch until sensor is replaced. This control shall be recessed to prevent tampering.

T. All sensors shall provide an LED as a visual means of indication at all times to verify that motion is being detected during both testing and normal operation.

U. Where specified, sensor shall have an internal additional isolated relay with Normally Open, Normally Closed and Common outputs for use with HVAC control, Data Logging and other control options. Sensors utilizing separate components or specially modified units to achieve this function are not acceptable.

V. All sensors shall have UL rated, 94V-0 plastic enclosures.

W. Outdoor motion sensors shall have UL 773A ratings. EWF outdoor sensors shall additionally have UL 1571 ratings.

X. EW-100 outdoor sensors shall cover up to 35 feet, with a field of view of 180 degrees. EW-200 outdoor sensors shall cover up to 52.5 feet, with a field of view of 270 degrees. EN-100 outdoor sensors shall cover up to 35 feet, with a field of view of 90 degrees. EN-200 outdoor sensors shall cover up to 100 feet, with a long range lens view.

Y. EWF outdoor sensors shall include polycarbonate lamp holders that accept PAR 20 or 38 lamps up to 150W per lamp.

Z. Outdoor sensors shall have an operating temperature range of -40 degrees F to +130 degrees F.
AA. To ensure complete protection from weather elements and exposure, outdoor sensors shall be manufactured with precision double-shot tooling and contain internal silicon gaskets.

BB. HID controller shall be compatible with all types of High Intensity Discharge (HID) lamps, including Metal Halide, Metal Halide Pulse Start, and High Pressure Sodium.

2.2 CIRCUIT CONTROL HARDWARE – CU

A. Control Units: For ease of mounting, installation and future service, control unit(s) shall be able to externally mount through a 1/2" knock-out on a standard electrical enclosure and be an integrated, self-contained unit consisting internally of an isolated load switching control relay and a transformer to provide low-voltage power. Control unit shall provide power to minimum of two (2) sensors.

B. Relay Contacts shall have rating of:

 13A - 120 VAC Tungsten
 20A - 120 VAC Ballast
 20A - 277 VAC Ballast

C. Control wiring between sensors and controls units shall be Class II, 18-24 AWG, stranded UL Classified, PVC insulated or TEFLON jacketed cable suitable for use in plenums, where applicable.

D. Minimum acceptable wire gauge from the circuit control hardware relays shall be #14 AWG.

PART 3 - EXECUTION

3.1 INSTALLATION

A. It shall be the Contractor’s responsibility to locate and aim sensory in the correct location required for complete and proper volumetric coverage within the range of coverage(s) of controlled areas per the manufacturer’s recommendations. Rooms shall have 90 to 100% coverage to completely cover the controlled area to accommodate all occupancy habits of single or multiple occupants at any location within the room(s). The locations and quantities of sensors shown on the drawings are diagrammatic and indicate only the rooms which are to be provided with sensors. The Contractor shall provide additional sensors if required to properly and completely cover the respective room.

B. It is the Contractor’s responsibility to arrange a pre-installation meeting with the manufacturer’s factory authorized representative, at the Owner’s facility, to verify placement of sensors and installation criteria.

C. Proper judgment must be exercised in executing the installation so as to ensure the best possible installation in the available space and to overcome local difficulties due to space limitations or interference of structural components. The
Contractor shall also provide, at the Owner’s facility, the training necessary to familiarize the Owner’s personnel with the operation, use, adjustment, and problem solving diagnosis of the occupancy sensing devices and systems.

END OF SECTION 26 09 23
SECTION 26 24 16 - PANELBOARDS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 260000 - Electrical General.

B. Provide the panelboards indicated on the Drawings complete with overcurrent protection devices and spaces.

C. This section includes panelboards and distribution panelboards and associated auxiliary equipment rated 600 V or less as shown on the drawings.

D. Refer to panel schedule and one-line power diagram on drawings for specific requirements of each panel.

1.2 WORK INCLUDED

A. The work under this section shall include all labor, materials, accessories, services and equipment necessary to furnish and install panelboards, complete, as indicated on the Drawings and as specified herein.

B. Equipment schedules and specifications are based on the one manufacturer listed in the schedule. Other manufacturers of equal quality and performance may be submitted to the Engineer for review. When substitution of equipment is made, the Contractor shall be responsible for the costs of any item and engineering and construction revisions necessary in his or any other contract or trade that may be required to satisfy plans and specifications.

1.3 QUALITY ASSURANCE

A. Panels shall be factory assembled.

B. Coordination: Coordinate installation with architectural and structural features, equipment installed under other sections of the Specifications and electrical equipment to ensure panel access and so that clearance minimums are provided.

C. Components and installation shall be in accordance with NFPA 70, “National Electrical Code,” NEMA PBI, “Panelboards” and UL67 and UL50.

D. Panelboards and load centers shall be listed and identified for use with 75 degrees C rated conductors.
1.4 SUBMITTALS

A. Refer to Section 260000 - Electrical General for submittal requirements.

B. Manufacturers Product Data:

1. Submit material Specifications and installation data for products specified under Part 2 - Products to include:
 a. Overcurrent protection devices
 b. Panelboards

C. Shop Drawings: Submit shop drawings to indicate information not fully described by the product data to indicate compliance with the Contract Drawings.

 1. Include electrical characteristics and ratings for each panelboard with dimensions, mounting, bus material, voltage, ampere rating, mains, poles and wire connection, and any accessories. Indicate method of ground bus attachment to enclosure.
 2. Include bussing diagram indicating each bussing overcurrent protection device position.
 3. Provide a schedule indicating overcurrent protection device type, trip and size, poles, frame type, interrupting capacity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Panelboard manufacturer shall be:

 1. Siemens
 2. Square D
 3. General Electric
 4. Cutler-Hammer

B. Coordination panelboard manufacturer (fusible panelboards) shall be:

 1. Cooper Bussman

2.2 GENERAL REQUIREMENTS

A. All panels and overcurrent protection devices shall be UL Listed and bear a UL Label. Where panel serves as service entrance equipment, panel shall bear a UL Label indicating suitability as service entrance equipment.

B. Panels shall be of the dead front safety type.

C. Provide panels complete with factory assembled circuit breakers or fuses connected to the bus bars in the positions shown on the panel schedules.
D. Provide all panelboards fully rated to the A.I.C. ratings. Contractor shall field verify and provide panel with same AIC rating as the removed service entrance panel as indicated on drawing.

2.3 BUSSING AND INTERIORS

A. All bus bars shall be copper. Main lugs and main overcurrent protection devices shall be UL approved for copper or aluminum conductors and shall be of a size range for the conductors indicated on the drawings. Each panel shall contain a full size grounding bus. All panelboards shall contain a full size insulated neutral bus unless otherwise indicated on the drawings.

B. The neutral and ground bus shall have a sufficient number of lugs to singularly terminate each individual conductor requiring a connection.

C. Where designated on panel schedule as “space,” include all necessary bussing, device support and connections. Provide blank cover for each space.

D. Where specified or indicated on the drawings, provide sub-feed lugs adjacent to the mains or feed-through lugs opposite end of mains and increase box heights to provide additional cable bending and termination space. Lugs to be the same size and capacity as mains and rated for aluminum or copper conductor terminations.

2.4 ENCLOSURES

A. Panelboard width shall not be less than twenty inches unless indicated on the drawings (32” minimum for distribution panelboards).

B. Provide concealed captive clamping devices, concealed hinges and chrome lock for all flush mounted panels. Key all panels throughout project alike.

C. Where two section panels are required, both sections shall have fully rated bus, separate cabinets connected by conduit nipples. Interconnect sections with copper conductors with ampacity equal to rating of main bus. Route phase and neutral conductors together between panels. Provide separate trims for each section.

D. Panelboard trims for surface mounted panelboards shall be continuously hinged on one side so that when opened, wiring gutters are completely exposed.

E. Provide a label for each branch circuit, feeder, and main circuit breaker in distribution panels, permanently attached per the requirements of Section 260000 - Electrical General, 2.02A.

F. Cabinets, flush or surface mounted as indicated. NEMA PB-1, Type 1 enclosure, except where the following enclosure requirements are indicated:

1. NEMA 250, Type 3R - Raintight.
2. NEMA 250, Type 3S - Raintight and dust tight.
3. NEMA 250, Type 4X - Corrosion-resistant stainless steel enclosure, watertight, dust tight, and resistant to oil and coolant seepage. This type shall be used in kitchen areas.

4. NEMA 250, Type 12 - Dust tight, dripproof, and resistant to oil and coolant seepage.

G. Enclosure shall be fabricated with galvanized steel. Trims shall have electrostatic applied ANSI gray enamel finish and adjustable indicating trim clamps for securing trim to the enclosure. Screwed-on trims shall not be acceptable. Trim shall have an angle support along the bottom serving as a support between trim and enclosure for safe installation and removal of trim.

H. Exterior Panels: Panelboards mounted outside of building shall be in NEMA type 3R enclosures. Panelboards shall have in addition to the standard specified items the following:

1. Piano hinge
2. Seams continuously welded
3. Rolled lip around door and cabinet
4. No knockouts or holes
5. Neoprene gaskets on inside of door
6. Stainless steel hardware
7. Drip hood at top above door

2.5 CIRCUIT BREAKERS

A. Interrupting rating of all circuit breakers in panelboards shall have UL rating of not less than the RMS symmetrical amps indicated on the Drawings at system voltage.

B. Circuit breakers shall be provided with trip rating and poles as indicated on the drawings or specified herein.

C. Multi-pole breakers shall be common trip and common reset; tie handle connection between single pole breakers is not acceptable.

D. Branch circuit breakers in lighting and appliance panels shall be quick-make, quick-break, thermal magnetic type bolted to the bus. Circuit breakers in distribution type panel boards shall be bolted to the bus.

E. Provide the following special devices and accessories when indicated on the drawings or specified herein.

1. Ground fault interrupting circuit breakers (GFI) where indicated on the drawings.
2. Provide handle lock-on device (to prevent manually turning off device without removal) for all overcurrent devices where indicated on panelboard schedules, and for those protecting circuits serving fire alarm equipment, and for those dedicated for powering emergency battery-powered unit equipment.
3. Provide UL Listed “SWD” switching duty circuit breakers on the devices indicated on the drawings.
4. Provide shunt trip device for electrically tripping circuit breakers indicated on the drawings.
5. Overcurrent protective devices for fire alarm circuits shall have handles that are factory-marked in the color red.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Provide from each flush mounted panelboard four (4) 3/4" empty conduits stubbed out above ceiling line and capped.

B. Install panelboards in accordance with NEMA PB1.1, “General Instructions for Proper Installation, Operation and Maintenance of Panelboards Rated 600 Volts or Less” and manufacturer's written installation instructions.

C. Mount panelboards with top circuit breaker not more than 6'-6" above finished floor.

D. Only one conductor installed under terminal of individual circuit breakers. Form and train conductors in panel enclosure neatly parallel and at right angles to sides of box. Un-insulated conductor shall not extend beyond one-eighth inch from terminal lug.

E. Do not splice conductors in panels. Where required, install junction box adjacent to panel and splice or tap conductors in box.

F. Mounting and Support

1. Mounting
 a. Enclosure shall be secured to structure by a minimum of four (4) fastening devices. Panelboards 600 amp and larger shall be secured by a minimum of eight (8) devices. A 1.5 inch minimum diameter round washer shall be used between head of screw or bolt and enclosure.
 b. Enclosures shall be mounted where indicated on the drawings or specified herein. Support from the structure with fastening device specified.
 c. Attach enclosure directly to masonry, concrete, or wood surfaces.
 d. Mounted enclosure on metal channel (strut), which is connected to structure with fastening device specified, for installation on steel structure or sheet rock walls.

G. Maintain conductor phase color code requirements described in the conductors and cables section of the specifications.

H. A typewritten branch circuit directory (based on as-built conditions) shall be provided for each panelboard and load center, permanently mounted on inside of
door in a transparent, protective cover. Room number(s) or room name(s) shall be included in the circuit description in coordination with the final naming/numbering scheme for the project (e.g. “Office Receptacles” shall read “Office Receptacles – Rm. 202, 203”).

I. Tighten electrical connectors and terminals, including grounding connections, in accordance with manufacturer’s published torque-tightening values. Where manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.

J. Mounting of all panelboards and all hardware used for mounting shall be in accordance with the seismic criteria per the applicable building code.

END OF SECTION 26 24 16
SECTION 26 27 26 - WIRING DEVICES

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 260000 - Electrical General.

1.2 WORK INCLUDED

A. The work under this section shall include all labor, materials, accessories, services and equipment necessary to furnish and install wiring devices, complete, as indicated on the Drawings and as specified herein.

B. Equipment schedules and specifications are based on the one manufacturer listed in the schedule. Other manufacturers of equal quality and performance may be submitted to the Engineer for review. The following manufacturers are allowed:

1. Hubbell
2. Pass & Seymour
3. Cooper
4. Leviton
5. Thomas & Betts/Steel City
6. Walker/Wiremold

When substitution of equipment is made, the Contractor shall be responsible for the costs of any item and engineering and construction revisions necessary in his or any other contract or trade that may be required to satisfy plans and specifications.

C. This section includes receptacles, connectors, switches, dimmers, timeclocks and coverplates.

1.3 QUALITY ASSURANCE

A. Wiring devices shall comply with applicable sections of NEMA Standard WD-1, NFPA 70, Article 100.

B. All special purpose receptacles shall be NEMA standard configuration.

C. Comparative devices by acceptable manufacturers are equal.
PART 2 - PRODUCTS

2.1 WIRING DEVICE DESCRIPTION AND MANUFACTURER - COMMON AREAS

A. Single & Duplex Receptacles (20 Amp)
 1. Single or duplex type receptacle as indicated. 125V/20/A/2P/3W/G rating - NEMA - 5-20R type.
 2. Face color shall be as selected by the architect.
 3. Manufacturer
 a. Hubbell 5362

B. GFCI Duplex Receptacles
 1. Duplex, feed-thru type ground fault current interrupter receptacle with test/reset buttons. 125V/20A/2P/3W/G rating - NEMA 5-20R type conforming to UL #498, UL #943 Class A and NEMA #WD1-4.02.
 2. Manufacturer
 a. Hubbell GF20 Series

C. Isolated Ground Single & Duplex Receptacles
 1. Single or duplex type receptacles as indicated. 125V/20A/2P/3W/IG rating - NEMA 5-20R type ground internally isolated from receptacle frame and ground pigtail or terminal screw.
 2. Manufacturer
 a. Hubbell IG5352

D. Clock/Flat Screen Receptacles
 2. Manufacturer
 a. Hubbell RR151CH Series

E. Maintained Contact Switches
 1. Provide toggle operated switches SPST, DPST, 3-way or 4-way operation as indicated. 277V/20A rating, quiet type, maintained contact, and a green hexagonal ground screw or ground pigtail, and side wired.
 2. Manufacturer
 a. Hubbell 1221 Series (Color to match receptacles).

F. Momentary Contact Switches
 1. Provide toggle or key operated switches as indicated with single circuit, 3-position center-off operation. 277V/20A rating, quiet type, momentary contact, spring loaded switch, and green hexagonal ground screw or ground pigtail, back and side wired.
 2. Manufacturer
a. Hubbell HBL 155* (Color to match receptacle).

G. Maintained Contact Slider Type Switch (For Multi-Ganging with Dimmers)

1. Slide-operated switch (to match dimmer), single pole, 3-way or 4-way operation as indicated, 120/277V, 20A rating.
2. Manufacturer
 a. Leviton Monet Series
 b. Lutron Nova T Series

H. Slider Type Incandescent Dimmers

1. Slide operated AC incandescent solid state type dimmer with positive ON/OFF switching, integral surge protection, voltage stabilized output, RFI filtered and maximum lighting level adjustment. 120V/60Hz, unless noted otherwise, with lettering and/or nameplate as indicated. Dimmers shall have lowest profile available (wattage permitting).
2. Manufacturer
 a. Leviton Monet Series
 b. Lutron Nova T Series

I. Illuminated Toggle Switches

1. Single pole, 3-way or 4-way, as indicated, conforming to UL #20, NEMA #WDI-3.02 and F.S. #W-S-896E. 277V/20A rating, quiet type, maintained contact, and a green hexagonal ground screw or ground pigtail, back and side wired. Red colored toggle to glow when switch is on.
2. Manufacturer
 a. Hubbell HBL 1221PL

J. Weather-Resistant Receptacles

1. All 15- and 20-amp receptacles installed in damp or wet locations shall be listed weather-resistant type.

2.2 COVERPLATE DESCRIPTION AND MANUFACTURER - COVERPLATES

A. Flush Mounted Interior Receptacle/Switch Coverplates

1. Single or multi-gang to match device type. Medium size (4-7/8" min.), standard depth, smooth finish with nylon material.
2. Color to match device color.
3. Coverplates in mechanical/electrical equipment rooms and high abuse areas shall be stainless steel, non-magnetic.
4. Manufacturer
 a. Hubbell NPJ Series (nylon)
 b. Hubbell SS Series (stainless steel)

B. Weatherproof Device Coverplates
1. Provide weatherproof “in use” cast aluminum lockable covers. Plastic covers are allowed on dwelling balconies.
 a. Hubbell WP Series
 b. Thomas & Betts Russell Stoll Series

C. Multi-Outlet Raceway

1. Product Description
 a. Two-piece rectangular surface raceway of length as prescribed. Stainless steel type 304 housing complete with all bends, fittings, couplings, caps and mounting hardware.
 b. Single 15A/125V grounding outlets UL Labeled and full length ground wire.
 c. Outlets 18” on centers starting no less than 9” from end.
 d. Maximum of six outlets per circuit. Where two or more circuits are utilized the outlets shall be on alternate circuits.

2. Manufacturers
 a. Walker/Wiremold
 b. Hubbell

2.3 MISCELLANEOUS ITEMS

A. Time Switches

1. Electronic Astronomical Schedule Type
 a. 365 day scheduling, solid state, skip-a-day feature, daylight saving changeover, leap year adjusted with capacitor backup, DPDT-120V/20A rated contacts, light sensor input.
 b. Acceptable Manufacturer
 1) Tork DZS Series (channels as required)

B. Photoelectric Control Switches

1. Product Description
 b. Die-cast housing with adjustable sensor.

2. Manufacturers
 a. AMF/Paragon
 b. Tork 2100 Series

C. Lighting Contactor

1. Product Description
 a. Multi-pole contactor for switching branch circuit tungsten and ballast lighting and resistant heating loads.
 b. Number of poles as indicated (paralleling multiple contactors is acceptable), poles rated for 20 amperes @ 600V continuous duty.
 c. Mechanically held contactor with coil clearing contacts, operating coil voltage to match circuit characteristics.
 d. Housed in panelboard (if indicated).
D. Poke-thru Floor Devices
 1. Product Description
 a. Refer to drawings for specific features.
 b. Device shall meet UL 514A requirements for scrubwater test standards.
 2. Manufacturer
 a. Hubbell
 b. Walker/Wiremold
 c. Thomas & Betts/Steel City

PART 3 - EXECUTION

3.1 INSTALLATION

A. All dimmer circuits shall have dedicated neutrals.

B. Install decorative plates on switch, receptacle, and blank outlets when indicated.

C. Install devices and wall plates flush and level.

D. Coordinate the exact location of wiring devices with other trades and architectural features. Do not locate devices on two different architectural finishes such as half on wall tile and half on painted surface, unless noted otherwise.

E. Provide plaster rings in areas requiring them due to construction.

F. Where more than one device is indicated, arrange in gangs covered with one coverplate per manufacturer’s instructions.

G. Where dimmer(s) and switch(es) are shown adjacent to one another, switch(es) shall be a maintained contact switch matching dimmer style, so that a common, multi-gang faceplate can be used.

H. Provide 6" long ground wire from grounding lug to all switches and receptacles to a screw type bonding device on the conduit or outlet box.

END OF SECTION 26 27 26
26 28 16 DISCONNECT SWITCHES

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. All work specified herein shall be accomplished in accordance with the applicable requirements of Section 260000 - Electrical General.

1.2 WORK INCLUDED

A. The work under this section shall include all labor, materials, accessories, services and equipment necessary to furnish and install disconnect switches, up to 1200 amps, complete, as indicated on the Drawings and as specified herein.

B. Equipment schedules and specifications are based on the one manufacturer listed in the schedule. Other manufacturers of equal quality and performance may be submitted to the Engineer for review. When substitution of equipment is made, the Contractor shall be responsible for the costs of any item and engineering and construction revisions necessary in his or any other contract or trade that may be required to satisfy plans and specifications.

C. This section includes fuses.

D. This section includes individually mounted enclosed switches used for the following:
 1. Service disconnecting means.
 2. Feeder and branch-circuit protection.

1.3 SUBMITTALS

A. Product Data: For each type of switch and fuse accessory, and component indicated, include dimensions and manufacturer’s technical data on features, performance, electrical characteristics, ratings, and finishes.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NEMA AB 1, NEMA KS 1 and UL 98.
C. Comply with NFPA 70.

D. Comply with NEMA FU 1.

E. Source Limitations: Provide fuses from a single manufacturer.

1.5 COORDINATION

A. Coordinate layout and installation of switches and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturer of fusible and non-fusible switches shall be Cutler-Hammer, General Electric, Siemens or Square D Company.

B. Manufacturer of fuses shall be Bussman, Gould Shawmut or Littelfuse.

2.2 ENCLOSED SWITCHES

A. All disconnect switches shall be heavy duty type with lockable handles.

B. Enclosed, non-fusible switch: NEMA KS 1.

C. Enclosed, fusible switch, 800 A and smaller: NEMA KS 1 with clips to accommodate specified fuses and interlocked with cover in closed position.

D. Furnish and install all safety type disconnecting switches indicated on the drawings, specified or required by the National and/or State Electrical Code. Switches shall be externally operable. If the size is not shown on the drawings, the subcontractor shall size the disconnect switch in accordance with name plate data of the equipment they serve.

E. Coordinate with other trades that may provide unit mounted disconnect switches prior to submission of bids.

F. Safety type disconnecting switches shall be heavy duty, 600 volt industrial type with quick-make, quick-break mechanism and interlocking cover which normally cannot be opened when the switch is in the “ON” position. Switches shall be single throw. Fusible switches shall be equipped with fuse clips to receive Bussman fuses. Switches shall have provision for padlocking in the open and
closed positions. The operating handle shall be visible in either the on or off position.

G. All fused disconnect switches mounted above 6'-6" shall be hook stick operable.

2.3 INTERIOR

A. Switch blades shall be operated by rotating shaft directly connected to the operating handle mechanism. Switch blades shall be clearly visible in the open position. All switches shall have clear shields over the incoming line lugs. Line shields shall be attached in such a way that switch blade covers or arc shields need not be removed for line installation. Line and load lugs shall be front removable and suitable for copper or aluminum, 60/75 degree wire through 200A sizes, 75 degrees C wire for 400-800A sizes.

B. Current limiting type RK1 dual element time delay fuses shall be furnished and installed as necessary; rating shall be shown on drawing.

2.4 ENCLOSURES

A. All switches shall have NEMA type 1 general purpose enclosures unless indicated otherwise on the drawings. NEMA 3R covers shall be side hinged rather than top hinged. NEMA 1 and 3R switches through 200A sizes shall tangential knockouts for conduit line up against walls. NEMA 12 enclosures through 200A sizes shall be UL Listed for conversion to NEMA 3R usage by opening a factory provided drain hole. All types of enclosures shall have metal nameplates affixed to the cover to show the switch type and rating and clearly indicate “ON” and “OFF” direction of handle movement. Provide hubs on all NEMA 4, 4X, or 3R type disconnects.

B. Provide manufacturer's standard factory applied finish unless otherwise indicated.

C. Provide phenolic engraved nameplate for disconnect switches.

2.5 CONTROL POLE

A. Where required a direct action interlock or control pole shall be affixed to the switch base in such a manner as to operate positively and only with the opening and closing of the switch power poles.

2.6 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

B. Examine elements and surfaces to receive enclosed switches for compliance with installation tolerances and other conditions affecting performance. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Locate disconnect switches to provide working clearance and full accessibility as required by the National Electrical Code.

B. Mounting and Support

1. Mounting
 a. Enclosure shall be secured to structure by a minimum of four (4) fastening devices. A 1.5-inch minimum diameter round washer shall be used between head of screw or bolt and enclosure.
 b. Enclosure shall be mounted where indicated on the drawings or specified herein. Support from the structure with fastening device specified. Mount with operating handle at 60" AFF, unless other height is indicated.
 c. Attach enclosure directly to masonry, concrete, or wood surfaces.
 d. Mounted enclosure on metal channel (strut), which is connected to structure with fastening device.
 e. Where enclosure is not indicated on a wall or structure, construct a metal channel (strut) free standing frame secured to floor, pad, or other appropriate building structure.

C. Do not splice conductors in enclosure. Where required install junction box or wireway adjacent to enclosure and splice or tap conductors in box. Refer to number of conductors in a conduit limitation defined in the conductors and cables section of the Specifications and do not exceed.

3.3 CONNECTIONS

A. Install equipment grounding connections for switches with ground continuity to main electrical ground bus.

B. Tighten electrical connectors and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.
3.4 CLEANING

A. On completion of installation, inspect interior and exterior of enclosures. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

B. Touch up paint all scratched or marred surfaces with factory furnished touch up paint of the same color as the factory applied paint.

END OF SECTION 26 28 16
SECTION 26 51 00 - LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the lighting system requirements.

B. All fixtures shall be current source, provided with lamps ready to use.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. Refer to another division for the ceiling systems.

B. Lighting system shall be coordinated with the ceilings.

1.3 SUBSTITUTIONS/VALUE ENGINEERING/PRICING

A. Substitution/value engineering requests shall be accompanied by complete manufacturers data with model numbers, cut sheets with options indicated, and a full photometric report. For exterior lighting, a computer generated point by point calculation shall be provided.

B. All substitution requests shall be submitted in completion to Engineer at least 10 days prior to bid date.

C. Pricing for lighting fixtures shall be separate from pricing for lighting controls (occupancy sensors, relay controls, dimming).

PART 2 - PRODUCTS

2.1 BALLASTS

A. All fluorescent lamp ballasts shall be low-loss, high power factor Class “P,” with “A” sound rating and shall bear UL and CBM certifications. Ballast case temperature shall not exceed 90 degrees C.

B. All fluorescent fixtures shall be equipped with program-start ballasts. Multi-lamp ballasts shall be parallel-wired.

C. Linear and compact fluorescent lamp ballasts shall be electronic by Advance, General Electric, Osram Sylvania, or Universal.

D. All HID lighting fixtures shall have a high power factor, regulated output ballast provided by the fixture manufacturer, pre-wired with a glass tube fuse holder and fuse on each primary hot lead.
2.2 LAMPS

A. Fluorescent lamps shall be energy saving type, 3,500 degrees K, CRI 75, of size and wattage as scheduled on the Drawings, unless noted otherwise on Light Fixture Schedule. They shall be General Electric or equal as manufactured by Sylvania or Philips unless indicated otherwise on Drawings. Lamps shall have a rated life of 20,000 hours minimum at three (3) hours per start.

2.3 LIGHTING FIXTURES

A. Letter designations beside outlet symbols on Drawings correspond to letter designations in Lighting Fixture Schedule.

B. Lens material for recessed fluorescent fixtures shall be 100% virgin acrylic, 0.125" thick in a square prism pattern similar to KSH-K-12 or as scheduled in Lighting Fixture Schedule.

C. Site lighting poles shall meet or exceed the local wind loading requirements of authority having jurisdiction.

D. Concrete pole bases shall be required for site lighting poles.

E. Recessed lighting fixtures installed in the building thermal envelope (e.g. attic) shall be IC rated and labeled with enclosures that are sealed and gasketed to limit air leakage between conditioned and non-conditioned spaces.

F. All linear fluorescent lighting fixtures (with double-ended lamps) shall have a factory-installed, concealed disconnecting means for each ballast.

PART 3 - EXECUTION

3.1 LIGHTING FIXTURES

A. Provide lighting fixtures at all locations indicated by distinctive symbols or notes on the Drawings.

B. Lighting fixtures shall be secured to ceiling grid with clips or screws and two #12 steel wires mounted to opposite corners of light fixture secured to structure.

C. Locations of lighting fixtures on the electrical drawings are approximate. Refer to Architectural reflected ceiling plan for actual locations of fixtures and mounting heights.

D. Lighting fixtures installed in plaster and stucco ceiling shall have plaster frame and shall be of the flanged type.

E. Fixtures recessed in concealed-spline tile and in gypsum board ceilings shall be flanged.
F. Surface or recessed fixtures in or on plastered ceilings shall be supported from pieces of support channel spanning across the main supporting channels and shall not depend on the metal lath for support.

G. Each recessed lighting fixture shall have a trim to match the type of ceiling (exposed grid, metal panel, etc.) in which it is being installed, except where noted otherwise on the plans.

H. Each lighting fixture recessed in a concrete wall shall have a junction box or wiring compartment provided inside the fixture housing. Provide conduit access into the fixture concealed.

END OF SECTION 26 51 00
SECTION 31 10 00 - SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Protecting existing vegetation to remain.
2. Removing existing vegetation.
3. Clearing and grubbing.
4. Stripping and stockpiling topsoil.
5. Removing above- and below-grade site improvements.
6. Disconnecting, capping or sealing, and removing site utilities and/or abandoning site utilities in place.
7. Temporary erosion- and sedimentation-control measures.

B. Related Sections:
1. Section 02 41 19 "Selective Demolition" for partial demolition of buildings or structures.
2. Section 31 20 00 – “Earth Moving”

1.3 DEFINITIONS

A. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.

B. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.

C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil and is the zone where plant roots grow.

D. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil and is the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of subsoil and weeds, roots, toxic materials, or other nonsoil materials.
E. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction, and indicated on Drawings.

F. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and indicated on Drawings.

G. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 MATERIAL OWNERSHIP

A. Except for stripped topsoil and other materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.5 INFORMATIONAL SUBMITTALS

A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.

1. Use sufficiently detailed photographs or videotape.
2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plants designated to remain.

B. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

1.6 QUALITY ASSURANCE

1.7 PROJECT CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

B. Salvable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated.

C. Utility Locator Service: Notify utility locator for area where Project is located before site clearing.
D. Do not commence site clearing operations until temporary erosion- and sedimentation-control and plant-protection measures are in place.

E. The following practices are prohibited within protection zones:

1. Storage of construction materials, debris, or excavated material.
2. Parking vehicles or equipment.
3. Foot traffic.
4. Erection of sheds or structures.
5. Impoundment of water.
6. Excavation or other digging unless otherwise indicated.
7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

F. Do not direct vehicle or equipment exhaust towards protection zones.

G. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

H. Soil Stripping, Handling, and Stockpiling: Perform only when the topsoil is dry or slightly moist.

1.8 SELECTION AND TAGGING OF TREES: Owner’s Representative will select and tag at the site, those trees to be saved and removed.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 31 20 00 "Earth Moving."

1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect and maintain benchmarks and survey control points from disturbance during construction.

B. Locate and clearly identify trees, shrubs, and other vegetation to remain or to be relocated. Wrap a 1-inch blue vinyl tie tape flag around each tree trunk at 54 inches above the ground.
C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL
A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
D. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION
A. General: Protect trees and plants remaining on-site according to requirements in Section 015639 "Temporary Tree and Plant Protection."
B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations, in a manner approved by Architect.

3.4 EXISTING UTILITIES
A. Owner will arrange for disconnecting and sealing indicated utilities that serve existing structures before site clearing, when requested by Contractor.
 1. Verify that utilities have been disconnected and capped before proceeding with site clearing.
B. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.
 1. Arrange with utility companies to shut off indicated utilities.
 2. Owner will arrange to shut off indicated utilities when requested by Contractor.
C. Locate, identify, and disconnect utilities indicated to be abandoned in place.
D. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:

1. Notify Architect not less than two days in advance of proposed utility interruptions.
2. Do not proceed with utility interruptions without Engineer's written permission.

E. Excavate for and remove underground utilities indicated to be removed.

F. Removal of underground utilities is included in earthwork sections and with applicable fire suppression, plumbing, HVAC, electrical, communications, electronic safety and security and utilities sections and Section 02 41 19 "Selective Demolition."

3.5 CLEARING AND GRUBBING

A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.

1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated. Refer to drawings for specific locations of trees to be removed.
2. Grind down stumps and remove roots, obstructions, and debris to a depth of two feet below exposed subgrade.
3. Dispose of trees offsite.
4. Use only hand methods for grubbing within protection zones.
5. Chip removed tree branches and dispose of off-site.

B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.

1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.6 TOPSOIL STRIPPING

A. Remove sod and grass before stripping topsoil.

B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.

1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects more than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.

C. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.

1. Limit height of topsoil stockpiles to 72 inches.
2. Do not stockpile topsoil within protection zones.
3. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
4. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.7 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
 2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.8 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.

B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 31 10 00
SECTION 31 20 00 - EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses, and plants.
2. Excavating and backfilling for buildings and structures.
3. Drainage course for concrete slabs-on-grade.
4. Subbase course for concrete walks and pavements.
5. Subbase course and base course for asphalt paving.
6. Subsurface drainage backfill for walls and trenches.
7. Excavating and backfilling trenches for utilities and pits for buried utility structures.
8. Excavating well hole to accommodate elevator-cylinder assembly.

B. Related Sections:

1. Section 03 30 00 "Cast-in-Place Concrete" for granular course if placed over vapor retarder and beneath the slab-on-grade.
2. Section 31 10 00 "Site Clearing" for site stripping, grubbing, stripping and stockpiling topsoil, and removal of above- and below-grade improvements and utilities.
3. Section 32 92 00 "Turf and Grasses" for finish grading in turf and grass areas, including preparing and placing planting soil for turf areas.
4. Section 32 93 00 "Plants" for finish grading in planting areas and tree and shrub pit excavation and planting.
5. Section 33 46 00 "Subdrainage" for drainage of foundations, slabs-on-grade, walls, and landscaped areas.

1.3 UNIT PRICES

A. Work of this Section is affected by unit prices for earth moving. Refer to industry standards and requirements for additional information regarding “Unit Prices.”

B. Quantity allowances for earth moving: Refer to industry standards and requirements for additional information regarding “Allowances.”
C. Rock Measurement: Volume of rock actually removed, measured in original position, but not to exceed the following. Unit prices for rock excavation include replacement with approved materials.

1. 24 inches outside of concrete forms other than at footings.
2. 12 inches outside of concrete forms at footings.
3. 6 inches outside of minimum required dimensions of concrete cast against grade.
4. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
5. 6 inches beneath bottom of concrete slabs-on-grade.
6. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.

1.4 DEFINITIONS

A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.

C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Engineer. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.
 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Engineer. Unauthorized excavation, as well as remedial work directed by Engineer, shall be without additional compensation.
G. Fill: Soil materials used to raise existing grades.

H. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material that exceed 1 cu. yd. for bulk excavation or 3/4 cu. yd. for footing, trench, and pit excavation that cannot be removed by rock excavating equipment equivalent to the following in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted:

1. Excavation of Footings, Trenches, and Pits: Late-model, track-mounted hydraulic excavator; equipped with a 42-inch- wide, maximum, short-tip-radius rock bucket; rated at not less than 138-hp flywheel power with bucket-curling force of not less than 28,700 lbf and stick-crowd force of not less than 18,400 lbf with extra-long reach boom; measured according to SAE J-1179.
2. Bulk Excavation: Late-model, track-mounted loader; rated at not less than 230-hp flywheel power and developing a minimum of 47,992-lbf (213.3-kN) breakout force with a general-purpose bare bucket; measured according to SAE J-732.

I. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material 3/4 cu. yd. or more in volume that exceed a standard penetration resistance of 100 blows/2 inches when tested by a geotechnical testing agency, according to ASTM D 1586.

J. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

K. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.

L. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

M. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following manufactured products required:

1. Geotextiles.
2. Controlled low-strength material, including design mixture.
3. Geofoam.
4. Warning tapes.

B. Samples for Verification: For the following products, in sizes indicated below:

2. Warning Tape: 12 inches long; of each color.
1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Material Test Reports: For each on-site and borrow soil material proposed for fill and backfill as follows:
 1. Classification according to ASTM D 2487.
 2. Laboratory compaction curve according to ASTM D 698.

C. Blasting plan approved by authorities having jurisdiction.

D. Seismic survey report from seismic survey agency.

E. Preexcavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earth moving operations. Submit before earth moving begins.

1.7 QUALITY ASSURANCE

A. Seismic Survey Agency: An independent testing agency, acceptable to authorities having jurisdiction, experienced in seismic surveys and blasting procedures to perform the following services:
 1. Report types of explosive and sizes of charge to be used in each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will prevent damage to site improvements and structures on Project site and adjacent properties.
 2. Seismographic monitoring during blasting operations.

B. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.

1.8 PROJECT CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth moving operations.
 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

B. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earth moving operations.
Do not commence earth moving operations until temporary erosion- and sedimentation-control measures, specified in Section 31 10 00 "Site Clearing," are in place. Refer to industry standards and requirements for additional information regarding Temporary Facilities and Controls”.

C. Do not commence earth moving operations until plant-protection measures specified in Section 01 56 39 "Temporary Tree and Plant Protection" are in place.

D. The following practices are prohibited within protection zones:
 1. Storage of construction materials, debris, or excavated material.
 2. Parking vehicles or equipment.
 3. Foot traffic.
 4. Erection of sheds or structures.
 5. Impoundment of water.
 6. Excavation or other digging unless otherwise indicated.
 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

E. Do not direct vehicle or equipment exhaust towards protection zones.

F. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D 2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

 1. Liquid Limit: 50 maximum.
 2. Plasticity Index: 25 maximum.

C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487, or a combination of these groups.

 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent
passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.

E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.

F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.

G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.

H. Drainage Course: Narrowly graded mixture of washed crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 (2.36-mm) sieve.

I. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D 448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and 0 to 5 percent passing a No. 4 (4.75-mm) sieve.

J. Sand: ASTM C 33; fine aggregate.

K. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 GEOTEXTILES

A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Grab Tensile Strength: 157 lbf (700 N); ASTM D 4632.
3. Sewn Seam Strength: 142 lbf (630 N); ASTM D 4632.
4. Tear Strength: 56 lbf (250 N); ASTM D 4533.
5. Puncture Strength: 56 lbf (250 N); ASTM D 4833.
6. Apparent Opening Size: No. 70 (0.212-mm) sieve, maximum; ASTM D 4751.
7. Permittivity: 0.5 per second, minimum; ASTM D 4491.
8. UV Stability: 50 percent after 500 hours’ exposure; ASTM D 4355.

B. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or polyesters; with elongation less than 50 percent;
complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Grab Tensile Strength: 247 lbf (1100 N); ASTM D 4632.
3. Sewn Seam Strength: 222 lbf (990 N); ASTM D 4632.
4. Tear Strength: 90 lbf (400 N); ASTM D 4533.
5. Puncture Strength: 90 lbf (400 N); ASTM D 4833.
6. Apparent Opening Size: No. 60 (0.250-mm) sieve, maximum; ASTM D 4751.
7. Permittivity: 0.02 per second, minimum; ASTM D 4491.
8. UV Stability: 50 percent after 500 hours’ exposure; ASTM D 4355.

2.3 CONTROLLED LOW-STRENGTH MATERIAL

A. Controlled Low-Strength Material: Self-compacting, low-density, flowable concrete material produced from the following:

1. Portland Cement: ASTM C 150, Type I.
2. Fly Ash: ASTM C 618, Class C or F.
5. Water: ASTM C 94/C 94M.

B. Produce low-density, controlled low-strength material with the following physical properties:

1. As-Cast Unit Weight: 30 to 36 lb/cu. ft. at point of placement, when tested according to ASTM C 138/C 138M.
2. Compressive Strength: 80 psi when tested according to ASTM C 495.

C. Produce conventional-weight, controlled low-strength material with 80-psi compressive strength when tested according to ASTM C 495.

2.4 ACCESSORIES

A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.
B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations.

B. Protect and maintain erosion and sedimentation controls during earth moving operations.

C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.

B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.

1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXCAVATION, GENERAL

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

2. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:

 a. 24 inches outside of concrete forms other than at footings.
 b. 12 inches outside of concrete forms at footings.
 c. 6 inches outside of minimum required dimensions of concrete cast against grade.
 d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 e. 6 inches beneath bottom of concrete slabs-on-grade.
 f. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.

B. Classified Excavation: Excavate to subgrade elevations. Material to be excavated will be classified as earth and rock. Do not excavate rock until it has been classified and cross sectioned by Engineer. The Contract Sum will be adjusted for rock excavation according to unit prices included in the Contract Documents. Changes in the Contract Time may be authorized for rock excavation.

1. Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation.

 a. Intermittent drilling; blasting, if permitted; ram hammering; or ripping of material not classified as rock excavation is earth excavation.

2. Rock excavation includes removal and disposal of rock. Remove rock to lines and subgrade elevations indicated to permit installation of permanent construction without exceeding the following dimensions:

 a. 24 inches outside of concrete forms other than at footings.
 b. 12 inches outside of concrete forms at footings.
 c. 6 inches outside of minimum required dimensions of concrete cast against grade.
 d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 e. 6 inches beneath bottom of concrete slabs-on-grade.
 f. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.

3.4 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.

2. Pile Foundations: Stop excavations 6 to 12 inches above bottom of pile cap before piles are placed. After piles have been driven, remove loose and displaced material. Excavate to final grade, leaving solid base to receive concrete pile caps.

3. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.

B. Excavations at Edges of Tree- and Plant-Protection Zones:

1. Excavate by hand to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.

2. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.5 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.6 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.

B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.

1. Clearance: 12 inches each side of pipe or conduit.

C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. For pipes and conduit less than 6 inches in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.

3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.

4. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

D. Trench Bottoms: Excavate trenches 4 inches deeper than bottom of pipe and conduit elevations to allow for bedding course. Hand-excavate deeper for bells of pipe.

1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

E. Trenches in Tree- and Plant-Protection Zones:

1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.

2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.

3. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.7 SUBGRADE INSPECTION

A. Notify Engineer when excavations have reached required subgrade.

B. If Engineer determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

C. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.

2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Engineer, and replace with compacted backfill or fill as directed.

D. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.

E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Engineer, without additional compensation.
3.8 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi may be used when approved by Engineer.

1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Engineer.

3.9 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.10 BACKFILL

A. Place and compact backfill in excavations promptly, but not before completing the following:

1. Construction below finish grade including, where applicable, subdrainage, damproofing, waterproofing, and perimeter insulation.
2. Surveying locations of underground utilities for Record Documents.
3. Testing and inspecting underground utilities.
4. Removing concrete formwork.
5. Removing trash and debris.
6. Removing temporary shoring and bracing, and sheeting.
7. Installing permanent or temporary horizontal bracing on horizontally supported walls.

B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.11 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 033000 "Cast-in-Place Concrete." Refer to
industry standards and requirements for additional information regarding “Miscellaneous Cast-in-Place Concrete.”

D. Trenches under Roadways: Provide 4-inch-thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Section 033000 "Cast-in-Place Concrete." Refer to industry standards and requirements for additional information regarding “Miscellaneous Cast-in-Place Concrete.”

E. Backfill voids with satisfactory soil while removing shoring and bracing.

F. Place and compact initial backfill of subbase material, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.

1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

G. Controlled Low-Strength Material: Place initial backfill of controlled low-strength material to a height of 12 inches over the pipe or conduit. Coordinate backfilling with utilities testing.

H. Place and compact final backfill of satisfactory soil to final subgrade elevation.

I. Controlled Low-Strength Material: Place final backfill of controlled low-strength material to final subgrade elevation.

J. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.12 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:

1. Under grass and planted areas, use satisfactory soil material.
2. Under walks and pavements, use satisfactory soil material.
3. Under steps and ramps, use engineered fill.
4. Under building slabs, use engineered fill.
5. Under footings and foundations, use engineered fill.

C. Place soil fill on subgrades free of mud, frost, snow, or ice.
3.13 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.14 COMPACTION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.

C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698:
 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 92 percent.
 3. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 4. For utility trenches, compact each layer of initial and final backfill soil material at 85 percent.

D. Compaction for planting areas should be 85-87% Proctor.

3.15 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 1. Provide a smooth transition between adjacent existing grades and new grades.
 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
1. Turf or Unpaved Areas: Plus or minus 1 inch.
2. Walks: Plus or minus 1 inch.
3. Pavements: Plus or minus 1/2 inch.

C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.16 SUBSURFACE DRAINAGE

A. Subdrainage Pipe: Specified in Section 334600 "Subdrainage."

B. Subsurface Drain: Place subsurface drainage geotextile around perimeter of subdrainage trench. Place a 6-inch course of filter material on subsurface drainage geotextile to support subdrainage pipe. Encase subdrainage pipe in a minimum of 12 inches of filter material, placed in compacted layers 6 inches thick, and wrap in subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698 with a minimum of two passes of a plate-type vibratory compactor.

C. Drainage Backfill: Place and compact filter material over subsurface drain, in width indicated, to within 12 inches of final subgrade, in compacted layers 6 inches thick. Overlay drainage backfill with one layer of subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698 with a minimum of two passes of a plate-type vibratory compactor.
2. Place and compact impervious fill over drainage backfill in 6-inch-thick compacted layers to final subgrade.

3.17 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:

1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
2. Place base course material over subbase course under hot-mix asphalt pavement.
3. Shape subbase course and base course to required crown elevations and cross-slope grades.
4. Place subbase course and base course 6 inches or less in compacted thickness in a single layer.
5. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.

6. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

C. Pavement Shoulders: Place shoulders along edges of subbase course and base course to prevent lateral movement. Construct shoulders, at least 12 inches wide, of satisfactory soil materials and compact simultaneously with each subbase and base layer to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.18 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

A. Place drainage course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:

1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
2. Place drainage course 6 inches or less in compacted thickness in a single layer.
3. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
4. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.19 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:

1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
2. Determine that fill material and maximum lift thickness comply with requirements.
3. Determine, at the required frequency, that in-place density of compacted fill complies with requirements.

B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.

C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Engineer.

E. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:

1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.
2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length, but no fewer than two tests.
3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet or less of trench length, but no fewer than two tests.

F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.20 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

1. Scarify or remove and replace soil material to depth as directed by Engineer; reshape and recompact.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.21 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

B. Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Engineer.
1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 31 20 00
SECTION 31 23 19 - DEWATERING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes construction dewatering.

B. Related Requirements:

1. Section 312000 "Earth Moving" for excavating, backfilling, site grading, and controlling surface-water runoff and ponding.
2. Section 334600 "Subdrainage" for permanent foundation wall, underfloor, and footing drainage.
3. Refer to industry standards and requirements for additional information regarding "Photographic Documentation".

1.3 ALLOWANCES

A. Dewatering observation wells are part of dewatering allowance.

1.4 PREINSTALLATION MEETINGS

1. Verify availability of Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
2. Review condition of site to be dewatered including coordination with temporary erosion-control measures and temporary controls and protections.
3. Review geotechnical report.
4. Review proposed site clearing and excavations.
5. Review existing utilities and subsurface conditions.
6. Review observation and monitoring of dewatering system.
1.5 ACTION SUBMITTALS

A. Shop Drawings: For dewatering system, prepared by or under the supervision of a qualified professional engineer.

1. Include plans, elevations, sections, and details.
2. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.
3. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
4. Include written plan for dewatering operations including sequence of well and well-point placement coordinated with excavation shoring and bracings and control procedures to be adopted if dewatering problems arise.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, land surveyor, and professional engineer.

B. Field quality-control reports.

C. Existing Conditions: Using photographs or video recordings, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by dewatering operations. Submit before Work begins.

D. Record Drawings: Identify locations and depths of capped wells and well points and other abandoned-in-place dewatering equipment.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in design of dewatering systems and dewatering work.

1.8 FIELD CONDITIONS

A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.

1. Make additional test borings and conduct other exploratory operations necessary for dewatering according to the performance requirements.
2. The geotechnical report is referenced elsewhere in Project Manual.
B. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

1. Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer.

2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, prevention of flooding in excavation, and prevention of damage to subgrades and permanent structures.

3. Prevent surface water from entering excavations by grading, dikes, or other means.

4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.

5. Remove dewatering system when no longer required for construction.

B. Regulatory Requirements: Comply with governing EPA notification regulations before beginning dewatering. Comply with water- and debris-disposal regulations of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.

1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site or surrounding area.

2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

B. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.
1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Provide temporary grading to facilitate dewatering and control of surface water.

D. Protect and maintain temporary erosion and sedimentation controls, which are specified in Section 311000 "Site Clearing," during dewatering operations. Refer to industry standards and requirements for additional information regarding “Photographic Documentation”.

3.2 INSTALLATION

A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.

1. Space well points or wells at intervals required to provide sufficient dewatering.
2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.

B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.

C. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.

D. Provide standby equipment on-site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.

1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.
2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
3. Maintain piezometric water level a minimum of 24 inches (600 mm) below bottom of excavation.
C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.

D. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches (900 mm) below overlying construction.

3.4 FIELD QUALITY CONTROL

A. Observation Wells: Provide observation wells or piezometers, take measurements, and maintain at least the minimum number indicated; additional observation wells may be required by authorities having jurisdiction.
 1. Observe and record daily elevation of ground water and piezometric water levels in observation wells.
 2. Repair or replace, within 24 hours, observation wells that become inactive, damaged, or destroyed. In areas where observation wells are not functioning properly, suspend construction activities until reliable observations can be made. Add or remove water from observation-well risers to demonstrate that observation wells are functioning properly.
 3. Fill observation wells, remove piezometers, and fill holes when dewatering is completed.

B. Survey-Work Benchmarks: Resurvey benchmarks monthly during dewatering and maintain an accurate log of surveyed elevations for comparison with original elevations. Promptly notify Engineer if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.

C. Provide continual observation to ensure that subsurface soils are not being removed by the dewatering operation.

D. Prepare reports of observations.

3.5 PROTECTION

A. Protect and maintain dewatering system during dewatering operations.

B. Promptly repair damages to adjacent facilities caused by dewatering.

END OF SECTION 31 23 19
SECTION 32 14 13 – PERMEABLE INTERLOCKING CONCRETE PAVING SYSTEM

PART 1 - GENERAL SPECIFICATIONS

1.1 Section Includes

A. Work consists of furnishing and construction of a Permeable Interlocking Concrete Pavement System in accordance with these specifications and in reasonably close conformity with the lines, grades, design, and dimensions shown on the plans.

B. Installation work includes:
 1. Verifying Subgrade is to the lines, grades, infiltration rate, and density shown on the construction drawings;
 2. Furnishing and installing Geotextile and/or Membrane Liner (where required), Horizontal Drainage Piping (where required), Sub-base Course, Base Course, Bedding Course, Edge Restraint, Concrete Pavers and Permeable Joint Material to the lines and grades shown on the construction drawings.

1.2 Related Sections

A. Section 31 20 00 Earthwork
B. Section 33 46 00 Subdrainage

1.3 References

A. American Association of State Highway and Transportation Officials (AASHTO)
 1. GDPS-4-M Guide for Design of Pavement Structures

B. American Society of Civil Engineers (ASCE)
 1. ASCE 58-10 Structural Design of Interlocking Concrete Pavement for Municipal Streets and Roadways

C. American Society for Testing and Materials (ASTM)
 1. ASTM C-29 Bulk Density ("Unit Weight") and Voids in Aggregate
 2. ASTM C-94 Standard Specification for Ready Mixed Concrete
 3. ASTM C-131 Resistance to Degradation of Small-Sized Course Aggregate by Abrasion and Impact in the Los Angeles Machine
 4. ASTM C-136 Sieve Analysis of Fine and Course Grained Aggregates
 5. ASTM C-140 Sampling and Testing Concrete Masonry Units and Related Units
 6. ASTM C-936 Solid Concrete Interlocking Paving Units
 7. ASTM C-979 Pigments for Integrally Colored Concrete
 8. ASTM C-1645 Freeze-thaw and De-icing Salt Durability of Solid Interlocking Paving Units
 9. ASTM D-448 Standard Classification for Sizes of Aggregates for Road and Bridge Construction
 10. ASTM D-698 Laboratory Compaction Characteristics of Soil Using Standard Effort
Interlocking Concrete Pavement Institute (ICPI)
1. Permeable Interlocking Concrete Pavement manual (latest edition)
2. Permeable Design Pro software for hydrologic and structural design

1.4 Submittals

A. Contractor shall submit to the owner for approval, and retain for the balance of the project, a minimum of four full size samples of each Concrete Paver type/size/thickness/color/finish specified; the samples shall represent the range of shape, texture and color permitted for the respective type. Color(s) will be selected by Architect/Engineer/Landscape Architect/Owner from Manufacturer’s standard colors.

B. Prior to delivery of the associated material to the site, the Contractor shall submit the following product specific documentation for approval:

1. Aggregates
 1.) Sieve analysis per ASTM C-136
 2.) Durability of aggregates using Micro Deval Degradation using ASTM D-6928.
 3.) Percentage of angular and sub-angular particles per ASTM D-2488.
 4.) Minimum 3 lb sample of each material for independent testing.
 5.) Source test results for void ratio and bulk density of the Base and Sub-base aggregates per ASTM C-29.

2. Concrete Pavers:
 1.) Test results from an independent testing laboratory for compliance to ASTM C-936 or other applicable requirements.
 2.) Warranty documentation
 3.) Close out Operations and Maintenance program
 4.) Material Safety Data Sheets

3. Geosynthetics
 1.) One 18 inch x 18 inch panel of each geosynthetic (Geotextile or Membrane Liner) for inspection and testing. The sample panels shall be uniformly rolled and shall be wrapped in plastic to protect the material from moisture and damage during shipment. Samples shall be externally tagged for easy identification. External identification shall include: name of manufacturer; product type; product grade; lot number; and physical dimensions.
2.) Material Safety Data Sheets

4. Written Method Statement and Quality Control Plan that describes material staging and flow, paving direction and installation procedures, including representative reporting forms that ensure conformance to the project specifications.

1.5 Quality Assurance
A. At a minimum, the Contractor’s Site Foreman shall hold PICP Technician Certificate from the Interlocking Concrete Pavement Institute (ICPI) contractor certification program. The Site Foreman is expected to be onsite for the entire installation.
B. Contractor shall conform to all local, state/provincial licensing and bonding requirements.
C. Contractor will hold a mandatory pre-construction meeting with Design Engineer, Owner, and affected sub-trades accessing PICP work area to review method statement and quality control plan and communicate to all parties a work flow that is most desirable to meet the construction schedule as set forth by the General Contractor. Additional details of Pre-Construction meeting are outlined in Article 3.01.

1.6 Mock-Ups
A. Install a 10 ft x 10 ft paver area following the installation practices described in Article 3.02.
B. This area will be used to verify: surcharge of the Bedding Course; joint sizes; lines; laying pattern(s); color(s); and, texture of the job.
C. To provide a proper representation of color blend, a minimum of 3 cubes for manual installation, and 6 cubes for mechanical installation, will be pulled from.
D. This area shall be the standard from which the work will be judged.
E. Subject to approval by the Owner, the mock-up may be retained as part of the finished work. If mock-up is not retained, remove and dispose of mock-up at the completion of the project.

1.7 Delivery, Storage And Handling
A. Comply with Manufacturer’s ordering instructions and lead time requirements to avoid construction delays.
B. Coordinate delivery and paving schedule to minimize interference with normal use of buildings adjacent to paving.
C. Contractor shall check all materials upon delivery to assure that the proper materials have been received and are in good condition before signing off on the manufacturer's packing slip.
D. Contractor shall protect all materials from damage or contamination due to jobsite conditions and in accordance with manufacturer's recommendations. Damaged or contaminated materials shall not be incorporated into the work.
E. Deliver Concrete Pavers to the site in steel banded, plastic banded, or plastic wrapped cubes capable of transfer by fork lift or clamp lift. Unload and store Concrete Pavers at job site in such a manner that no damage occurs to the product.
F. Handle and transport aggregates to avoid segregation, contamination and degradation. Keep different materials sufficiently separated as to prevent mixing. Do not dump or store one material on top of another unless it is part of the installation process. Cover material with waterproof covering to prevent exposure to rainfall or removal by wind – secure the covering in place.

G. Geosynthetics shall be delivered, stored and handled in accordance with ASTM D-4873.

1.8 Environmental Conditions

A. Do not install during heavy rain, freezing conditions or snowfall.
B. Do not install on frozen soil subgrade.
C. Do not install frozen aggregates.

1.9 Maintenance Materials

A. Provide 100 square feet additional paver material for use by Owner for maintenance and repair as attic stock.
B. Pavers to be from the same production run as installed materials.
C. Store paver materials in Owner designated location.

PART 2 - PRODUCTS

2.1 Definitions

A. **Base Course** – within the context of this specification, a washed open graded free draining aggregate material (#57 Stone) of a designed thickness that provides both structural support over the Sub-base and water storage capacity (within the voids). It also serves as a choking material between the Bedding Course and Sub-base.

B. **Bedding Course** – within the context of this specification, a two-inch thick layer of washed open graded free draining aggregate material (#8 Stone) loosely screeded smooth for bedding of the Concrete Pavers.

C. **Concrete Pavers** – within the context of this specification, solid individual paving units manufacturing from concrete that are either specifically designed for use in permeable applications (include joints and voids) or are laid in a pattern that creates large enough openings to provide infiltration. Concrete Pavers are shipped in clusters called bundles or cubes, which consist of several layers of pavers strapped or wrapped together.
 a. **Voids** – larger openings between the individual pavers that provide for infiltration.
 b. **Joints** – smaller openings between the individual pavers that provide vertical and horizontal interlock between units.

D. **Edge Restraint** – within this specification, a cast in place concrete curb, building or other stationary object that prevents the lateral movement of the Bedding Course and Concrete Pavers so they do not spread and loose interlock. Other Edge Restraints options include plastic, steel or aluminum edging, cut stone, precast concrete and submerged concrete edge complete with mortared pavers.
E. **Geotextile** – Woven or non-woven fabrics made from plastic fibers used primarily for separation between Sub-base and Subgrade.

F. **Horizontal Drainage Piping** – series of horizontal pipes within the sub-base that discharge to a catchbasin, ditch or other receiving body beyond the extent of the paved area. Piping is typically elevated in a Partial Exfiltration System, and at the bottom of the Sub-base in a No Exfiltration System.

G. **Laying Face** – the working edge of the pavement where the laying of pavers is occurring.

H. **Mechanical Installation** - The use of specialized machines to lift whole layers of pavers from the bundles and place them on the prepared bedding course. These specialized machines are designed specifically for this application.

I. **Membrane Liner** – impermeable liner placed at the bottom and sides of a No Exfiltration System, used to prevent the exfiltration/discharge of water other than through the Horizontal Drainage Piping. Usually includes a geotextile on top (possibly bottom) for protection.

J. **Permeable Joint Material** – a washed open graded free draining aggregate material (typically #8, #89 or #9 Stone) used to fill the spaces (joints and voids) between Concrete Pavers to create interlock and still maintain infiltration.

K. **Permeable Interlocking Concrete Pavement System** – a system of paving consisting of Concrete Pavers placed in an interlocking pattern with the joints and voids filled with Permeable Joint Material. The minimum rate of infiltration of the Concrete Pavers and Permeable Jointing Material is 10 inches per hour, or the design storm, whichever is greater. The Bedding Course, Base Course and Sub-base Courses provide structural support over the Subgrade and stores, exfiltrates (into the Subgrade) and/or drains the infiltrating water.

L. **Sub-base Course** – within the context of this specification, an open graded free draining aggregate material (#2 Stone) of a designed thickness that provides both structural support over the Subgrade and water storage capacity (within the voids).

M. **Subgrade** – the soil upon which the pavement structure and shoulders are constructed.

2.2 Concrete Pavers

A. Supplied by:
Belgard Location:
AL, GA, MS
Georgia Masonry Supply
1443 Battle Creek Road, Jonesboro, GA 30236
800-621-5222 770-471-2128 Fax

B. The Concrete Paver product required include:
Product Type: **Urbana®** (3-Piece Modular)
Product Size: 7 7/8"x 3 15/16", 7 7/8"x 7 7/8", 7 7/8"x 11 3/18",
Product Thickness: 3 1/8"
Product Color: **Riverstreet**
Product Finish: **Standard**

C. Concrete Pavers shall conform to the following requirements set forth in ASTM C-936:
1. Measured length or width of test specimens shall not differ by more than +/- 0.063 in, while measured thickness shall not differ by more than +/- 0.125 in.

2. Average compressive strength of 8,000 psi (55 MPa) with no individual unit under 7,200 psi (50 MPa) when tested in accordance with ASTM C-140.

3. Average absorption of 5% with no unit greater than 7% when tested in accordance with ASTM C-140.

4. Where freeze-thaw testing is required, the average mass loss of all specimens tested shall not be greater than (a) 225 g/m² when subject to 28 freeze thaw cycles, or (b) 500 g/m² when subject to 49 freeze thaw cycles. Testing shall be conducted using a 3% saline solution in accordance to ASTM C-1645.

D. Efflorescence shall not be a cause for rejection.

E. Pigment in Concrete Pavers shall conform to ASTM C-979.

2.3 Bedding Course

A. Clean, non-plastic aggregate, free from deleterious or foreign matter, manufactured from crushed rock.

B. Micro Deval Degradation of less than 8% as per ASTM D-6938.

C. Percent of angular and sub-angular particles greater than 90%. Do not use rounded river gravel.

D. LA Abrasion <40 as per ASTM C-131, minimum CBR of 80% as per ASTM D-1883.

E. Gradation to conform to Table 1 as tested in accordance to ASTM C-136. All aggregates shall have equal to or less than 2% passing the No. 200 (0.075 mm) sieve.

Table 1
Grading Requirements for Bedding Course (ASTM No. 8 Stone per ASTM D-448)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 in. (12.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm)</td>
<td>85 to 100</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>10 to 30</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>0 to 10</td>
</tr>
<tr>
<td>No. 16 (1.18 mm)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

2.4 Permeable Joint Material

A. Where joints are greater than or equal to ¼ inch, use ASTM No. 8 Stone as specified for the Bedding Course.

B. Where joints are less than ¼ inch, use pre-bagged Permeable Joint Material as supplied by Belgard.

2.5 Base and Sub-base
A. Clean, non-plastic aggregate, free from deleterious or foreign matter, manufactured from crushed rock.
B. Micro Deval Degradation of less than 8% as per ASTM D-6938.
C. Percent of angular and sub-angular particles greater than 90%. Do not use rounded river gravel.
D. LA Abrasion <40 as per ASTM C-131, minimum CBR of 80% as per ASTM D-1883.
E. Gradation of Base Course to conform to Table 2 as tested in accordance to ASTM C-136. Gradation of Sub-base Course to conform to Table 3 as tested in accordance to ASTM C-136. All aggregates shall have equal to or less than 2% passing the No. 200 (0.075 mm) sieve.

Table 2
Grading Requirements for Base Course (ASTM No. 57 Stone per ASTM D-448)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-½ in. (37.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1 in. (25 mm)</td>
<td>95 to 100</td>
</tr>
<tr>
<td>1/2 in. (12.5 mm)</td>
<td>25 to 60</td>
</tr>
<tr>
<td>3/8 in. (9.5 mm)</td>
<td>0 to 10</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

Table 3
Grading Requirements for Sub-base Course (ASTM No. 2 Stone per ASTM D-448)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in. (75 mm)</td>
<td>100</td>
</tr>
<tr>
<td>2-½ in. (63 mm)</td>
<td>90 to 100</td>
</tr>
<tr>
<td>2 in. (50 mm)</td>
<td>35 to 70</td>
</tr>
<tr>
<td>1-½ in. (37.5 mm)</td>
<td>0 to 15</td>
</tr>
<tr>
<td>¾ in. (19 mm)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

2.6 Geosynthetics
A. Where required, Geotextile and/or Membrane Liner materials shall be selected by the Design Engineer based on the intended use.

2.7 Horizontal Drainage Piping
A. The Horizontal Drainage Piping shall be perforated or slotted PVC pipe manufactured in accordance with ASTM D-3034, or corrugated HDPE pipe manufactured in accordance with ASTM D-3350.

PART 3 - EXECUTION
3.1 Inspection
A. Prior to commencement of any work, the Contractor shall conduct a pre-construction meeting with the Owner, Design Engineer and affected sub-trades. The pre-construction meeting should, at a minimum, verify:
a. The location of the Mock Up, and whether it will be part of the final construction or need to be removed.
b. The site layout conforms to the Site Plan. In particular, the location and elevation of discharge points (if any) of the Horizontal Drainage Pipes.
c. The excavation work conforms to the specified lines and elevations. Subgrade shall be trimmed to within 0 and ½ in of the specified grades. The surface of the prepared Subgrade shall not deviate by more than 3/8 in from the bottom edge of a 10-foot straight edge laid in any direction.
d. The condition of the subgrade, in particular that the surface infiltration (where desired) has not been adversely impacted by the excavation work. Where compaction is desired, that the compaction densities have been met.
e. Locations of curbs, grade beams, utility structures, light standards, tree wells or any other protrusions as applicable to the project.
f. The details of the site’s ‘Erosion and Sediment Control Plan’.
g. Panel Installation Drawings for the Geosynthetics, in particular the location of any protrusions through the Membrane Liner where boots are required.

B. Although the Owner may provide soil testing and quality assurance inspection during earthwork and Subgrade preparation, the Owner’s quality assurance program does not relieve the Contractor of responsibility for quality control and system performance. Contractor shall obtain any quality control testing or inspection not provided by the Owner that is necessary to satisfy the Contractor with the condition of the Subgrade prior to commencement of the work. This may include:
 a. Proof rolling of the subgrade to determine presence of soft spots or localized pockets of objectionable materials.
 b. Infiltration testing to verify the subgrade has not been adversely impacted.
 c. Compaction testing.

C. Where deficiencies or inconsistencies are identified, the Contractor shall notify the Design Engineer in writing. The Contractor will not proceed with the work until the Design Engineer has verified that the deficiencies or inconsistencies have been addressed.

D. Beginning of Installation means acceptance of Subgrade.

3.2 Installation Base Course

A. Keep area where pavement is to be constructed free from sediment during the entire job. Any materials contaminated with sediment shall be removed and replaced with clean material.

B. Install Membrane Liner in accordance with the manufacturer’s recommendations. The Membrane Liner is applied to the bottom and sides of the excavation. Allow for enough Membrane Liner to exceed the final elevation of the surface. After completion of the surface, the excess liner should be cut flush with the finished grade,

C. Install Geotextiles as required in accordance with the specifications and drawings. The Geotextile is applied to the bottom and sides of the excavation with overlapping joints a minimum of 12 inches. Overlaps to follow down slope. Allow for enough geotextile to exceed the final elevation of the surface. After completion of the surface, the excess geotextile should be cut flush with the finished grade,
D. Install the Sub-base Course and Base Course at the thicknesses, compaction rates, surface tolerances, and elevations outlined in the specifications.
 1. Place and spread the first layer of Sub-base without displacing or damaging the geosynthetics (if used). To prevent damage, tracked vehicles must not be used to spread the initial Sub-base layer.
 2. The aggregate should be spread and compacted in uniform layers not exceeding 6 inch loose thickness. Compaction is performed using either a 10 T (10 ton) vibratory roller or a minimum 13,500 lbf centrifugal force reversible vibratory plate compactor. For each lift, make at least two passes in the vibratory mode and at least two passes in the static mode – continue compaction until there is visible movement in the materials.
 3. At the specified elevation(s), install the Horizontal Drain Pipes in accordance with the manufacturer’s recommendations. Ensure the Pipes are properly sloped to provide proper drainage to the outlets. Pipes shall be surrounded by a minimum of 4 inches of Base Course material to prevent damage from the Sub-base material. Care must be taken not to damage Horizontal Drain Pipes during subsequent aggregate installation.
 4. Final surface tolerance should be plus or minus 1 inch over a 10 foot straight edge laid in any direction.
 5. Attention will be paid to providing proper compaction near curbs, grade beams, concrete collars around utility structures, lights standards, tree wells, building edges and other protrusions as applicable to the project. In areas not accessible to large compaction equipment, compact to specified density with mechanical tampers (jumping jacks).

E. Before commencing the placing of the Bedding Course, the base shall be inspected by the Owner or the Consultant.

3.3 Installation Edge Restraints

A. Adequate edge restraint shall be provided along the perimeter of all paving as specified. The face of the edge restraint, where it abuts pavers, shall be vertical.
B. All concrete edge restraints shall be constructed to dimensions and level specified and shall be supported on a compacted Base not less than 6 inch thick.
C. Concrete used for the construction of edge restraints shall be air-entrained and have a compressive strength as specified. All concrete shall be in accordance with ASTM C94 requirements.

3.4 Installation Bedding Course, Concrete Pavers and Permeable Joint Material

A. Spread the Bedding Course evenly over the Base Course and screed to a nominal 2 in. thickness. Do not use the bedding material to fill depressions in the Base Course surface.
B. The Contractor shall screed the Bedding Course using either an approved mechanical spreader (e.g.: an asphalt paver) or by the use of screed rails and boards.
C. Moisten and lightly compact the Bedding Course using a Plate Compactor. Surface tolerances shall be 3/8 inch over a 10-foot straight edge.
D. Loose screed the bedding course.
E. Ensure that Concrete Pavers are free of foreign material before installation. Concrete Pavers shall be inspected for color distribution and all chipped,
damaged or discolored Concrete Pavers shall be replaced. Initiation of Concrete Paver placement shall be deemed to represent acceptance of the pavers.

F. Lay the Concrete Pavers in the pattern(s) as shown on the drawings. Maintain straight pattern lines.

G. Paving units shall be installed from a minimum of 3 bundles for hand installations, 6 bundles for mechanical installations, simultaneously to ensure color blending.

H. Joints between the individual Concrete Pavers shall be maintained according to the spacer bars.

I. Fill gaps at the edges of the paved area with cut pavers or edge units. Do not install cut pavers smaller than one-third of a whole paver along edges subject to vehicular traffic – trim two pavers to fit.

J. Cut pavers using a masonry saw. Upon completion of cutting, the area must be swept clean of all debris to facilitate inspection and to ensure the Concrete Pavers are not damaged during compaction.

K. Using a low amplitude plate compactor capable of at least 5,000 lbs. (22 kN) compaction at a frequency of 75 hz –100 hz, compact and seat the Concrete Pavers into the Bedding Course.

L. The pavers shall be compacted to achieve consolidation of the Bedding Course and brought to level and profile by not less than three passes. Initial compaction should proceed as closely as possible following the installation of the paving units and prior to the acceptance of any traffic or application of Permeable Joint Material.

M. Any units that are structurally damaged during compaction shall be immediately removed and replaced.

N. Apply a dressing of Permeable Joint Material to the surface and sweep into the joints and voids. Fill joints and voids, then sweep off excess material before vibrating the material down into the joints using a plate compactor. This will require at least two or three passes with the compactor.

O. Do not compact within 6 feet of the unrestrained edges of the paving units.

P. All work to within 3 ft (1 m) of the laying face must be left fully compacted at the end of each day. Cover the laying face with plastic sheets overnight if not closed with cut and compacted pavers.

Q. Sweep off excess aggregate when the job is complete.

3.5 Quality Assurance/Quality Control

A. Quality Assurance - The Owner may engage inspection and testing services, including independent laboratories, to provide quality assurance and testing services during construction. This does not relieve the Contractor from securing the necessary construction quality control testing.

B. Quality assurance should include as a minimum verification with the Design Engineer that the Contractor’s quality control plan and testing are adequate. Quality assurance shall also include observation of construction for general compliance with design drawings and project specifications.

C. Quality Control – The Contractor shall engage inspection and testing services to perform the minimum quality control testing described in the design plans and specifications. Only qualified and experienced technicians and engineers shall perform testing and inspection services.
D. Quality control testing shall include backfill testing to verify soil types and compaction, and verification that the system is being constructed in accordance with the design plans and project specifications.

3.6 As-built Construction Tolerances
A. Final inspection shall be conducted to verify conformance to the drawings after removal of excess aggregate. All pavements shall be finished to lines and levels to ensure positive drainage at all drainage outlets and channels.
B. The final surface elevations shall not deviate more than +/- 3/8 inch under a 10 ft long straight edge.

END OF SECTION 32 14 13
SECTION 32 14 43 – PERVIOUS CONCRETE

PART 1 - GENERAL REQUIREMENTS

1.1 SCOPE

A. This guide specification covers the construction and placement of pervious concrete pavement.
B. The provisions of this guide specification shall govern unless otherwise specified in the Contract Documents. In case of conflicting requirements, the Contract Documents shall govern.

1.2 DEFINITIONS

A. These definitions are to assist in interpreting the provisions of this specification.
 • accepted — accepted by or acceptable to the architect/engineer.
 • architect/engineer — the architect, engineer, architectural firm, engineering firm, or architectural and engineering firm issuing project drawings and project specifications or administering the work under the contract documents.
 • cold weather — a period when for more than three successive days the average daily outdoor temperature drops below 40 °F (5 °C). The average daily temperature is the average of the highest and lowest temperature during the period from midnight to midnight. When temperatures above 50 °F (10 °C) occur during more than half of any 24 hour duration, the period shall no longer be regarded as cold weather.
 • construction joint — a joint constructed from two separate placements where the first has undergone final setting before the next placement.
 • contraction joint — formed, sawed, or tooled groove in a concrete structure to create a weakened plane and regulate the location of cracking resulting from the dimensional change of different parts of the structure.
 • Contractor — the person, firm, or corporation with whom the owner enters into an agreement for construction of the work.
 • contract documents — documents, including project drawings and project specifications, covering the required work.
 • hot weather — any combination of the following conditions that tend to impair the quality of freshly mixed or hardened concrete by accelerating the rate of moisture loss and rate of cement hydration, or otherwise resulting in detrimental results.
 o high ambient temperature;
 o high concrete temperature;
 o low relative humidity;
 o wind velocity; and
 o solar radiation.
 • isolation joint — a separation between adjoining parts of a concrete structure, usually a vertical plane, at a designed location such as to interfere least with
performance of the structure, yet such as to allow relative movement in three
directions and avoid formation of cracks elsewhere in the concrete.

- mild exposure condition — absence of exposure to freezing and thawing or to
deicing agents.
- moderate exposure condition — exposure to a climate where the concrete will not
be in a saturated condition when exposed to freezing and will not be exposed to
deicing agents or other aggressive chemicals.
- Owner — the corporation, association, partnership, individual, or public body or
authority with whom the contractor enters into an agreement and for whom the work
is accomplished.
- panel — an individual concrete slab bordered by joints or slab edges.
- parking lot — an area used to park automobiles, trucks, or both.
- pavement (pervious concrete) — a layer of pervious concrete over areas such as
roads, sidewalks, canals, playgrounds, and those used for storage or parking.
- permitted — permitted by the architect/engineer.
- placing contractor — the person, firm, or corporation with whom owner or contractor
enters into an agreement for placement of the work.
- project drawings — the drawings that, along with the project specifications,
addenda, bulletins, and change orders, constitute the descriptive information for
constructing the work required or referred to in the contract documents.
- project specifications — the written documents that specify requirements for a
project in accordance with service parameters and other specific criteria
established by the owner.
- reference standards — standardized mandatory language documents of a
technical society, organization, or association, including the building codes of local
or state authorities, which are referenced in the contract documents.
- severe exposure condition — exposure to deicing chemicals or other aggressive
agents or where the concrete can become saturated by continual contact with
moisture or free water before freezing.
- sub-base (also called base) — a layer in the pavement system between the sub-
grade and the concrete pavement.
- sub-grade — the soil prepared and compacted to support the pavement system.
- submittal — documents that are required by the contract documents to be turned in
to the architect/engineer for action as described in the contract documents.
- tolerances — as applied to Section 3.10—plus (+) tolerance increases the amount
or dimension to which it applies or raises a level alignment. Minus (–) tolerance
decreases the amount or dimension to which it applies or lowers a level alignment.
A non-signed tolerance means + or –. Where only one signed tolerance is
specified (+ or –), there is no limit in the other direction.
- un-reinforced concrete pavement—concrete pavement that does not contain
distributed deformed steel reinforcing bars or welded wire fabric.
- work — the entire construction of separately identifiable parts that are required to
be furnished under the contract documents.

1.3 REFERENCE ORGANIZATIONS

A. ACI:
 American Concrete Institute
1.4 REFERENCED STANDARDS

A. ACI standards
1. 301 Specifications for Structural Concrete
2. 305.1 Standard Specification for Hot Weather Concreting
3. 306.1 Standard Specification for Cold Weather Concreting
4. 308.1 Standard Specification for Curing Concrete
5. 522.1 Pervious Concrete

B. ASTM standards
1. ASTM C 29, Test for Unit Weight and Voids in Aggregate
2. ASTM C 33, Specifications for Concrete Aggregates
3. ASTM C 42, Test Methods for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete
5. ASTM C 117, Test Method for Material Finer than 75 µm (No. 200) Sieve in Mineral Aggregates by Washing
6. ASTM C 138, Test Method for Unit Weight, Yield, and Air Content (Gravimetric) of Concrete
7. ASTM C 140, Methods of Sampling and Testing Concrete Masonry Units
8. ASTM C 150, Specifications for Portland Cement (Types I or II only)
9. ASTM C 172, Practice of Sampling Fresh Concrete
10. ASTM C 260, Specification for Air-Entraining Admixtures for Concrete
11. ASTM C 494, Specification for Chemical Admixtures for Concrete
12. ASTM C 595, Specifications for Blended Hydraulic Cements (Types IP or IS only)
13. ASTM C 618, Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete
14. ASTM C 989, Specification for Ground Granulated Blast Furnace Slag for Use in Concrete and Mortars
15. ASTM C 1077, Practice for Laboratories Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Laboratory Evaluation
16. ASTM C 1602, Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete
17. ASTM C 1688 Standard Test Method for Density and Void Content of Freshly Mixed Pervious Concrete
19. ASTM D 698, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³))
20. ASTM D 994 Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type)
21. ASTM D 1557, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³))
22. ASTM D1751 Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types)
23. ASTM D1752 Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction
24. ASTM D3385 Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer
25. ASTM E 329, Standard Recommended Practice for Inspection and Testing Agencies for Concrete, Steel and Bituminous Materials as Used in Construction

1.5 SUBMITTALS

A. Submit drawings and documentation as required in this specification.
B. Obtain written acceptance of submittals before using the materials or methods requiring acceptance.
C. Responsibilities of Contractor

1. **Placing contractor** — Submit data on qualifications of pervious concrete installer for acceptance in accordance with below

2. Before construction, placing contractor shall:
 - Furnish a proposed mix design with proportions of materials for acceptance, said design to accommodate at minimum a permeability of 30 gal/hr and a minimum loading of H-20.
 - Provide in-site pavement test results including void content and unit weight of proposed mix design.
 - Provide a sample of product (test panels). Place, joint and cure two test panels, each to be a minimum of 225 sq. ft. at the required project thickness to demonstrate to the architect’s satisfaction that in-place unit weights can be achieved and a satisfactory pavement can be installed at the site location.

D. Testing agency—Submit data on qualifications of proposed testing agency for acceptance. Use of testing services will not relieve Contractor of the responsibility to furnish materials and construction in full compliance with the Contract Documents.

E. Pre-Placement Conference – A mandatory pre-placement conference will take place including at a minimum engineer, general contractor, pervious concrete
contractor, concrete supplier, and field testing agency. As a guide for the meeting, a copy of the document *Checklist for the Concrete Pre-Construction Conference* (co-published and available from the National Ready Mixed Concrete Association (NRMCA), 900 Spring Street, Silver Spring, MD, (301) 587-1400), will be used to review all materials and personnel qualifications, concrete production, preparation, placing, curing, and testing procedures.

1.6 QUALITY ASSURANCE

A. General — Concrete materials and operations may be tested and inspected by Owner as work progresses. Failure to detect defective work or material early will not prevent rejection if a defect is discovered later nor shall it oblige Engineer for final acceptance.

1. Contractor qualification—Unless otherwise approved by Engineer, Contractor shall provide evidence of:
 • employment of one (1) NRMCA certified Pervious Concrete Craftsman who must be on site, overseeing each placement crew, during all concrete placement, or
 • the contractor shall provide evidence of employment of three (3) NRMCA certified Pervious Concrete Technicians, who have received hands-on training in the construction of pervious concrete pavements, and who must be on site, working as members of each placement crew, during all concrete placement, or
 • the contractor must obtain the services of a consultant who has the required NRMCA certification and who will be on site throughout the concrete placement

B. Concrete Producer qualification – Unless otherwise approved by Engineer, ready mixed pervious concrete shall be produced and provided by an NRMCA Certified personnel employed at the plant.

1. If, rather than ready mixed pervious concrete, a volumetric mobile mixer is used to produce the pervious concrete, the mixer(s) must conform to the standards of the Volumetric Mixer manufacturers Bureau (VMMB), to be verified by a current VMMB conformance plate affixed to the volumetric mixer equipment.

C. Test Panels — Test panels may be placed at any of the specified pervious concrete pavement placement locations. Test panels shall be tested for thickness in accordance with ASTM C 42; void structure in accordance with ASTM C 138; and for core unit weight in accordance with ASTM C 140, Paragraph 6.3.

1. Satisfactory performance of the test panels will be determined by:
 • Compacted thickness no less than 1/4" of specified thickness.
 • Void Content ± three (3) percent of the of the design void content.
• Unit weight ± five (5) pcf of the design unit weight.

2. If measured void structure is outside specified limits or if measured thickness is greater than 1/4" less than the specified thickness or if measured unit weight is less than five (5) pcf below design unit weight, the test panel shall be removed at contractor’s expense and disposed of in an approved landfill.

3. If the test panel meets the above-mentioned requirements, it can be left in-place and included in the completed work.

D. Testing agencies — Agencies that perform testing services on concrete materials shall meet the requirements of ASTM C 1077. Testing agencies performing the testing shall be accepted by Architect/Engineer before performing any work. Field tests of concrete required in 1.6.4 shall be made by an individual certified as an:

1. NRMCA Certified Pervious Concrete Technician, and
2. ACI Concrete Field Testing Technician Grade 1 in accordance with ACI CP1 or equivalent. Equivalent certification programs shall include requirements for written and performance examinations as stipulated in ACI publication CP1.

E. Testing responsibilities of Contractor

1. Submit data on qualifications of proposed testing agency for acceptance. Use of testing services will not relieve Contractor of the responsibility to furnish materials and construction in full compliance with the Contract Documents.

F. Duties and responsibilities — Unless otherwise specified in the Contract Documents, Contractor shall assume the following duties and responsibilities:

1. Qualify proposed materials and establish mixture proportions.
2. Furnish any necessary labor to assist Owner’s testing agency in obtaining and handling samples at the project site or at the source of materials.
3. Advise Owner’s testing agency at least 24 hr in advance of operations to allow for completion of quality tests and for assignment of personnel.

G. Testing and Acceptance:

1. A minimum of one test for each delivery truck of pervious concrete in accordance with ASTM C 1688 to verify unit weight shall be conducted. Delivered unit weights are to be determined in accordance with ASTM C 1688 using a 0.25 cubic foot cylindrical metal measure. The measure is to be filled and compacted in accordance with ASTM C 1688, jiggling procedure. The unit weight of the delivered concrete shall be ± five (5) pcf of the design unit weight.
2. Test panels shall have two cores taken from each panel in accordance with ASTM C 42 at a minimum of seven (7) days after placement of the pervious concrete. The cores shall be measured for thickness, void structure, and unit weight. Untrimmed, hardened core samples shall be used to determine placement thickness. The average of all production cores shall not be less than the specified thickness with no individual core being more than 1/4 inch less than the specified thickness. After thickness determination, the cores shall be trimmed and measured for unit weight in the saturated condition as described in Paragraph 6.3.1 "Saturation" of ASTM C 140, Standard Methods of Sampling and Testing Concrete Masonry Units. The trimmed cores shall be immersed in water for 24 hours, allowed to drain for one (1) minute, surface water removed with a damp cloth, then weighed immediately. The range of satisfactory unit weight values are ± five (5)pcf of the design unit weight.

3. After a minimum of seven (7) days following each placement, three cores shall be taken in accordance with ASTM C 42. The cores shall be measured for thickness and unit weight determined as described above for test panels.

4. Core holes shall be filled with concrete meeting the pervious mix design or grout.

PART 2 - PRODUCTS

2.1 Concrete—Comply with ASTM C94 and the following requirements:

A. Aggregates — Maximum aggregate size shall not exceed one-third of the pavement thickness.

B. Submit documentation describing concrete mixture proportions in accordance with ACI 301.

2.2 Isolation joint material

A. For isolation joint materials, comply with ASTM D 994, D 1751, or ASTM D 1752.

2.3 Forms

A. Forms shall be made of steel or wood or other material capable of supporting concrete and mechanical concrete placing equipment that is sufficiently rigid to maintain the specified tolerances.

B. Forms shall be clean and free of dirt, rust, and hardened concrete.

PART 3 - EXECUTION

3.1 Sub-grade preparation
A. Prepare sub-grade as required in the contract documents.

B. Construct sub-grade to ensure that the required pavement thickness is obtained in all locations.

C. Re-grade and re-compact sub-grade disturbed by concrete delivery vehicles or other construction equipment.

D. Do not use loose material to obtain final sub-grade elevation.

E. Sub-grade permeability shall be determined in accordance with ASTM D 3385 before concrete placement to ensure conformance with contract documents

3.2 Sub-base

A. Use only when required by contract documents. If used, prepare sub-base in accordance with Section 3.1, Sub-grade preparation.

3.3 Setting forms

A. Set, align, and brace forms so that the pavement will meet the tolerances specified in Section 3.10, Tolerances.

B. Apply form release agent to inside face of forms before placing concrete.

C. The edge of previously placed concrete may be used as a form. Do not apply form release agent to previously placed concrete.

D. Placement width shall not exceed twenty (20) feet unless successfully demonstrated otherwise and accepted by the Engineer.

3.4 Batching, mixing, and delivery

A. Comply with ASTM C 94 except that discharge shall be completed within sixty (60) minutes of the introduction of mix water to the cement -- this time can be increased to 90 minutes when utilizing a hydration stabilizer. Further, water addition is permitted at the point of discharge provided the design w/c ratio is not exceeded.

3.5 Placing and finishing fixed-form pavement

A. Deposit concrete directly from the transporting equipment onto the sub-grade or sub-base as appropriate. Wet the sub-base or sub-grade immediately prior to placement.

B. Do not place concrete on frozen sub-grade or sub-base.

C. Other methods of conveying the concrete may be used when specified or permitted by the engineer.

D. Deposit concrete between the forms to a uniform height.
E. Spread the concrete using a come-along, short-handle, square-ended shovel or rake.
F. Foot-traffic shall not be allowed on the fresh concrete.
G. Strike off concrete between forms using a form riding paving machine, vibrating screed, or roller screed. Other strike-off devices may be used when accepted.
H. Do not use steel trowels or power finishing equipment.
I. Finish the pavement to the elevations and thickness specified in the project drawings and meet the requirements of Section 3.9, Tolerances.

3.6 Placing and finishing slip-form pavement
A. When accepted, slip-form equipment may be permitted.
B. Deposit and finish concrete in accordance with Section 3.5.

3.7 Final surface texture
A. Final surface texture shall be achieved by compacting the fresh concrete using a full-width steel roller, that provides a minimum compactive pressure to achieve the requirements of Section 3.9 — Tolerances.
B. Other methods of producing final surface texture may be permitted when specified and accepted.
C. Hand tools shall be used to compact the concrete along the slab edges immediately adjacent to forms.

3.8 Edging
A. Edge top surface edges to a radius of 1/4 in. (6 mm).

3.9 Tolerances (see 1.2, Definitions—Tolerances)
A. Construct pavement to comply with the following tolerances:
 • Elevation: 3/4 in. (19 mm)
 • Thickness: +1 in., −1/4 in. (+10 mm, −6 mm)
 1. Pavement must be mechanically swept before testing for compliance with tolerances.
B. Joint spacing (see Paragraph 3.12)
 • Contraction joint depth (d = slab thickness): +1/4 in. (6 mm), −0 in.

3.10 Curing
A. Curing procedures shall begin immediately after the final placement operations.
B. Begin curing within twenty (20) minutes of concrete discharge unless longer working time is approved by the architect/engineer.
C. The pavement surface shall be covered with a minimum six (6) mil thick polyethylene sheet. Sheeting shall be cut to a minimum the full lane width.
D. A fog shall be sprayed above the surface, before covering, when required due to hot weather conditions.
E. Cover all exposed edges with curing material.
F. Curing material shall be secured without using dirt.
G. Cure pavement uninterrupted for a minimum of 7 days, unless otherwise specified.

3.11 Hot- and cold-weather construction

A. In hot weather, protect fresh concrete with windbreaks, shading, or fog spraying to prevent cracking at locations other than contraction joints.
B. If required, submit detailed procedures for the production, transportation, placement, protection, curing, and temperature monitoring of concrete during hot weather.
C. In cold weather, comply with ACI 306.1. Never place pervious concrete unless the ambient outside temperatures remain above 40°F for seven (7) consecutive calendar days.

3.12 Jointing

A. Construct joints at the locations, depths, and with dimensions indicated on the project drawings or accepted drawings submitted by the contractor.
B. If jointing requirements are not indicated on the project drawings, the contractor shall submit drawings describing proposed jointing in accordance with Section 1.4, Submittals, and the requirements of 3.13.2.1 through 3.13.2.9. Contractor shall not proceed with work until the jointing requirements are accepted by Engineer.
 1. Indicate locations of contraction joints, construction joints, and isolation joints. Spacing between contraction joints shall not exceed 15 feet unless otherwise approved by the Engineer.
 2. The larger dimension of a panel shall not exceed 125% of the smaller dimension.
 3. The minimum angle between two intersecting joints shall be 80 degrees, unless otherwise specified or permitted.
 4. Joints shall intersect pavement free edges at 90-degree angles and shall extend straight for a minimum of 1-1/2 ft (0.5 m) from the pavement edge, where possible.
 5. Align joints of adjacent panels.
 6. Align joints in attached curbs with joints in pavement when possible.
 7. Ensure joint depths, widths, and dimensions are as specified.
 8. Minimum contraction joint depth, using a conventional saw, or specialty tools, shall be 1/4 of the pavement thickness. Minimum joint width for saw cutting is 1/8 in. (3 mm).
 9. 3.12.2.9 Use isolation joints only where pavement abuts buildings, foundations, manholes, and other fixed objects.
C. Tool contraction joints in fresh concrete immediately after the concrete has been compacted to the specified depth and width.
D. Extend isolation joints through the full depth of the pavement. Fill the entire isolation joint with isolation joint material, unless otherwise required by project drawings or by accepted jointing drawings submitted by the contractor. (See Section 2.4.)
A. Do not open the pavement to traffic until the concrete has cured for at least 7 days or until the pavement is accepted by the engineer for opening to traffic.

END OF SECTION 32 14 13
SECTION 32 18 16.13 - POURRED-IN-PLACE PLAYGROUND SURFACING SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Poured-in-Place Playground Surfacing System.

B. Related Sections: Division 2 Sitework Sections: Materials and Methods, Excavation, Concrete Paving, Sub-Drainage, Storm Drainage, Fencing, Playground Equipment and Structures.

1.2 REFERENCES

A. American Society for Testing and Materials (ASTM):

1.3 SYSTEM DESCRIPTION

A. Performance Requirements: Provide a 2 layer rubber-urethane playground surfacing system which has been designed, manufactured and installed to meet the following criteria:

1. Shock Attenuation (ASTM F1292):
 b. Head Injury Criteria: Less than 1000.
3. Tensile Strength (ASTM D412): 60 psi (413 kPa).
4. Tear Resistance (ASTM D624): 140%.
5. Water Permeability: 0.4 gal/yd2/second.
1.4 SUBMITTALS

A. General: Submit listed submittals in accordance with Conditions of the Contract and Division 1 Submittal Procedures Section.

B. Product Data: Submit manufacturer’s product data and installation instructions.

C. Verification Samples: Submit manufacturer’s standard verification samples of 9” x 9” (229 x 229 mm) minimum.

D. Quality Assurance/Control Submittals: Submit the following:
 1. Certificate of qualifications of the playground surfing installer.

E. Closeout Submittals: Submit the following:
 1. Warranty documents specified herein.

1.5 QUALITY ASSURANCE

A. Qualifications: Utilize an installer approved and trained by the manufacturer of the playground surfing system, having experience with other projects of the scope and scale of the work described in this section.

B. Certifications: Certification by manufacturer that installer is an approved applicator of the playground surfing system.

C. International Play Equipment Manufacturers Association (IPEMA) certified.

1.6 DELIVERY, STORAGE & HANDLING

A. General: Comply with Division 1 Product Requirement Section.

B. Delivery: Deliver materials in manufacturer's original, unopened, undamaged containers with identification labels intact.

C. Storage and Protection: Store materials protected from exposure to harmful environmental conditions and at a minimum temperature of 40 degrees F (4 degrees C) and a maximum temperature of 90 degrees F (32 degrees C).

1.7 PROJECT/SITE CONDITIONS

A. Environmental Requirements: Install surfacing system when minimum ambient temperature is 40 degrees F (1 degree C) and maximum ambient temperature is 90 degrees F (32 degrees C). Do not install in steady or heavy rain.

1.8 WARRANTY

A. Project Warranty: Refer to Conditions of the Contract for project warranty provisions.

B. Manufacturer’s Warranty: Submit, for Owner's acceptance, manufacturer's standard warranty document executed by authorized company official. Manufacturer's warranty is in addition to, and not a limitation of, other rights Owner may have under contract documents.

C. Proper drainage is critical to the longevity of the PlayBound Poured-in-Place surfacing system. Inadequate drainage will cause premature breakdown of the poured system in affected areas; and void the warranty.
 1. Warranty Period: Extreme-10 (when aliphatic urethane for the top surface is specified): 10 years from date of completion of work. 2 years from date of
completion of work when surface is in water play areas, pool surrounds or similar applications.

PART 2 - PRODUCTS

2.1 Poured-in-place Playground Surfacing System

A. Manufacturer: Surface America, Inc.
1. Contact: PO Box 157, Williamsville, NY 14231; Telephone: (800) 999-0555, (716) 632-8413; Fax: (716) 632-8324; E-mail: Info@surfaceamerica.com website: http://www.surfaceamerica.com.

B. Proprietary Products/Systems. Poured-in-place playground surfacing system, including the following:
1. PlayBound Poured-In-Place Primer:
2. PlayBound Poured-in-Place Basemat:
 a. Material: Blend of 100% recycled SBR (styrene butadiene rubber) and urethane.
 b. Thickness: [4” (102 mm)]
 c. Formulation Components: Blend of strand and granular material.
3. PlayBound Poured-In-Place Top Surface:
 a. Material: Blend of recycled EPDM (ethylene propylene diene monomer) rubber and aromatic or aliphatic urethane binder.
 b. Thickness: Nominal 1/2” (12.7 mm), minimum 3/8” (9.5 mm), maximum 5/8” (15.9 mm).
 c. Color: Sky Blue
 d. Dry Static Coefficient of Friction (ASTM D2047): 1.0.
 e. Wet Static Coefficient of Friction (ASTM D2047): 0.9.
 g. Wet Skid Resistance (ASTM E303): 57.

2.3 PRODUCT SUBSTITUTIONS

A. Substitutions: No substitutions permitted.

2.4 MIXES

A. Required mix proportions by weight:
1. Basemat: 16+% urethane (as ratio: 14% urethane divided by 86% rubber). 14% urethane, 86% rubber (based on entire rubber & urethane mix).
2. Top Surface: 22% urethane (ratio: 18% urethane divided by 82% rubber). 18% urethane, 82% rubber (based on entire rubber & urethane mix).

PART 3 - EXECUTION

3.1 MANUFACTURER’S INSTRUCTIONS
A. Comply with the instructions and recommendations of the playground surfacing manufacturer.

3.2 EXAMINATION

A. Substrate preparation must be in accordance with surfacing manufacturer’s specification. New asphalt must be fully cured - up to 30 days. New concrete must be fully cured - up to 7 days.

B. Proper drainage is critical to the longevity of the PlayBound Poured-in-Place surfacing system. Inadequate drainage will cause premature breakdown of the poured system in affected areas; and void the warranty.

3.3 PREPARATION

A. Surface Preparation: Using a brush or short nap roller, apply primer to the substrate perimeter and any adjacent vertical barriers such as playground equipment support legs, curbs or slabs that will contact the surfacing system at the rate of 300 ft²/gal (7.5 m²/L).

3.4 INSTALLATION

A. Do not proceed with playground surfacing installation until all applicable site work, including substrate preparation, fencing, playground equipment installation and other relevant work, has been completed.

B. Basemat Installation:
 1. Using screeds and hand trowels, install the basemat at a consistent density of 29 pounds, 1 ounce per cubic foot (466 kg/m³) to the specified thickness.
 2. Allow basemat to cure for sufficient time so that indentations are not left in the basemat from applicator foot traffic or equipment.
 3. Do not allow foot traffic or use of the basemat surface until it is sufficiently cured.

C. Primer Application: Using a brush or short nap roller, apply primer to the basemat perimeter and any adjacent vertical barriers such as playground equipment support legs, curbs or slabs that will contact the surfacing system at the rate of 300 ft²/gal (7.5 m²/L).

D. Top Surface Installation:
 1. Using a hand trowel, install top surface at a consistent density of 58 pounds, 9 ounces per cubic foot (938 kg/m³) to a nominal thickness of 1/2” (12.7 mm).
 2. Allow top surface to cure for a minimum of 48 hours.
 3. At the end of the minimum curing period, verify that the top surface is sufficiently dry and firm to allow foot traffic and use without damage to the surface.
 4. Do not allow foot traffic or use of the surface until it is sufficiently cured.

3.5 PROTECTION

A. Protect the installed playground surface from damage resulting from subsequent construction activity on the site.

END OF SECTION 32 18 16.13
SECTION 32 31 13 - CHAIN LINK FENCE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Chain-link fences.

B. Related Sections:
 1. Section 03 30 00 “Cast-in-Place Concrete” for cast-in-place concrete. Refer to industry standards and requirements for additional information regarding equipment bases/pads for gate operators and controls, and post footings.

1.3 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design chain-link fences and gates, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Chain-link fence and gate framework shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to ASCE/SEI 7:
 1. Minimum Post Size: Determine according to ASTM F 1043 for framework up to 12 feet high, and post spacing not to exceed 10 feet for galvanized steel.
 2. Minimum Post Size and Maximum Spacing: Determine according to CLFMI WLG 2445, based on mesh size and pattern specified and on the following:
 a. Wind Loads: Per manufacturer’s recommendations.
 b. Exposure Category: Per manufacturer’s recommendations.
 c. Fence Height: 4- feet. In wall sections where top of wall is 1 foot higher than top of grade, fence to be 3-feet tall.
 d. Material Group: Per manufacturer’s recommendations.
C. Lightning Protection System: Maximum grounding-resistance value of 25 ohms under normal dry conditions.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for chain-link fences and gates.
 1. Fence and gate posts, rails, and fittings.
 2. Chain-link fabric, reinforcements, and attachments.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.

C. Samples for Initial Selection: For components with factory-applied color finishes.

D. Samples for Verification: Prepared on Samples of size indicated below:
 1. Polymer-Coated Components: In 6-inch lengths for components and on full-sized units for accessories.

E. Delegated-Design Submittal: For chain-link fences and gate framework indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified professional engineer.

B. Product Certificates: For each type of chain-link fence, operator, and gate, from manufacturer.

C. Product Test Reports: For framing strength according to ASTM F 1043.

D. Field quality-control reports.

E. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For the following to include in emergency, operation, and maintenance manuals:
 1. Polymer finishes.
1.7 QUALITY ASSURANCE

 1. Inspect and discuss electrical roughing-in, equipment bases, and other preparatory work specified elsewhere.
 2. Review coordination of interlocked equipment specified in this Section and elsewhere.
 3. Review required testing, inspecting, and certifying procedures.

1.8 PROJECT CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.9 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which Installer agrees to repair or replace components of chain-link fences that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 2. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CHAIN-LINK FENCE FABRIC

A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:
 a. Mesh Size: 2 inches
 b. Polymer-Coated Fabric: ASTM F 668, Class 1 over zinc -coated steel wire.
 1) Color: Per Owner’s preference, complying with ASTM F 934.
 c. Coat selvage ends of fabric that is metallic coated before the weaving process with manufacturer's standard clear protective coating.
 2. Selvage: Twisted top and knuckled bottom.
2.2 FENCE FRAMING

A. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 or based on the following:

1. Fence Height: 48 inches.
2. Light Industrial Strength: Material per Manufacturer’s recommendations.
 a. Line Post: 2.0 inches in diameter.
 b. End, Corner and Pull Post: 3.0 inches.

 a. Top Rail: 1.625 inches in diameter.

5. Metallic Coating for Steel Framing:
 a. Type A, consisting of not less than minimum 2.0-oz./sq. ft. average zinc coating per ASTM A 123/A 123M or 4.0-oz./sq. ft. zinc coating per ASTM A 653.

6. Polymer coating over metallic coating.
 a. Color: Per Owner’s preference, complying with ASTM F 934.

2.3 TENSION WIRE

A. Metallic-Coated Steel Wire: 0.177-inch-diameter, marcelled tension wire complying with ASTM A 817 and ASTM A 824, with the following metallic coating:
 1. Type II, zinc coated (galvanized) by hot-dip process, with the following minimum coating weight:
 a. Class 3: Not less than 0.8 oz./sq. ft. of uncoated wire surface.
 b. Class 4: Not less than 1.2 oz./sq. ft. of uncoated wire surface.
 c. Class 5: Not less than 2 oz./sq. ft. of uncoated wire surface.
 d. Matching chain-link fabric coating weight.

2. Polymer coating over metallic coating.
 a. Color: Per Owner’s preference, complying with ASTM F 934.

2.4 FITTINGS

A. General: Comply with ASTM F 626.
B. Post Caps: Provide for each post.
 1. Provide line post caps with loop to receive tension wire or top rail.

C. Rail and Brace Ends: For each gate, corner, pull, and end post.

D. Rail Fittings: Provide the following:
 1. Top Rail Sleeves: Per manufacturer’s recommendations not less than 6 inches long.
 2. Rail Clamps: Line and corner boulevard clamps for connecting intermediate and bottom rails in the fence line-to-line posts.

E. Tension and Brace Bands: Per manufacturer’s recommendations.

F. Tension Bars: Steel, Aluminum, or Fiberglass, length not less than 2 inches shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.

G. Truss Rod Assemblies: Steel, hot-dip galvanized after threading rod and turnbuckle or other means of adjustment.

H. Tie Wires, Clips, and Fasteners: According to ASTM F 626.
 1. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, complying with the following:
 a. Hot-Dip Galvanized Steel: 0.106-inch- diameter wire; galvanized coating thickness matching coating thickness of chain-link fence fabric.
 b. Aluminum: ASTM B 211; Alloy 1350-H19; 0.148-inch- diameter, mill-finished wire.

I. Finish:
 1. Metallic Coating for Pressed Steel or Cast Iron: Not less than 1.2 oz. /sq. ft. zinc.
 a. Polymer coating over metallic coating.

2.5 GROUT AND ANCHORING CEMENT

A. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout, recommended in writing by manufacturer, for exterior applications.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for a verified survey of property lines and legal boundaries, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.

1. Do not begin installation before final grading is completed unless otherwise permitted by Engineer.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 INSTALLATION, GENERAL

A. Install chain-link fencing to comply with ASTM F 567 and more stringent requirements indicated.

1. Install fencing on established boundary lines inside property line.

3.4 CHAIN-LINK FENCE INSTALLATION

A. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.

B. Post Setting: Set posts in concrete with mechanical anchors by mechanically driving into soil at indicated spacing into firm, undisturbed soil.

1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.

2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Posts Set into Concrete in Sleeves: Use steel pipe sleeves preset and anchored into concrete for installing posts. After posts have been inserted into sleeves, fill annular space between post and sleeve with nonshrink, nonmetallic grout mixed and placed to comply with anchoring material manufacturer's written instructions, and finished sloped to drain water away from post.
C. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 30 degrees or more.

D. Line Posts: Space line posts uniformly at 10 feet o.c.

E. Post Bracing and Intermediate Rails: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.
 1. Locate horizontal braces at midheight of fabric 72 inches or higher, on fences with top rail and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.

F. Tension Wire: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch- diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:
 1. Extended along top and bottom of fence fabric. Install top tension wire through post cap loops. Install bottom tension wire within 6 inches of bottom of fabric and tie to each post with not less than same diameter and type of wire.
 2. Extended along top of extended posts and top of fence fabric for supporting barbed tape.

G. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.

H. Intermediate and Bottom Rails: Install and secure to posts with fittings.

I. Chain-Link Fabric: Apply fabric to outside of enclosing framework. Leave 2 inches between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

J. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric per ASTM F 626. Bend ends of wire to minimize hazard to individuals and clothing.
 1. Maximum Spacing: Tie fabric to line posts at 12 inches o.c. and to braces at 24 inches o.c.

K. Fasteners: Install nuts for tension bands and carriage bolts on the side of the fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts.
END OF SECTION 32 31 13
SECTION 32 84 00 - LANDSCAPE IRRIGATION SYSTEM

PART 1 - GENERAL

1.1 SYSTEM DESCRIPTION

A. The sprinkler system shall include sprinklers, valves, piping fittings, controller, wiring, all of sizes and types as shown on the drawings and specified. The system shall be constructed to grades and conform to areas and locations as shown on the drawings.

B. Sprinkler lines shown on the drawings are essentially diagrammatic. Spacing of the sprinkler heads or quick coupling valves are shown on the drawings and shall be exceeded only with written permission of the Designer.

C. Unless otherwise specified or indicated on the drawings, the construction of the sprinkler system shall include the furnishing, installing, and testing of all mains, laterals, risers and fittings, sprinkler heads, gate valves, control valves, controllers, electric wire, controls, backflow preventers, enclosures, and other necessary specialties and the removal and/or restoration of existing improvements, excavating and backfill, and all other work in accordance with the plans and specifications a required for a complete system.

1.2 QUALITY ASSURANCE

A. Conference: Before any work is started a conference shall be held between the Contractor and the Owner concerning the work under this contract.

B. The Contractor shall maintain continuously a competent superintendent, satisfactory to the Owner, on the work during progress with authority to act or him in all matter pertaining to the work.

C. It is the Irrigation Contractor’s responsibility to coordinate and cooperate with the other Contractors to enable work to proceed rapidly and efficiently.

D. The Contractor shall confine his operations to the area to be improved and to the areas allotted him by the Designer and General Contractor for material and equipment.

E. Contractor shall take all necessary to protect the existing site conditions and vegetation.

1.3 SUBMITTALS

A. General: Submit in accordance with Shop Drawings, Product Data, and Samples.
B. Shop Drawings and Equipment Product Information:

1. Prior to purchasing materials, submit product information on all sprinkler heads, automatic valves, quick coupling valves, controller, and pipe to be used on the project.

2. Contractor shall review drawings and data to supply actual precipitation rates and times for each zone in maintenance package.

3. Prior to trenching, Contractor shall submit proposed trenching equipment to Designer for approval.

C. Record Drawings and Instructions

1. Upon completion of installation, Contractor shall produce as-built drawings in AutoCAD 2010 format and furnish one set of reproducible and one set of printed record drawings showing all sprinkler heads, valves, drains, and pipelines to scale with dimensions. These drawings shall have dimensions from easily located stationary points (cross measured) as they relate to all valves, mainlines, and wire. Clearly note all approved substitutions of size, material, etc. Complete, concise instruction sheets and parts lists covering all operating equipment and weathering techniques shall be bound into folders and furnished to the Owner in three (3) copies. Submission of this information is a requirement for final acceptance.

1.4 SITE CONDITIONS

A. The Contractor shall examine the site, plans and specifications (i.e. system requirements).

B. It shall be the Contractor’s responsibility to report in writing to the Designer any deviations between drawings, specification, and actual site conditions. Failure to do so prior to the installing of equipment shall be done at the Contractor’s expense.

C. Adjustment of the sprinkler heads and automatic equipment will be done by the Contractor, upon completion of installation, to provide optimum performance.

D. After completion, testing, and acceptance of the system, the Contractor shall verbally instruct the Owner’s personnel in the operation and maintenance of the system. All written instruction shall be included in the bound maintenance package as stated in Paragraph 1.3 - Submittals.

PART 2 - PRODUCTS

2.1 PIPE AND FITTINGS
A. Pipe sizes shall conform to those shown on the drawings. No substitutions of smaller pipe sizes will be permitted, but substitutions of larger size may be approved. All pipe damaged or rejected because of defects shall be removed from the site at the time of said rejection.

B. All mainline piping (21/2") two and one half inches and larger will be equipped with gaskets.

C. All fittings for mainline pipes two and one half (21/2") inches or larger will be equipped with gaskets.

D. All piping downstream of electric valves, sizes (3) inches and smaller, shall be rigid unplasticized PVC 200 PSI working pressure extruded from virgin parent material of the type specified on the drawings. The pipe shall be homogeneous throughout and free from visible cracks, holes, foreign materials, blisters, wrinkles and permanently marked with the manufacture’s name, material, size, and schedule type. Pipe must bear the NFS seal.

E. All mainline piping and underground piping under continuous pressure shall be rigid unplasticized PVC-Class 200 PSI working pressure extruded from virgin parent material of the type specified on the drawings. The pipe shall be homogeneous throughout and free from visible cracks, holes, and foreign materials, blisters, wrinkles and dents.

F. All plastic fittings to be installed shall be molded fittings manufactured of the same material as the pipe and shall be suitable for solvent weld, slip joint ring tight seal, or screwed connections NO fitting made of other material shall be used except as hereinafter specified.

G. Slip fitting socket tapers shall be so sized that a dry unsoftened pipe end conforming to these special provisions can be inserted no more than halfway into the socket. Plastic saddle and flange fittings will not be permitted. Only Schedule 80 pipe may be threaded.

H. Fittings for all Mainline Piping 4” and larger shall be Harco Ductile Iron Gasketed Fittings. All mainline 4” and larger shall utilize approved thrust blocking and or restraints. Thrust Blocking and restraints to be installed as per manufacturer’s recommendations for pipe type, pipe size and local environmental conditions.

2.2 SLEEVES

A. All sleeves shall be Class 200 PVC or stronger. All sleeves are required at every crossing indicated on drawings. (Size Noted)

B. All sleeves shall be installed under proposed pavement areas prior to subgrade and base construction.

C. Sleeves shall have a minimum horizontal separation of 18" and a maximum of twenty-four (24) inch clearance below bottom of curb.
D. All sleeves shall have a minimum horizontal separation of twenty-four (24) and maximum of thirty-six inches from center to center.

E. Stub up sleeve pipe twelve (12) inches above ground surface and cap. Paint cap with fluorescent orange paint for easy identification.

F. The location of all sleeves shown on the plans is schematic. The contractor shall make any adjustments necessary to accommodate existing vegetation, utilities, or other existing conditions.

G. If the road crossings are designated as being bore locations the bore must be ample size to accommodate the size sleeve specified.

2.3 CONTROL SYSTEM

A. The automatic controllers shall be as shown on the plans and shall be made by the same manufacturer as valves.

B. Install Rain Check or Mini-Click type shut off device to override the control timer in the event of rain.

2.4 CONTROL WIRE

A. Control wire shall be type UF, UL approved, for direct burial and shall be gauge 14 or larger for the control wire and gauge 12 or larger for common wire.

B. Joining of underground wires shall be made with watertight connectors in valve boxes. No splicing between boxes is acceptable. Utilize 3M DBR/Y-6 Connections unless directed otherwise.

C. All wire connections in valve boxes; first example shall stay open until the Designer approves.

2.5 IRRIGATION VALVES

A. Zone Control Valves

1. Globe-type diaphragm valves of normally closed design, with bronze bodies or heavy-duty plastic and covers (type noted on drawings). Operation accomplished by means of an integrally mounted heavy-duty 24 volt AC solenoid complying with National Electrical Code, Class II Circuit, solenoid coil potted in epoxy resign within a plastic-coated stainless steel housing. Solenoids shall be completely waterproof, suitable for direct underground burial. Provide a flow stem adjustment in each valve.

2.6 VALVE BOXES
A. All valves shall be installed in thermoplastic valve access boxes of the size required to permit access to the valve. Valve boxes shall include black thermoplastic locking covers. Manufacturer - Ametek or approved equal.

B. All valve boxes shall be installed on at least a two (2) cubic foot gravel base to provide foundation and drainage.

C. All valve box elevations shall be ½” below finished grade.

2.7 THRUST BLOCKS

A. Place one cubic ft. of concrete for each inch of pipe diameter for thrust block. Thrust shall not allow vertical or horizontal movement of pipe in any direction unless otherwise noted on design. Thrust blocking shall be provided on all piping three (3) inch diameter and larger.

PART 3 - EXECUTION

3.1 EXCAVATION AND BACKFILL

A. Trenches for pipe sprinkler lines shall be excavated of sufficient depth and width to permit proper handling and installation by any other method the Contractor may desire if approved by the Owner, pipe manufacturer, and Designer. The backfill shall be thoroughly compacted and evened off with the adjacent soil level. Selected fill dirt or sand shall be used if soil conditions are rocky. In rocky areas the trenching depth shall be two (2) inches below normal trenching depth to allow for this bedding. The fill dirt or sand shall be used in filling (4) inches above the pipe. The remainder of the backfill shall contain no lumps or rocks larger than three (3) inches. The top twelve (12) inches of backfill shall be topsoil, free of rocks, subsoil, or trash. Any open trenches or partially backfilled trenches left overnight or left unsupervised shall be barricaded to prevent undue hazard to the public.

B. The Contractor shall backfill in six (6) inch compacted lifts as needed to bring the soil to its original density.

C. In the spring following the year of installation, the Contractor shall repair any settlement of the trenches by bringing them to grade with topsoil, and seeding with the existing lawn type(s). Watering and maintenance of the repaired areas shall be the Owner's responsibility.

3.2 INSTALLATION OF PLASTIC PIPE

A. Plastic pipe shall be installed in a manner that permits expansion and contraction as recommended by the manufacturer.

B. Plastic pipe shall be cut with a handsaw or hacksaw with the assistance of a square in sawing vice or in a manner so as to ensure a square cut. Burrs at cut ends shall be removed prior to installation so that a smooth unobstructed flow will be obtained.
C. All plastic-to-plastic joints shall be solvent weld joints or slip seal joints. Only the solvent recommended for the pipe and fittings shall be installed as outlined and instructed by the pipe manufacturer. The Contractor shall assume full responsibility for the correct installation.

D. The joints shall be allowed to set at least twenty-four (24) hours before pressure is applied to the system on PVC pipe.

3.3 CONTROLLER AND ELECTRICAL CONNECTIONS

A. All electrical connections shall conform to the National Electrical Code, latest edition.

B. Control wires installed beneath walks, drives, or other permanent surfaces shall be placed in sleeves.

C. Wires shall be spliced only at valve boxes.

D. Leave twenty-four (24) inch loop of wire at each valve for expansion/contraction and servicing.

E. Controllers and valves shall be from the same company e.g. (Rain Bird, Toro or approved equal).

F. 120 VAC electrical power supply to the controller location shall be supplied by others.

3.4 FLUSHING AND TESTING

A. After all new sprinkler piping and risers are in place and connected for a given section and all necessary division work has been completed and prior to the installation of sprinkler heads all control valves shall be opened and a full head of water used to flush out the system.

B. Sprinkler main shall be pressure tested as follows:
 1. Two (2) hour pressure test at 1.5 times the system operating pressure
 2. Twenty four (24) hour pressure test at the system operating pressure
 If leaks occur, repair and repeat the test until no leaks occur (pressure does not drop). Give Designer twenty-four hours notice prior to testing.

C. Testing of the system shall be performed after completion of the entire installation and any necessary repairs shall be made at the Contractor’s expense to put the system in good working order before final payment by the Owner.

D. Adjustment of the sprinkler heads, and automatic equipment, will be done by the Contractor upon completion of installation to provide optimum performance. Minor adjustments during the guarantee period will be made by the Owner.
E. After completion, testing, and acceptance of the system, the Contractor will instruct the Owner's personnel in the operation and maintenance of the system.

3.5 CLEAN UP AND PROTECTION

A. During irrigation work, Contractor shall keep project site clean and orderly

B. Upon Completion of Work, clear grounds of debris, superfluous materials and all equipment. Remove from site to satisfaction of the Owner's Representative.

3.6 WINTERIZING THE SYSTEM

A. Contractor's responsibility to winterize the irrigation system the first winter following Substantial Completion of the Project.

3.7 INSPECTION

A. Periodic Inspections will be made by the Landscape Architect/Owner's Representative to review the quality and progress of the work. Work found to be unacceptable must be corrected within a timely matter (to be determined by Owner's Representative). Remove rejected materials promptly from the project site.

B. It will be the responsibility of the Irrigation Contractor to provide a reliable communication system (i.e. Two way radios or remote radio control activation system) for Substantial Completion and all periodic inspections.

PART 4 - CODES, PERMITS, WARRANTY, AND GUARANTEE

4.1 CODES AND ORDINANCES

A. All materials, installation parameters, and operations shall conform to all applicable codes and ordinances. It is the Contractor's responsibility to investigate and follow all regulations. Contractor is responsible to verify applicable codes and ordinances prior to submitting bid. Before bid submittal, it is the Contractor's responsibility to notify the Irrigation Consultant/Designer at least 5 days before bid submittal, of any changes due to code or ordinance discrepancies. If the Contractor does not comply with this process and notification, the Contractor shall be responsible for the necessary installation change and redesign costs for non-compliance.

4.2 PERMITS AND FEES

A. The Contractor shall obtain, at his expense, all required permits and shall pay all required fees. Any penalties imposed due to failure to obtain any permit or pay any fee shall be the responsibility of the Contractor.

4.3 WARRANTY AND GUARANTEE
A. The Contractor shall furnish a certificate of warranty registration and a written guarantee of work and materials for a one year period from the date of final acceptance of the Irrigation System by the Owner and the Designer.

END OF SECTION 32 84 00
SECTION 32 91 13 - SOIL PREPARATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes planting soils and layered soil assemblies specified by composition of the mixes.

B. Related Requirements:

1. Section 31 10 00 "Site Clearing" for topsoil stripping and stockpiling.
2. Section 32 14 13 "Pervious Concrete" and 32 14 43 “Permeable Interlocking Concrete Paving System” for placing planting-soil fill in porous paving.
3. Section 32 92 00 "Turf and Grasses" for placing planting soil for turf and grasses.
4. Section 32 93 00 "Plants" for placing planting soil for plantings.
5. Refer to industry standards and requirements for additional information regarding “Interior Planters and Artificial Plants.”
6. Refer to industry standards and requirements for additional information regarding “Site Furnishings.”
7. Refer to industry standards and requirements for additional information regarding “Transplanting.”
8. Refer to industry standards and requirements for additional information regarding “Vegetated Roof Assemblies.”

1.3 ALLOWANCES

A. Preconstruction and field quality-control testing are part of testing and inspecting allowance.

1.4 UNIT PRICES

A. Work of this Section is affected by Unit Prices. Refer to measurement and payment section for information regarding unit prices.
1.5 DEFINITIONS

B. Backfill: The earth used to replace or the act of replacing earth in an excavation. This can be amended or unamended soil as indicated.

C. CEC: Cation exchange capacity.

D. Compost: The product resulting from the controlled biological decomposition of organic material that has been sanitized through the generation of heat and stabilized to the point that it is beneficial to plant growth.

E. Duff Layer: A surface layer of soil, typical of forested areas, that is composed of mostly decayed leaves, twigs, and detritus.

F. Imported Soil: Soil that is transported to Project site for use.

G. Layered Soil Assembly: A designed series of planting soils, layered on each other, that together produce an environment for plant growth.

H. Manufactured Soil: Soil produced by blending soils, sand, stabilized organic soil amendments, and other materials to produce planting soil.

I. NAPT: North American Proficiency Testing Program. An SSSA program to assist soil-, plant-, and water-testing laboratories through interlaboratory sample exchanges and statistical evaluation of analytical data.

J. Organic Matter: The total of organic materials in soil exclusive of undecayed plant and animal tissues, their partial decomposition products, and the soil biomass; also called "humus" or "soil organic matter."

K. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified as specified with soil amendments and perhaps organic fertilizers to produce a soil mixture best for plant growth.

M. SSSA: Soil Science Society of America.

N. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

O. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.
P. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called "topsoil"; but in disturbed areas such as urban environments, the surface soil can be subsoil.

1.6 PREINSTALLATION MEETINGS

1.7 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include recommendations for application and use.
 2. Include test data substantiating that products comply with requirements.
 3. Include sieve analyses for aggregate materials.
 4. Material Certificates: For each type of imported soil and soil amendment and organic fertilizer before delivery to the site, according to the following:
 a. Manufacturer's qualified testing agency's certified analysis of standard products.
 b. Analysis of organic fertilizers, by a qualified testing agency, made according to AAPFCO methods for testing and labeling and according to AAPFCO's SUIP #25.
 c. Analysis of nonstandard materials, by a qualified testing agency, made according to SSSA methods, where applicable.

B. Samples: For each bulk-supplied material, 1-quart (1-L) volume of each in sealed containers labeled with content, source, and date obtained. Each Sample shall be typical of the lot of material to be furnished; provide an accurate representation of composition, color, and texture.

1.8 INFORMATIONAL SUBMITTALS

A. Qualification Data: For each testing agency.

B. Preconstruction Test Reports: For preconstruction soil analyses specified in "Preconstruction Testing" Article.

C. Field quality-control reports.
1.9 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent, state-operated, or university-operated laboratory; experienced in soil science, soil testing, and plant nutrition; with the experience and capability to conduct the testing indicated; and that specializes in types of tests to be performed.

1. Laboratories: Subject to compliance with requirements, provide testing by the following:
 a. AS RECOMMENDED BY OWNER

2. Multiple Laboratories: At Contractor's option, work may be divided among qualified testing laboratories specializing in physical testing, chemical testing, and fertility testing.

1.10 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction soil analyses on existing, on-site soil.

1. Notify Engineer seven days in advance of the dates and times when laboratory samples will be taken.

B. Preconstruction Soil Analyses: For each unamended soil type, perform testing on soil samples and furnish soil analysis and a written report containing soil-amendment and fertilizer recommendations by a qualified testing agency performing the testing according to "Soil-Sampling Requirements" and "Testing Requirements" articles.

1. Have testing agency identify and label samples and test reports according to sample collection and labeling requirements.

1.11 SOIL-SAMPLING REQUIREMENTS

A. General: Extract soil samples according to requirements in this article.

B. Sample Collection and Labeling: Have samples taken and labeled by Contractor in presence of Engineer or state-certified, -licensed, or -registered soil scientist under the direction of the testing agency.

1. Number and Location of Samples: Minimum of three representative soil samples where indicated on drawings for each soil to be used or amended for landscaping purposes.

2. Procedures and Depth of Samples: According to USDA-NRCS's "Field Book for Describing and Sampling Soils."
3. Division of Samples: Split each sample into two, equal parts. Send half to the testing agency and half to Owner for its records.
4. Labeling: Label each sample with the date, location keyed to a site plan or other location system, visible soil condition, and sampling depth.

1.12 TESTING REQUIREMENTS

A. General: Perform tests on soil samples according to requirements in this article.

B. Physical Testing:

1. Soil Texture: Soil-particle, size-distribution analysis by one of the following methods according to SSSA's "Methods of Soil Analysis - Part 1-Physical and Mineralogical Methods":
 a. Sieving Method: Report sand-gradation percentages for very coarse, coarse, medium, fine, and very fine sand; and fragment-gradation (gravel) percentages for fine, medium, and coarse fragments; according to USDA sand and fragment sizes.

2. Total Porosity: Calculate using particle density and bulk density according to SSSA's "Methods of Soil Analysis - Part 1-Physical and Mineralogical Methods."

C. Chemical Testing:

1. CEC: Analysis by sodium saturation at pH 7 according to SSSA's "Methods of Soil Analysis - Part 3- Chemical Methods."
2. Clay Mineralogy: Analysis and estimated percentage of expandable clay minerals using CEC by ammonium saturation at pH 7 according to SSSA's "Methods of Soil Analysis - Part 1- Physical and Mineralogical Methods."
3. Metals Hazardous to Human Health: Test for presence and quantities of RCRA metals including aluminum, arsenic, barium, copper, cadmium, chromium, cobalt, lead, lithium, and vanadium. If RCRA metals are present, include recommendations for corrective action.
4. Phytotoxicity: Test for plant-available concentrations of phytotoxic minerals including aluminum, arsenic, barium, cadmium, chlorides, chromium, cobalt, copper, lead, lithium, mercury, nickel, selenium, silver, sodium, strontium, tin, titanium, vanadium, and zinc.

D. Fertility Testing: Soil-fertility analysis according to standard laboratory protocol approved by the Owner, including the following:

1. Percentage of organic matter.
2. CEC, calcium percent of CEC, and magnesium percent of CEC.
3. Soil reaction (acidity/alkalinity pH value).
4. Buffered acidity or alkalinity.
6. Phosphorous ppm.
7. Potassium ppm.
8. Manganese ppm.
10. Zinc ppm.
11. Zinc availability ppm.
12. Copper ppm.
13. Sodium ppm and sodium absorption ratio.
15. Presence and quantities of problem materials including salts and metals cited in the Standard protocol. If such problem materials are present, provide additional recommendations for corrective action.
16. Other deleterious materials, including their characteristics and content of each.

F. Recommendations: Based on the test results, state recommendations for soil treatments and soil amendments to be incorporated to produce satisfactory planting soil suitable for healthy, viable plants indicated. Include, at a minimum, recommendations for nitrogen, phosphorous, and potassium fertilization, and for micronutrients.

1. Fertilizers and Soil Amendment Rates: State recommendations in weight per 1000 sq. ft. for 6-inch depth of soil.
2. Soil Reaction: State the recommended liming rates for raising pH or sulfur for lowering pH according to the buffered acidity or buffered alkalinity in weight per 1000 sq. ft. for 6-inch depth of soil.

1.13 DELIVERY, STORAGE, AND HANDLING

A. Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and compliance with state and Federal laws if applicable.

B. Bulk Materials:

1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
2. Provide erosion-control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
3. Do not move or handle materials when they are wet or frozen.
4. Accompany each delivery of bulk fertilizers and soil amendments with appropriate certificates.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Regional Materials: Imported soil, [manufactured planting soil, and] soil amendments and fertilizers shall be manufactured within 500 miles of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.

2.2 PLANTING SOILS SPECIFIED BY COMPOSITION

A. General: Soil amendments, fertilizers, and rates of application specified in this article are guidelines that may need revision based on testing laboratory's recommendations after preconstruction soil analyses are performed.

B. Planting-Soil Type: Existing, on-site surface soil, with the duff layer, if any, retained; and stockpiled on-site; modified to produce viable planting soil. Blend existing, on-site surface soil with the following soil amendments and fertilizers:

1. Ratio of Loose Compost to Soil
2. Ratio of Loose Peat to Soil
3. Ratio of Loose Wood Derivatives Soil
4. Weight of Lime
5. Weight of Sulfur or Iron Sulfate
6. Weight of Agricultural Gypsum
7. Weight of Superphosphate
8. Weight of Commercial Fertilizer
9. Weight of Slow-Release Fertilizer

C. Planting-Soil Type: Imported, naturally formed soil from off-site sources and consisting of sandy loam, loam, silt loam soil according to USDA textures; and modified to produce viable planting soil.

1. Sources: Take imported, unamended soil from sources that are naturally well-drained sites where topsoil occurs at least 4 inches deep, not from agricultural land, bogs, or marshes; and that do not contain undesirable organisms; disease-causing plant pathogens; or obnoxious weeds and invasive plants including, but not limited to, quackgrass, Johnsongrass, poison ivy, nutsedge, nimblewill, Canada thistle, bindweed, bentgrass, wild garlic, ground ivy, perennial sorrel, and bromegrass.
2. Additional Properties of Imported Soil before Amending: Soil reaction of pH 5.5 to 7 and minimum of 2 percent organic-matter content, friable, and with sufficient structure to give good tilth and aeration.
3. Unacceptable Properties: Clean soil of the following:
 a. Unacceptable Materials: Concrete slurry, concrete layers or chunks, cement, plaster, building debris, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, acid, and other extraneous materials that are harmful to plant growth.
b. Unsuitable Materials: Stones, roots, plants, sod, clay lumps, and pockets of coarse sand that exceed a combined maximum of 8 percent by dry weight of the imported soil.
c. Large Materials: Stones, clods, roots, clay lumps, and pockets of coarse sand exceeding 3 inches in any dimension.

4. Amended Soil Composition: Blend imported, unamended soil with the following soil amendments and fertilizers:

a. Ratio of Loose Compost to Soil
b. Ratio of Loose Peat to Soil
c. Ratio of Loose Wood Derivatives to Soil
d. Weight of Lime:
e. Weight of Sulfur or Iron Sulfate
f. Weight of Agricultural Gypsum
g. Weight of Superphosphate:
h. Weight of Commercial Fertilizer
i. Weight of Slow-Release Fertilizer

D. Planting-Soil Type: Manufactured soil consisting of manufacturer's basic topsoil, sandy loam according to USDA textures, blended in a manufacturing facility with sand, stabilized organic soil amendments, and other materials to produce viable planting soil.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings.

3. Additional Properties of Manufacturer's Basic Soil before Amending: Soil reaction of pH 5.5 to 7 and minimum of 5 percent organic-matter content, friable, and with sufficient structure to give good tilth and aeration.

4. Unacceptable Properties: Manufactured soil shall not contain the following:

a. Unacceptable Materials: Concrete slurry, concrete layers or chunks, cement, plaster, building debris, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, acid, and other extraneous materials that are harmful to plant growth.

b. Unsuitable Materials: Stones, roots, plants, sod, clay lumps, and pockets of coarse sand that exceed a combined maximum of 5 percent by dry weight of the manufactured soil.

c. Large Materials: Stones, clods, roots, clay lumps, and pockets of coarse sand exceeding 1-1/2 inches in any dimension.

5. Blend manufacturer's basic soil with industry recommendations for soil amendments and fertilizers including:

a. Ratio of Loose Compost to Soil
b. Ratio of Loose Peat to Soil
c. Ratio of Loose Wood Derivatives Soil
d. Volume of Sand
Section 329113

Soil Preparation

2.3 ORGANIC SOIL AMENDMENTS

A. Compost: Well-composted, stable, and weed-free organic matter produced by composting feedstock, and bearing USCC's "Seal of Testing Assurance," and as follows:

1. Feedstock: Limited to leaves
2. Reaction: pH of 5.5 to 8.
3. Soluble-Salt Concentration: Less than 4 dS/m.
4. Moisture Content: 35 to 55 percent by weight.
5. Organic-Matter Content: 30 to 40 percent of dry weight.
6. Particle Size: Minimum of 98 percent passing through a 1-inch sieve.

B. Muck Peat: Partially decomposed moss peat, native peat, or reed-sedge peat, finely divided or of granular texture with 100 percent passing through a 1/2-inch sieve, a pH of 6 to 7.5, a soluble-salt content measured by electrical conductivity of maximum 5 dS/m, having a water-absorbing capacity of 1100 to 2000 percent, and containing no sand.

C. Wood Derivatives: Shredded and composted, nitrogen-treated sawdust, ground bark, or wood waste; of uniform texture and free of chips, stones, sticks, soil, or toxic materials.

1. Partially Decomposed Wood Derivatives: In lieu of shredded and composted wood derivatives, mix shredded and partially decomposed wood derivatives with ammonium nitrate at a minimum rate of 0.15 lb/cu. ft. of loose sawdust or ground bark, or with ammonium sulfate at a minimum rate of 0.25 lb/cu. ft. of loose sawdust or ground bark.

D. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, debris, and material harmful to plant growth.

2.4 FERTILIZERS

A. Only environmentally safe organic fertilizers shall be used and application rates shall be dependent on soil tests.
3.1 GENERAL

A. Place planting soil and fertilizers according to requirements in other Specification Sections.

B. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in planting soil.

C. Proceed with placement only after unsatisfactory conditions have been corrected.

3.2 PREPARATION OF UNAMENDED, ON-SITE SOIL BEFORE AMENDING

A. Excavation: Excavate soil from designated area(s) to a depth of 6 inches and stockpile until amended.

B. Unacceptable Materials: Clean soil of concrete slurry, concrete layers or chunks, cement, plaster, building debris, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, acid, and other extraneous materials that are harmful to plant growth.

C. Unsuitable Materials: Clean soil to contain a maximum of 8 percent by dry weight of stones, roots, plants, sod, clay lumps, and pockets of coarse sand.

D. Screening: Pass unamended soil through a 1-inch sieve to remove large materials.

3.3 PLACING AND MIXING PLANTING SOIL OVER EXPOSED SUBGRADE

A. General: Apply and mix unamended soil with amendments on-site to produce required planting soil. Do not apply materials or till if existing soil or subgrade is frozen, muddy, or excessively wet.

B. Subgrade Preparation: Till subgrade to a minimum depth of 6 inches (12 inches in all planting areas). Remove stones larger than 1 inch in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.

 1. Apply, add soil amendments, and mix approximately half the thickness of unamended soil over prepared, loosened subgrade according to "Mixing" Paragraph below. Mix thoroughly into top 2 inches of subgrade. Spread remainder of planting soil.

C. Mixing: Spread unamended soil to total depth of 6 inches, but not less than required to meet finish grades after mixing with amendments and natural settlement. Do not spread if soil or subgrade is frozen, muddy, or excessively wet.
1. Amendments: Apply soil amendments, except compost, and fertilizer, if required, evenly on surface, and thoroughly blend them with unamended soil to produce planting soil.
 a. Mix lime and sulfur with dry soil before mixing fertilizer.
 b. Mix fertilizer with planting soil no more than seven days before planting.

2. Lifts: Apply and mix unamended soil and amendments in lifts not exceeding 8 inches in loose depth for material compacted by compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

D. Compaction: Compact each blended lift of planting soil to 75 to 82 percent of maximum Standard Proctor density according to ASTM D 698 and tested in-place except where a different compaction value is indicated on Drawings.

E. Finish Grading: Grade planting soil to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.

3.4 PLACING MANUFACTURED PLANTING SOIL OVER EXPOSED SUBGRADE

A. General: Apply manufactured soil on-site in its final, blended condition. Do not apply materials or till if existing soil or subgrade is frozen, muddy, or excessively wet.

B. Subgrade Preparation: Till subgrade to a minimum depth of 6 inches. Remove stones larger than 2 inches in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.

1. Apply approximately half the thickness of planting soil over prepared, loosened subgrade. Mix thoroughly into top 2 inches of subgrade. Spread remainder of planting soil

C. Application: Spread planting soil to total depth of 6 inches but not less than required to meet finish grades after natural settlement. Do not spread if soil or subgrade is frozen, muddy, or excessively wet.

1. Lifts: Apply planting soil in lifts not exceeding 8 inches in loose depth for material compacted by compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

D. Compaction: Compact each lift of planting soil to 75 to 82 percent of maximum Standard Proctor density according to ASTM D 698 except where a different compaction value is indicated on Drawings.

E. Finish Grading: Grade planting soil to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.
3.5 BLENDING PLANTING SOIL IN PLACE

A. General: Mix amendments with in-place, unamended soil to produce required planting soil. Do not apply materials or till if existing soil or subgrade is frozen, muddy, or excessively wet.

B. Preparation: Till unamended, existing soil in planting areas to a minimum depth of 12 inches below finish grade. Remove stones larger than 2 inches in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.

C. Mixing: Apply soil amendments, except compost, and fertilizer, if required, evenly on surface, and thoroughly blend them into full depth of unamended, in-place soil to produce planting soil.

 1. Mix lime and sulfur with dry soil before mixing fertilizer.
 2. Mix fertilizer with planting soil no more than seven days before planting.

D. Compaction: Compact blended planting soil to 75 to 82 percent of maximum Standard Proctor density according to ASTM D 698 except where a different compaction value is indicated on Drawings.

E. Finish Grading: Grade planting soil to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.

3.6 APPLYING COMPOST TO SURFACE OF PLANTING SOIL

A. Application: Till compost component of planting-soil mix 6 inches below finish grade with in-place planting soil. Do not apply materials or till if existing soil or subgrade is frozen, muddy, or excessively wet.

B. Finish Grading: Grade surface to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections:

 1. Compaction: Test planting-soil compaction after placing each lift and at completion using a densitometer or soil-compaction meter calibrated to a reference test value based on laboratory testing according to ASTM D 698. Space tests at no less than one for each 1000 sq. ft. (100 sq. m) of in-place soil or part thereof.

C. Soil will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

E. Label each sample and test report with the date, location keyed to a site plan or other location system, visible conditions when and where sample was taken, and sampling depth.

3.8 PROTECTION

A. Protection Zone: Identify protection zones according to Section 015639 "Temporary Tree and Plant Protection."

B. Protect areas of in-place soil from additional compaction, disturbance, and contamination. Prohibit the following practices within these areas except as required to perform planting operations:

1. Storage of construction materials, debris, or excavated material.
2. Parking vehicles or equipment.
3. Vehicle traffic.
4. Foot traffic.
5. Erection of sheds or structures.
6. Impoundment of water.
7. Excavation or other digging unless otherwise indicated.

C. If planting soil or subgrade is overcompacted, disturbed, or contaminated by foreign or deleterious materials or liquids, remove the planting soil and contamination; restore the subgrade as directed by Engineer and replace contaminated planting soil with new planting soil.

3.9 CLEANING

A. Protect areas adjacent to planting-soil preparation and placement areas from contamination. Keep adjacent paving and construction clean and work area in an orderly condition.

B. Remove surplus soil and waste material including excess subsoil, unsuitable materials, trash, and debris and legally dispose of them off Owner's property unless otherwise indicated.

1. Dispose of excess subsoil and unsuitable materials on-site where directed by Owner.

END OF SECTION 32 91 13
ARTHUR LANGFORD JR. PARK SITE IMPROVEMENTS
SECTION 329200 - TURF AND GRASSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Seeding.
2. Sodding.
3. Meadow grasses and wildflowers.
4. Turf renovation.
5. Erosion-control material(s).

B. Related Requirements:

1. Section 329300 "Plants" for trees, shrubs, ground covers, and other plants as well as border edgings and mow strips.
2. Section 334600 "Subdrainage" for below-grade drainage of landscaped areas.

1.3 DEFINITIONS

A. Finish Grade: Elevation of finished surface of planting soil.

B. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. They also include substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.

C. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.

D. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See Section 329113 "Soil Preparation", refer to industry standards and requirements for additional information regarding “Soil Preparation,” and drawing designations for planting soils.
E. Subgrade: The surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

1.4 PREINSTALLATION MEETINGS

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For landscape Installer.

B. Certification of Grass Seed: From seed vendor for each grass-seed monostand or mixture, stating the botanical and common name, percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.

1. Certification of each seed mixture for turfgrass sod and plugs. Include identification of source and name and telephone number of supplier.

C. Product Certificates: For fertilizers, from manufacturer.

D. Pesticides and Herbicides: Product label and manufacturer's application instructions specific to Project.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: Recommended procedures to be established by Owner for maintenance of turf and meadows during a calendar year. Submit before expiration of required maintenance periods.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful turf and meadow establishment.

1. Professional Membership: Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association.

2. Experience: Three years' experience in turf installation.

3. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.

4. Personnel Certifications: Installer's field supervisor shall have certification in one of the following categories from the Professional Landcare Network:

 a. Landscape Industry Certified Technician - Exterior.
 b. Landscape Industry Certified Lawncare Manager.
c. Landscape Industry Certified Lawncare Technician.

5. Pesticide Applicator: State licensed, commercial.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.

B. Sod: Harvest, deliver, store, and handle sod according to requirements in "Specifications for Turfgrass Sod Materials" and "Specifications for Turfgrass Sod Transplanting and Installation" sections in TPI's "Guideline Specifications to Turfgrass Sodding." Deliver sod within 24 hours of harvesting and in time for planting promptly. Protect sod from breakage and drying.

C. Bulk Materials:

1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
2. Provide erosion-control measures to prevent erosion or displacement of bulk materials; discharge of soil-bearing water runoff; and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
3. Accompany each delivery of bulk materials with appropriate certificates.

1.9 FIELD CONDITIONS

A. Planting Restrictions: Plant during one of the following periods. Coordinate planting periods with initial maintenance periods to provide required maintenance from date of planting completion

2. Fall Planting: 8/15-10/30.

B. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 SEED

A. Grass Seed: Fresh, clean, dry, new-crop seed complying with AOSA's "Rules for Testing Seeds" for purity and germination tolerances.
B. Seed Species:

1. Quality: State-certified seed of grass species as listed below for solar exposure.
2. Quality: Seed of grass species as listed below for solar exposure, with not less than 85 percent germination, not less than 95 percent pure seed, and not more than 0.5 percent weed seed:
3. Full Sun: Bermudagrass (Cynodon dactylon).
4. Full Sun: Kentucky bluegrass (Poa pratensis), a minimum of three cultivars.
5. Sun and Partial Shade: Proportioned by weight as follows:
 a. 50 percent Kentucky bluegrass (Poa pratensis).
 b. 30 percent chewings red fescue (Festuca rubra variety).
 c. 10 percent perennial ryegrass (Lolium perenne).
 d. 10 percent redtop (Agrostis alba).
6. Shade: Proportioned by weight as follows:
 a. 50 percent chewings red fescue (Festuca rubra variety).
 b. 35 percent rough bluegrass (Poa trivialis).
 c. 15 percent redtop (Agrostis alba).

C. Grass-Seed Mix: Proprietary seed mix as follows:

1. Products: Subject to compliance with manufacturer’s recommendations.

2.2 TURFGRASS SOD

A. Turfgrass Sod: Approved, complying with "Specifications for Turfgrass Sod Materials" in TPI’s "Guideline Specifications to Turfgrass Sodding." Furnish viable sod of uniform density, color, and texture that is strongly rooted and capable of vigorous growth and development when planted.

B. All Sod shall be “Blue Tag Certified” and tags shall be provided to Owner's Representative.

C. Turfgrass Species: Centipedegrass (Eremochloa ophiuroides),

D. Turfgrass Species: Sod of grass species as follows, with not less than 85 percent germination, not less than 95 percent pure seed, and not more than 0.5 percent weed seed:

1. Full Sun: Centipedegrass (Eremochloa ophiuroides),
2. Sun and Partial Shade: Centipedegrass (Eremochloa ophiuroides),
3. Shade: Centipedegrass (Eremochloa ophiuroides)
2.3 FERTILIZERS

A. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:

1. Composition: 1 lb/1000 sq. ft. of actual nitrogen, 4 percent phosphorous, and 2 percent potassium, by weight.
2. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

B. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:

1. Composition: 20 percent nitrogen, 10 percent phosphorous, and 10 percent potassium, by weight.
2. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

2.4 MULCHES

A. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:

1. Organic Matter Content: 50 to 60 percent of dry weight.
2. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.

2.5 PESTICIDES

A. Non-organic pesticides and herbicides shall only be used with the written consent of the Owner’s Representative.

B. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

C. Pre-Emergent Herbicide (Selective and Nonselective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.

D. Post-Emergent Herbicide (Selective and Nonselective): Effective for controlling weed growth that has already germinated.
2.6 EROSION-CONTROL MATERIALS

A. Erosion-Control Blankets: Biodegradable wood excelsior, straw, or coconut-fiber mat enclosed in a photodegradable plastic mesh. Include manufacturer's recommended steel wire staples, 6 inches long.

B. Erosion-Control Fiber Mesh: Biodegradable burlap or spun-coir mesh, a minimum of 0.92 lb/sq. yd., with 50 to 65 percent open area. Include manufacturer's recommended steel wire staples, 6 inches (150 mm) long.

C. Erosion-Control Mats: Cellular, nonbiodegradable slope-stabilization mats designed to isolate and contain small areas of soil over steeply sloped surface, of 3-inch nominal mat thickness. Include manufacturer's recommended anchorage system for slope conditions.

1. Products: Subject to compliance with Georgia Department of Transportation Qualified Products List.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to be planted for compliance with requirements and other conditions affecting installation and performance of the Work.

1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.
2. Suspend planting operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
3. Uniformly moisten excessively dry soil that is not workable or which is dusty.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Architect and replace with new planting soil.

3.2 PREPARATION

A. Protect structures; utilities; sidewalks; pavements; and other facilities, trees, shrubs, and plantings from damage caused by planting operations.

1. Protect adjacent and adjoining areas from hydroseeding and hydromulching overspray.
2. Protect grade stakes set by others until directed to remove them.
B. Install erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

3.3 TURF AREA PREPARATION

A. General: Prepare planting area for soil placement and mix planting soil according to Section 329113 "Soil Preparation." Coordinate "Placing Planting Soil" Paragraph below with Section 329113 "Soil Preparation" or refer to industry standards and requirements for additional information regarding “Soil Preparation.”

B. Placing Planting Soil: Place manufactured planting soil over exposed subgrade.
 1. Reduce elevation of planting soil to allow for soil thickness of sod.

C. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

D. Before planting, obtain Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.4 PREPARATION FOR EROSION-CONTROL MATERIALS

A. Prepare area as specified in "Turf Area Preparation" Article.

B. For erosion-control mats, install planting soil in two lifts, with second lift equal to thickness of erosion-control mats. Install erosion-control mat and fasten as recommended by material manufacturer.

C. Fill cells of erosion-control mat with planting soil and compact before planting.

D. For erosion-control blanket or mesh, install from top of slope, working downward, and as recommended by material manufacturer for site conditions. Fasten as recommended by material manufacturer.

E. Moisten prepared area before planting if surface is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

F. Moisten prepared area before planting if surface is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

3.5 SODDING

A. Lay sod within 24 hours of harvesting unless a suitable preservation method is accepted by Architect prior to delivery time. Do not lay sod if dormant or if ground is frozen or muddy.
B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to soil or sod during installation. Tamp and roll lightly to ensure contact with soil, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.

1. Lay sod across slopes exceeding 1:3.
2. Anchor sod on slopes exceeding 1:6 with wood pegs or steel staples spaced as recommended by sod manufacturer but not less than two anchors per sod strip to prevent slippage.

C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below sod.

3.6 TURF ESTABLISHMENT

A. General: Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.

1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
2. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
3. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.

B. Watering: Install and maintain temporary piping, hoses, and turf-watering equipment to convey water from sources and to keep turf uniformly moist to a depth of 4 inches.
1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
2. Water turf with fine spray at a minimum rate of 1 inch per week unless rainfall precipitation is adequate.

C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than one-third of grass height. Remove no more than one-third of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:

1. Mow centipedegrass to a height of 1 to 2 inches.

D. Turf Postfertilization: Apply commercial fertilizer or slow-release fertilizer after initial mowing and when grass is dry.
1. Use fertilizer that provides actual nitrogen of at least 1 lb/1000 sq. ft. to turf area.

3.7 SATISFACTORY TURF

A. Turf installations shall meet the following criteria as determined by Architect:

1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.
2. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.

B. Use specified materials to reestablish turf that does not comply with requirements, and continue maintenance until turf is satisfactory.

3.8 PESTICIDE APPLICATION

A. Non-organic pesticides and herbicides shall only be used with the written consent of the Owner's Representative.

B. Apply pesticides and other chemical products and biological control agents according to requirements of authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.

C. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer's written recommendations.

3.9 CLEANUP AND PROTECTION

A. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of them off Owner's property.

C. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.

D. Remove nondegradable erosion-control measures after grass establishment period.

3.10 MAINTENANCE SERVICE

A. Mowing
1. Prior to mowing, trash, paper and other debris will be removed. Any trash cut up during mowing should be removed.
2. Turf areas will be maintained at a height of 2 ½” to 3 ½”. During periods of high heat and little rainfall, turf areas will be mowed to a height of not less than 3” with prior approval by ABI. Mowing heights should be measured with mowers on a flat paved surface. Only 1/3 of the blade growth will be removed at any one cutting.
3. Clippings shall be mulched and left evenly disbursed on the turf. Mulched grass clippings shall be mowed and bagged or swept by the firm to remove windrows or other heavy accumulations. Measurements shall be taken in park areas that are representative of average conditions.
4. Grass clippings will be removed from sidewalks, pavements, window walls, etc.
5. In the event of extensive periods of rain that do not allow mowing for extended times, cuttings shall remove no more than 1/3 of the grass at any one time and clippings shall be removed until required heights are re-established.

B. Edging
1. All sidewalks, and curbs will be edged as needed. Debris from edging operations will be removed and the areas swept clean.

C. Aeration
1. All turf areas, with less than a 3:1 slope, will be core aerated twice a year. Under adverse conditions additional aeration may be necessary, which requires the prior approval of ABI/COA.

D. Fertilization
1. All turf areas and other landscape areas will be on a twice a year, organic fertilization program unless the results from the soil tests show that fertilization is not required.
2. Soil from turf areas will be tested as needed by a laboratory acceptable to the Selected Firm and ABI. Testing will be for macro and micro nutrient levels.
3. The Firm will modify the fertilizer program to correct nutrient deficiencies reported in the soil test.
4. All fertilizers will be environmentally safe organic fertilizers.

E. pH Modifications
1. Soil in turf areas will be modified so that pH readings fall within the optimum range for turf grasses.

F. Watering
1. Common areas with irrigation systems should be checked for proper operation on a weekly basis. The monthly report shall include notations of any issues with the irrigation system.
2. Landscaping material that becomes stressed due to lack of moisture will be watered to reverse this condition. The firm shall notify ABI if improvements need
to be made to the irrigation system including new irrigation parts, etc. and may be contracted to install system as approved by ABI.

3. Trees, shrubs, ground covers and flowers will be protected from over watering and runoff.

4. Reasonable efforts will be made to ensure water does not spray or flow over pavements, walking surfaces or structures.

G. Weed Control

1. Weed growth will be managed with a minimal herbicide program. Control will consist of preemergent (soil applied) or postemergent (foliar applied) herbicides as appropriate, as well as physical removal. Only organic compounds may be utilized except in extreme situations. Use of non-organic herbicides requires consultation with and prior approval of ABI.

H. Insect and Disease

1. The inspection process will include monitoring to determine insect, rodent or disease problems.

2. The Firm will propose a treatment based on the identification of the insect or disease, as well as the host plant.

3. The firm shall include a proposed IPM program with their bid based on the plant material list and generally recognized pest problems for any given plant.

4. Actual insect and disease treatments may be completed by the Selected Firm after a price is provided and approval to perform the work is granted by ABI.

I. Overseeding

1. Overseeding of turf areas will be accomplished in the fall immediately following core aeration.

2. Seed mixture and application rates will be current in accordance with extension agency recommendation.

3. The Firm shall coordinate the timing of overseeding with recreation center staff.
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Plants.
 2. Tree stabilization.
 3. Tree-watering devices.

B. Related Requirements:
 1. Section 01 56 39 "Temporary Tree and Plant Protection" for protecting, trimming, pruning, repairing, and replacing existing trees to remain that interfere with, or are affected by, execution of the Work.
 2. Section 32 92 00 "Turf and Grasses" for turf (lawn) and meadow planting, and erosion-control materials.

1.3 ALLOWANCES
A. Allowances for plants are specified in Section 01 21 00 "Allowances."
 1. Perform planting work under quantity allowances and only as authorized. Authorized work includes work required by Drawings and the Specifications and work authorized in writing by Architect.
 2. Notify Architect weekly of extent of work performed that is attributable to quantity allowances.
 3. Perform work that exceeds quantity allowances only as authorized by Change Orders.

B. Furnish trees as part of tree allowance.

1.4 UNIT PRICES
A. Unit prices apply to authorized work covered by quantity allowances.
B. Unit prices apply to additions to and deletions from the Work as authorized by Change Orders.

1.5 DEFINITIONS

A. Backfill: The earth used to replace or the act of replacing earth in an excavation.

B. Balled and Burlapped Stock: Plants dug with firm, natural balls of earth in which they were grown, with a ball size not less than diameter and depth recommended by ANSI Z60.1 for type and size of plant required; wrapped with burlap, tied, rigidly supported, and drum laced with twine with the root flare visible at the surface of the ball as recommended by ANSI Z60.1.

C. Balled and Potted Stock: Plants dug with firm, natural balls of earth in which they are grown and placed, unbroken, in a container. Ball size is not less than diameter and depth recommended by ANSI Z60.1 for type and size of plant required.

D. Bare-Root Stock: Plants with a well-branched, fibrous-root system developed by transplanting or root pruning, with soil or growing medium removed, and with not less than the minimum root spread according to ANSI Z60.1 for type and size of plant required.

E. Container-Grown Stock: Healthy, vigorous, well-rooted plants grown in a container, with a well-established root system reaching sides of container and maintaining a firm ball when removed from container. Container shall be rigid enough to hold ball shape and protect root mass during shipping and be sized according to ANSI Z60.1 for type and size of plant required.

F. Fabric Bag-Grown Stock: Healthy, vigorous, well-rooted plants established and grown in-ground in a porous fabric bag with well-established root system reaching sides of fabric bag. Fabric bag size is not less than diameter, depth, and volume required by ANSI Z60.1 for type and size of plant.

G. Finish Grade: Elevation of finished surface of planting soil.

H. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. They also include substances or mixtures intended for use as a plant regulator, defoliant, or desiccant. Some sources classify herbicides separately from pesticides.

I. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.

J. Planting Area: Areas to be planted.
K. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See Section 329113 "Soil Preparation" and refer to industry standards and requirements for additional information regarding “Soil Preparation (Performance Specification” for drawing designations for planting soils.

L. Plant; Plants; Plant Material: These terms refer to vegetation in general, including trees, shrubs, vines, ground covers, ornamental grasses, bulbs, corms, tubers, or herbaceous vegetation.

M. Root Flare: Also called "trunk flare." The area at the base of the plant's stem or trunk where the stem or trunk broadens to form roots; the area of transition between the root system and the stem or trunk.

N. Stem Girdling Roots: Roots that encircle the stems (trunks) of trees below the soil surface.

O. Subgrade: The surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

1.6 COORDINATION

A. Coordination with Turf Areas (Lawns): Plant trees, shrubs, and other plants after finish grades are established and before planting turf areas unless otherwise indicated.

1. When planting trees, shrubs, and other plants after planting turf areas, protect turf areas, and promptly repair damage caused by planting operations.

1.7 PREINSTALLATION MEETINGS

1.8 ACTION SUBMITTALS

A. Product Data: For each type of product.

2. Plant Photographs: Include color photographs in digital or 3- by 5-inch print format of each required species and size of plant material as it will be furnished to Project. Take photographs from an angle depicting true size and condition of the typical plant to be furnished. Include a scale rod or other measuring device in each photograph. For species where more than 20 plants are required, include a minimum of three photographs showing the average plant, the best quality plant, and the worst quality plant to be furnished. Identify each photograph with the full scientific name of the plant, plant size, and name of the growing nursery.
B. Samples for Verification: For each of the following:

1. Trees and Shrubs: Owner or Owner's representative will tag all trees and shrubs prior to delivery and installation.
2. Organic Mulch: 0.5-L volume of each organic mulch required; in sealed plastic bags labeled with composition of materials by percentage of weight and source of mulch. Each Sample shall be typical of the lot of material to be furnished; provide an accurate representation of color, texture, and organic makeup.
3. Mineral Mulch: 2 lb of each mineral mulch required, in sealed plastic bags labeled with source of mulch. Sample shall be typical of the lot of material to be delivered and installed on-site; provide an accurate indication of color, texture, and makeup of the material.
4. Weed Control Barrier: 12 by 12 inches.
5. Proprietary Root-Ball-Stabilization Device: One unit.
6. Slow-Release, Tree-Watering Device: One unit of each size required.
7. Root Barrier: Width of panel by 12 inches.

1.9 INFORMATIONAL SUBMITTALS

A. Qualification Data: For landscape Installer. Include list of similar projects completed by Installer demonstrating Installer's capabilities and experience. Include project names, addresses, and year completed, and include names and addresses of owners' contact persons.

B. Product Certificates: For each type of manufactured product, from manufacturer, and complying with the following:

1. Manufacturer's certified analysis of standard products.
2. Analysis of other materials by a recognized laboratory made according to methods established by the Association of Official Analytical Chemists, where applicable.

C. Pesticides and Herbicides: Product label and manufacturer's application instructions specific to Project.

D. Sample Warranty: For special warranty.

1.10 CLOSEOUT SUBMITTALS

A. Maintenance Data: Recommended procedures to be established by Owner for maintenance of plants during a calendar year. Submit before expiration of required maintenance periods.

1.11 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful establishment of plants.
1. Professional Membership: Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association.

2. Experience: Three years’ experience in landscape installation in addition to requirements in Section 014000 "Quality Requirements."

3. Installer’s Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.

4. Personnel Certifications: Installer’s field supervisor shall have certification in one of the following categories from the Professional Landcare Network:
 a. Landscape Industry Certified Technician - Exterior.
 b. Landscape Industry Certified Interior.
 c. Landscape Industry Certified Horticultural Technician.

5. Pesticide Applicator: State licensed, commercial.

B. Provide quality, size, genus, species, and variety of plants indicated, complying with applicable requirements in ANSI Z60.1.

1. Selection of plants purchased under allowances is made by Architect, who tags plants at their place of growth before they are prepared for transplanting.

C. Measurements: Measure according to ANSI Z60.1. Do not prune to obtain required sizes.

1. Trees and Shrubs: Measure with branches and trunks or canes in their normal position. Take height measurements from or near the top of the root flare for field-grown stock and container-grown stock. Measure main body of tree or shrub for height and spread; do not measure branches or roots tip to tip. Take caliper measurements 6 inches above the root flare for trees up to 4-inch caliper size, and 12 inches above the root flare for larger sizes.

2. Other Plants: Measure with stems, petioles, and foliage in their normal position.

D. Plant Material Observation: Architect may observe plant material either at place of growth or at site before planting for compliance with requirements for genus, species, variety, cultivar, size, and quality. Architect may also observe trees and shrubs further for size and condition of balls and root systems, pests, disease symptoms, injuries, and latent defects and may reject unsatisfactory or defective material at any time during progress of work. Remove rejected trees or shrubs immediately from Project site.

1. Notify Architect of sources of planting materials seven days in advance of delivery to site.

1.12 DELIVERY, STORAGE, AND HANDLING

A. Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws if applicable.
B. Bulk Materials:

1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
2. Provide erosion-control measures to prevent erosion or displacement of bulk materials; discharge of soil-bearing water runoff; and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
3. Accompany each delivery of bulk materials with appropriate certificates.

C. Deliver bare-root stock plants within 24 hours of digging. Immediately after digging up bare-root stock, pack root system in wet straw, hay, or other suitable material to keep root system moist until planting. Transport in covered, temperature-controlled vehicles, and keep plants cool and protected from sun and wind at all times.

D. Do not prune trees and shrubs before delivery. Protect bark, branches, and root systems from sun scald, drying, wind burn, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy their natural shape. Provide protective covering of plants during shipping and delivery. Do not drop plants during delivery and handling.

E. Handle planting stock by root ball.

F. Store bulbs, corms, and tubers in a dry place at 60 to 65 deg F until planting.

G. Apply antidesiccant to trees and shrubs using power spray to provide an adequate film over trunks (before wrapping), branches, stems, twigs, and foliage to protect during digging, handling, and transportation.

1. If deciduous trees or shrubs are moved in full leaf, spray with antidesiccant at nursery before moving and again two weeks after planting.

H. Wrap trees and shrubs with burlap fabric over trunks, branches, stems, twigs, and foliage to protect from wind and other damage during digging, handling, and transportation.

I. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than six hours after delivery, set plants and trees in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist.

1. Heel-in bare-root stock. Soak roots that are in less than moist condition in water for two hours. Reject plants with dry roots.
2. Set balled stock on ground and cover ball with soil, peat moss, sawdust, or other acceptable material.
3. Do not remove container-grown stock from containers before time of planting.
4. Water root systems of plants stored on-site deeply and thoroughly with a fine-mist spray. Water as often as necessary to maintain root systems in a moist, but not overly wet condition.
1.13 FIELD CONDITIONS

A. Field Measurements: Verify actual grade elevations, service and utility locations, irrigation system components, and dimensions of plantings and construction contiguous with new plantings by field measurements before proceeding with planting work.

B. Planting Restrictions: Plant during one of the following periods. Coordinate planting periods with maintenance periods to provide required maintenance from date of Substantial Completion.
 1. Spring Planting: 3/1-6/60
 2. Fall Planting: 8/15-10/30.

C. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer’s written instructions and warranty requirements.

1.14 WARRANTY

A. Special Warranty: Installer agrees to repair or replace plantings and accessories that fail in materials, workmanship, or growth within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Death and unsatisfactory growth, except for defects resulting from abuse, lack of adequate maintenance, or neglect by Owner.
 b. Structural failures including plantings falling or blowing over.
 c. Faulty performance of tree stabilization, edgings, and tree grates.
 d. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

 2. Warranty Periods: From date of planting completion.
 a. Trees, Shrubs, Vines, and Ornamental Grasses: 12 months.
 b. Ground Covers, Biennials, Perennials, and Other Plants: 12 months.

 3. Include the following remedial actions as a minimum:
 a. Immediately remove dead plants and replace unless required to plant in the succeeding planting season.
 b. Replace plants that are more than 25 percent dead or in an unhealthy condition at end of warranty period.
 c. A limit of one replacement of each plant is required except for losses or replacements due to failure to comply with requirements.
 d. Provide extended warranty for period equal to original warranty period, for replaced plant material.
PART 2 - PRODUCTS

2.1 PLANT MATERIAL

A. General: Furnish nursery-grown plants true to genus, species, variety, cultivar, stem form, shearing, and other features indicated in Plant List, Plant Schedule, or Plant Legend indicated on Drawings and complying with ANSI Z60.1; and with healthy root systems developed by transplanting or root pruning. Provide well-shaped, fully branched, healthy, vigorous stock, densely foliated when in leaf and free of disease, pests, eggs, larvae, and defects such as knots, sun scald, injuries, abrasions, and disfigurement.

1. Trees with damaged, crooked, or multiple leaders; tight vertical branches where bark is squeezed between two branches or between branch and trunk ("included bark"); crossing trunks; cut-off limbs more than 3/4 inch in diameter; or with stem girdling roots are unacceptable.

2. Collected Stock: Do not use plants harvested from the wild, from native stands, from an established landscape planting, or not grown in a nursery unless otherwise indicated.

B. List of Acceptable Nurseries include the following:

1. Buck Jones Nursery 770-345-5506
2. Harps Farm Market & Nursery 770-461-1821
3. Nature’s Tree Farm 770-927-2250
4. Bold Spring Nursery 478-783-4975

C. Provide plants of sizes, grades, and ball or container sizes complying with ANSI Z60.1 for types and form of plants required. Plants of a larger size may be used if acceptable to Architect, with a proportionate increase in size of roots or balls.

D. Root-Ball Depth: Furnish trees and shrubs with root balls measured from top of root ball, which begins at root flare according to ANSI Z60.1. Root flare shall be visible before planting.

E. Labeling: Label each plant of each variety, size, and caliper with a securely attached, waterproof tag bearing legible designation of common name and full scientific name, including genus and species. Include nomenclature for hybrid, variety, or cultivar, if applicable for the plant.

F. If formal arrangements or consecutive order of plants is indicated on Drawings, select stock for uniform height and spread, and number the labels to assure symmetry in planting.

G. Annuals and Biennials: Provide healthy, disease-free plants of species and variety shown or listed, with well-established root systems reaching to sides of the container to maintain a firm ball, but not with excessive root growth encircling the container. Provide only plants that are acclimated to outdoor conditions before delivery and that are in bud but not yet in bloom.
2.2 FERTILIZERS

A. Granular fertilizer shall be incorporated directly into the soil.
 1. Size: According to manufacturer’s recommendation.
 2. Nutrient Composition: 20 percent nitrogen, 10 percent phosphorous, and 5 percent potassium, by weight plus micronutrients.

2.3 MULCHES

A. Organic Mulch: Free from deleterious materials and suitable as a top dressing of trees and shrubs, consisting of one of the following:
 1. Type: Wood and bark chips.
 2. Size Range: 3 inches maximum, 1/2 inch minimum.

B. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through a 1-inch sieve; soluble-salt content of 2 to 5 dS/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:
 1. Organic Matter Content: 50 to 60 percent of dry weight.
 2. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.

2.4 WEED-CONTROL BARRIERS

A. Nonwoven Geotextile Filter Fabric: Polypropylene or polyester fabric, 3 oz./sq. yd. (101g/sq. m) minimum, composed of fibers formed into a stable network so that fibers retain their relative position. Fabric shall be inert to biological degradation and resist naturally encountered chemicals, alkalis, and acids.

B. Composite Fabric: Woven, needle-punched polypropylene substrate bonded to a nonwoven polypropylene fabric, 4.8 oz./sq. yd.

2.5 PESTICIDES

A. General: Pesticide registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

B. Pre-Emergent Herbicide (Selective and Nonselective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.
C. Post-Emergent Herbicide (Selective and Nonselective): Effective for controlling weed growth that has already germinated.

2.6 TREE-STABILIZATION MATERIALS

A. Trunk-Stabilization Materials:

1. Upright and Guy Stakes: Rough-sawn, sound, new hardwood or softwood with specified wood pressure-preservative treatment, free of knots, holes, cross grain, and other defects, 2-by-2-inch nominal by length indicated, pointed at one end.
2. Wood Deadmen: Timbers measuring 8 inches in diameter and 48 inches long, treated with specified wood pressure-preservative treatment.
3. Flexible Ties: Wide rubber or elastic bands or straps of length required to reach stakes or turnbuckles or compression springs.
5. Tree-Tie Webbing: UV-resistant polypropylene or nylon webbing with brass grommets.
7. Flags: Standard surveyor's plastic flagging tape, white, 6 inches long.
8. Proprietary Staking-and-Guying Devices: Proprietary stake or anchor and adjustable tie systems to secure each new planting by plant stem; sized as indicated and according to manufacturer's written recommendations.

a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

1) Arborbrace: ArborBrace Tree Guying System.
2) Better Bilt Products, Inc: Tree Anchor Kit.
3) DeepRoot Green Infrastructure, LLC: ArborTie AT LD100 Professional Anchoring Kit, ArborTie ATHD15 Heavy Duty Anchoring Kit.
4) Foresight Products, LLC: Duckbill Professional Tree Guy System.
5) J. R. Partners: Grate Stake, Mega Grate Stake, Mega Stake, R2 Stake.
6) Villa Root Barrier: Wonder Tree Guy, Wonder Tree Tie.

B. Root-Ball Stabilization Materials:

1. Upright Stakes and Horizontal Hold-Down: Rough-sawn, sound, new hardwood or softwood, free of knots, holes, cross grain, and other defects, 2-by-2-inch nominal length indicated; stakes pointed at one end.
3. Proprietary Root-Ball Stabilization Devices: Proprietary at- or below-grade stabilization systems to secure each new planting by root ball and that do not encircle the trunk; sized according to manufacturer's written recommendations unless otherwise indicated.

 a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 1) **Border Concepts, Inc:** Tomahawk Tree Stabilizers.
 2) **Foresight Products, LLC:** Duckbill Rootball Fixing System.
 3) **Tree Staple, Inc:** Tree Staples.

2.7 MISCELLANEOUS PRODUCTS

 A. Antidesiccant: Water-insoluble emulsion, permeable moisture retarder, film forming, for trees and shrubs. Deliver in original, sealed, and fully labeled containers and mix according to manufacturer's written instructions.

 B. Burlap: Non-synthetic, biodegradable.

 C. Planter Drainage Gravel: Washed, sound crushed stone or gravel complying with ASTM D 448 for Size No. 8.

 D. Planter Filter Fabric: Woven geotextile manufactured for separation applications and made of polypropylene, polyolefin, or polyester fibers or combination of them.

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Examine areas to receive plants, with Installer present, for compliance with requirements and conditions affecting installation and performance of the Work.

 1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.
 2. Verify that plants and vehicles loaded with plants can travel to planting locations with adequate overhead clearance.
 3. Suspend planting operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
 4. Uniformly moisten excessively dry soil that is not workable or which is dusty.
B. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Architect and replace with new planting soil.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities and turf areas and existing plants from damage caused by planting operations.

B. Install erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

C. Lay out individual tree and shrub locations and areas for multiple plantings. Stake locations, outline areas, adjust locations when requested, and obtain Architect's acceptance of layout before excavating or planting. Make minor adjustments as required.

D. Lay out plants at locations directed by Architect. Stake locations of individual trees and shrubs and outline areas for multiple plantings.

3.3 PLANTING AREA ESTABLISHMENT

A. General: Prepare planting area for soil placement and mix planting soil according to Section 329113 "Soil Preparation" and refer to industry standards and requirements for additional information regarding “Soil Preparation (Performance Specification).”

B. Placing Planting Soil: Place and mix planting soil in-place over exposed subgrade.

C. Before planting, obtain Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

D. Application of Mycorrhizal Fungi: At time directed by Architect, broadcast dry product uniformly over prepared soil at application rate according to manufacturer's written recommendations.

3.4 EXCAVATION FOR TREES AND SHRUBS

A. Planting Pits and Trenches: Excavate circular planting pits.

1. Excavate planting pits with sides sloping inward at a 45-degree angle. Excavations with vertical sides are unacceptable. Trim perimeter of bottom leaving center area of bottom raised slightly to support root ball and assist in drainage away from center. Do not further disturb base. Ensure that root ball will
sit on undisturbed base soil to prevent settling. Scarify sides of planting pit smeared or smoothed during excavation.

2. Excavate approximately three times as wide as ball diameter for balled and burlapped, balled and potted, container-grown, or fabric bag-grown stock.

3. Excavate at least 12 inches wider than root spread and deep enough to accommodate vertical roots for bare-root stock.

4. Do not excavate deeper than depth of the root ball, measured from the root flare to the bottom of the root ball.

5. If area under the plant was initially dug too deep, add soil to raise it to the correct level and thoroughly tamp the added soil to prevent settling.

6. Maintain angles of repose of adjacent materials to ensure stability. Do not excavate subgrades of adjacent paving, structures, hardscapes, or other new or existing improvements.

7. Maintain supervision of excavations during working hours.

8. Keep excavations covered or otherwise protected when unattended by Installer's personnel.

9. If drain tile is indicated on Drawings or required under planting areas, excavate to top of porous backfill over tile.

B. Backfill Soil: Subsoil and topsoil removed from as backfill soil unless otherwise indicated. excavations may not be used

C. Obstructions: Notify Architect if unexpected rock or obstructions detrimental to trees or shrubs are encountered in excavations.

1. Hardpan Layer: Drill 6-inch- diameter holes, 24 inches apart, into free-draining strata or to a depth of 10 feet, whichever is less, and backfill with free-draining material.

D. Drainage: Notify Architect if subsoil conditions evidence unexpected water seepage or retention in tree or shrub planting pits.

E. Fill excavations with water and allow to percolate away before positioning trees and shrubs.

3.5 TREE, SHRUB, AND VINE PLANTING

A. Inspection: At time of planting, verify that root flare is visible at top of root ball according to ANSI Z60.1. If root flare is not visible, remove soil in a level manner from the root ball to where the top-most root emerges from the trunk. After soil removal to expose the root flare, verify that root ball still meets size requirements.

B. Roots: Remove stem girdling roots and kinked roots. Remove injured roots by cutting cleanly; do not break.

C. Balled and Burlapped Stock: Set each plant plumb and in center of planting pit or trench with root flare 1 inch above adjacent finish grades.

1. Backfill: Planting soil. For trees, use excavated soil for backfill.
2. After placing some backfill around root ball to stabilize plant, carefully cut and remove burlap, rope, and wire baskets from tops of root balls and from sides, but do not remove from under root balls. Remove pallets, if any, before setting. Do not use planting stock if root ball is cracked or broken before or during planting operation.

3. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half filled, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.

4. Place planting tablets equally distributed around each planting pit when pit is approximately one-half filled. Place tablets beside the root ball about 1 inch from root tips; do not place tablets in bottom of the hole.

 a. Quantity: As indicated on Drawings.

5. Continue backfilling process. Water again after placing and tamping final layer of soil.

D. Balled and Potted and Container-Grown Stock: Set each plant plumb and in center of planting pit or trench with root flare 1 inch above adjacent finish grades.

1. Backfill: Planting soil. For trees, use excavated soil for backfill.
2. Carefully remove root ball from container without damaging root ball or plant.
3. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half filled, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.
4. Place planting tablets equally distributed around each planting pit when pit is approximately one-half filled. Place tablets beside the root ball about 1 inch from root tips; do not place tablets in bottom of the hole.

 a. Quantity: As indicated on Drawings.

5. Continue backfilling process. Water again after placing and tamping final layer of soil.

E. Fabric Bag-Grown Stock: Set each plant plumb and in center of planting pit or trench with root flare 1 inch above adjacent finish grades.

1. Backfill: Planting soil. For trees, use excavated soil for backfill.
2. Carefully remove root ball from fabric bag without damaging root ball or plant. Do not use planting stock if root ball is cracked or broken before or during planting operation.
3. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half filled, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.
4. Place planting tablets equally distributed around each planting pit when pit is approximately one-half filled. Place tablets beside the root ball about 1 inch from root tips; do not place tablets in bottom of the hole.
a. Quantity: As indicated on Drawings

5. Continue backfilling process. Water again after placing and tamping final layer of soil.

F. Bare-Root Stock: Set and support each plant in center of planting pit or trench with root flare 1 inch above adjacent finish grade.

1. Backfill: Planting soil. For trees, use excavated soil for backfill.
2. Spread roots without tangling or turning toward surface. Plumb before backfilling, and maintain plumb while working.
3. Carefully work backfill in layers around roots by hand. Bring roots into close contact with the soil.
4. When planting pit is approximately one-half filled, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.
5. Place planting tablets equally distributed around each planting pit when pit is approximately one-half filled. Place tablets beside soil-covered roots about 1 inch from root tips; do not place tablets in bottom of the hole or touching the roots.

a. Quantity: As indicated on Drawings

G. Watering Pipe: During backfilling, install watering pipe 4 feet deep into the planting pit outside the root ball with top of pipe 1 inch above the mulched surface.

H. Slopes: When planting on slopes, set the plant so the root flare on the uphill side is flush with the surrounding soil on the slope; the edge of the root ball on the downhill side will be above the surrounding soil. Apply enough soil to cover the downhill side of the root ball.

3.6 MECHANIZED TREE-SPADE PLANTING

A. Trees may be planted with an approved mechanized tree spade at the designated locations. Do not use tree spade to move trees larger than the maximum size allowed for a similar field-grown, balled-and-burlapped root-ball diameter according to ANSI Z60.1, or larger than manufacturer's maximum size recommendation for the tree spade being used, whichever is smaller.

B. Use the same tree spade to excavate the planting hole as will be used to extract and transport the tree.

C. When extracting the tree, center the trunk within the tree spade and move tree with a solid ball of earth.

D. Cut exposed roots cleanly during transplanting operations.

E. Plant trees following procedures in "Tree, Shrub, and Vine Planting" Article.
F. Where possible, orient the tree in the same direction as in its original location.

3.7 TREE, SHRUB, AND VINE PRUNING

A. Remove only dead, dying, or broken branches. Do not prune for shape.

B. Prune, thin, and shape trees, shrubs, and vines as directed by Architect.

C. Prune, thin, and shape trees, shrubs, and vines according to standard professional horticultural and arboricultural practices. Unless otherwise indicated by Architect, do not cut tree leaders; remove only injured, dying, or dead branches from trees and shrubs; and prune to retain natural character.

D. Do not apply pruning paint to wounds.

3.8 TREE STABILIZATION

A. Trunk Stabilization by Upright Staking and Tying: Install trunk stabilization as follows unless otherwise indicated:

1. Upright Staking and Tying: Stake trees of 2- through 5-inch caliper. Stake trees of less than 2-inch caliper only as required to prevent wind tip out. Use a minimum of two stakes of length required to penetrate at least 18 inches below bottom of backfilled excavation and to extend one-third of trunk height above grade. Set vertical stakes and space to avoid penetrating root balls or root masses.

2. Upright Staking and Tying: Stake trees with two stakes for trees up to 12 feet high and 2-1/2 inches or less in caliper; three stakes for trees less than 14 feet high and up to 4 inches in caliper. Space stakes equally around trees.

3. Support trees with bands of flexible ties at contact points with tree trunk. Allow enough slack to avoid rigid restraint of tree.

4. Support trees with two strands of tie wire, connected to the brass grommets of tree-tie webbing at contact points with tree trunk. Allow enough slack to avoid rigid restraint of tree.

B. Trunk Stabilization by Staking and Guying: Install trunk stabilization as follows unless otherwise indicated on Drawings. Stake and guy trees more than 14 feet in height and more than 3 inches in caliper unless otherwise indicated.

1. Site-Fabricated, Staking-and-Guying Method: Install no fewer than three guys spaced equally around tree.

 a. Securely attach guys to stakes 30 inches long, driven to grade. Adjust spacing to avoid penetrating root balls or root masses. Provide turnbuckle or compression spring for each guy wire and tighten securely.

 b. For trees more than 6 inches in caliper, anchor guys to wood deadmen buried at least 36 inches below grade. Provide turnbuckle or compression spring for each guy wire and tighten securely.
c. Support trees with bands of flexible ties at contact points with tree trunk and reaching to turnbuckle or compression spring. Allow enough slack to avoid rigid restraint of tree.

d. Support trees with guy cable or multiple strands of tie wire, connected to the brass grommets of tree-tie webbing at contact points with tree trunk and reaching to turnbuckle or compression spring. Allow enough slack to avoid rigid restraint of tree.

e. Attach flags to each guy wire, 30 inches above finish grade.

f. Paint turnbuckles or compression springs with luminescent white paint.

2. Proprietary Staking and Guying Device: Install staking and guying system sized and positioned as recommended by manufacturer unless otherwise indicated and according to manufacturer's written instructions.

C. Root-Ball Stabilization: Install at- or below-grade stabilization system to secure each new planting by the root ball unless otherwise indicated.

1. Wood Hold-Down Method: Place vertical stakes against side of root ball and drive them into subsoil; place horizontal wood hold-down stake across top of root ball and screw at each end to one of the vertical stakes.

 a. Install stakes of length required to penetrate at least 18 inches below bottom of backfilled excavation. Saw stakes off at horizontal stake.

 b. Install screws through horizontal hold-down and penetrating at least 1 inch into stakes. Predrill holes if necessary to prevent splitting wood.

 c. Install second set of stakes on other side of root trunk for larger trees.

2. Proprietary Root-Ball Stabilization Device: Install root-ball stabilization system sized and positioned as recommended by manufacturer unless otherwise indicated and according to manufacturer's written instructions.

3.9 PLACING SOIL IN PLANTERS

A. Place a layer of drainage gravel at least 4 inches thick in bottom of planter. Cover bottom with filter fabric and wrap filter fabric 4 inches up on all sides. Duct tape along the entire top edge of the filter fabric, to secure the filter fabric against the sides during the soil-filling process.

B. Fill planter with planting soil. Place soil in lightly compacted layers to an elevation of 1-1/2 inches below top of planter, allowing natural settlement.

3.10 GROUND COVER AND PLANT PLANTING

A. Set out and space ground cover and plants other than trees, shrubs, and vines as indicated on Drawings in even rows with triangular spacing.

B. Use planting soil for backfill.
C. Dig holes large enough to allow spreading of roots.

D. For rooted cutting plants supplied in flats, plant each in a manner that minimally disturbs the root system but to a depth not less than two nodes.

E. Work soil around roots to eliminate air pockets and leave a slight saucer indentation around plants to hold water.

F. Water thoroughly after planting, taking care not to cover plant crowns with wet soil.

G. Protect plants from hot sun and wind; remove protection if plants show evidence of recovery from transplanting shock.

3.11 PLANTING AREA MULCHING

A. Install weed-control barriers before mulching according to manufacturer's written instructions. Completely cover area to be mulched, overlapping edges a minimum of 6 inches and secure seams with galvanized pins.

B. Mulch backfilled surfaces of planting areas and other areas indicated.

 1. Trees and Treelike Shrubs in Turf Areas: Apply organic mulch ring of 2-inch average thickness, with 12-inch radius around trunks or stems. Do not place mulch within 3 inches of trunks or stems.

 2. Organic Mulch in Planting Areas: Apply 2-inch average thickness of organic mulch extending 12 inches beyond edge of individual planting pit or trench and over whole surface of planting area, and finish level with adjacent finish grades. Do not place mulch within 3 inches of trunks or stems.

3.12 PLANT MAINTENANCE

A. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring planting saucers, adjusting and repairing tree-stabilization devices, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings.

B. Fill in, as necessary, soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence.

C. Apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use integrated pest management practices when possible to minimize use of pesticides and reduce hazards. Treatments include physical controls such as hosing off foliage, mechanical controls such as traps, and biological control agents.
3.13 PESTICIDE APPLICATION

A. Non-organic pesticides and herbicides shall only be used with the written consent of the Owner’s representative.

B. Apply pesticides and other chemical products and biological control agents according to authorities having jurisdiction and manufacturer’s written recommendations. Coordinate applications with Owner’s operations and others in proximity to the Work. Notify Owner before each application is performed.

C. Pre-Emergent Herbicides (Selective and Nonselective): Apply to tree, shrub, and ground-cover areas according to manufacturer’s written recommendations. Do not apply to seeded areas.

D. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer’s written recommendations.

3.14 REPAIR AND REPLACEMENT

A. General: Repair or replace existing or new trees and other plants that are damaged by construction operations, in a manner approved by Architect.

 1. Submit details of proposed pruning and repairs.
 2. Perform repairs of damaged trunks, branches, and roots within 24 hours, if approved.
 3. Replace trees and other plants that cannot be repaired and restored to full-growth status, as determined by Architect.

B. Remove and replace trees that are more than 25 percent dead or in an unhealthy condition before the end of the corrections period or are damaged during construction operations that Architect determines are incapable of restoring to normal growth pattern.

 1. Provide new trees of same size as those being replaced for each tree of 6 inches or smaller in caliper size.
 2. Provide one new tree(s) of 6-inch caliper size for each tree being replaced that measure more than 6 inches in caliper size.

3.15 CLEANING AND PROTECTION

A. During planting, keep adjacent paving and construction clean and work area in an orderly condition. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Remove surplus soil and waste material including excess subsoil, unsuitable soil, trash, and debris and legally dispose of them off Owner's property.
C. Protect plants from damage due to landscape operations and operations of other contractors and trades. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged plantings.

D. After installation and before Substantial Completion remove nursery tags, nursery stakes, tie tape, labels, wire, burlap, and other debris from plant material, planting areas, and Project site.

E. At time of Substantial Completion, verify that tree-watering devices are in good working order and leave them in place. Replace improperly functioning devices.

3.16 MAINTENANCE SERVICE

A. Pruning

1. Trees, shrubs, ground cover and perennial beds will be pruned to remove dead or damaged branches, develop natural form, maintain plant shape, and promote healthy and proper structural growth. Material will be trimmed to keep it within its intended bounds. All cut material will be bagged and removed by the firm.

2. No plant material shall be pruned in the generally recognized “cemetery” fashion. Any plant so pruned shall be removed immediately and replaced with a plant of identical size at the Firm’s expense.

B. Fertilization

1. All plant material will be fertilized as required by the annual soil test but in no case more than once each in early and late summer.

2. New trees shall be fertilized for the first three years to ensure tree survival. The first year new trees will be fertilized spring and fall, then once per year for the next two years.

3. All fertilizers will be environmentally safe organic fertilizers.

C. Mulching

1. Plant material will be maintained in neat edged beds of organic, shredded, hardwood and compost mulch, free of foreign matter, sticks and large twigs, and at a 4” depth. Mulching should be accomplished at least twice a year and may require additional mulch in certain areas as needed. Firm to notify ABI when additional mulch is needed.

D. Watering

1. All plant material will be watered as needed to maintain plants in a healthy condition.

2. Reasonable efforts will be made to ensure water does not spray or flow over pavements.

E. Weeding
1. All beds will be weeded during the growing season to maintain a neat appearance.
2. Organic preemergent (soil applied) and postemergent (foliar applied) herbicides may be used.

F. Insect and Disease Control

1. The Selected Firm will monitor the site conditions to determine if any insect or disease problem exist.
2. The Selected Firm will propose a treatment based on the identification of the insect or disease, as well as the host plant, as needed.
3. Insect and disease treatments are classified as change orders and may be completed by the Selected Firm after a price is provided and approval to perform the work is granted by ABI.

G. Storm Debris

1. Storm debris will be picked up and properly disposed of, within 48 hours of the storm. Major tree damage will be reported to ABI.
2. In the event that major storm damage occurs on a Friday or weekend, Firm may be required to perform clean-up over the weekend in order to maintain public safety.

H. Leaf Removal

1. Fallen leaves will be removed so that turf areas are not damaged by accumulated leaves.

END OF SECTION 32 93 00
SECTION 33 05 00 - COMMON WORK RESULTS FOR UTILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Piping joining materials.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Sleeves.
 5. Identification devices.
 7. Flowable fill.
 8. Piped utility demolition.
 9. Piping system common requirements.
 10. Equipment installation common requirements.
 11. Concrete bases.
 12. Metal supports and anchorages.

1.3 DEFINITIONS

A. Exposed Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions.

B. Concealed Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

D. CPVC: Chlorinated polyvinyl chloride plastic.

E. PE: Polyethylene plastic.

F. PVC: Polyvinyl chloride plastic.
1.4 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Dielectric fittings.
 2. Identification devices.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.6 QUALITY ASSURANCE

A. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Steel Piping Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Comply with ASME A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.8 COORDINATION

A. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

B. Coordinate installation of identifying devices after completing covering and painting if devices are applied to surfaces.

C. Coordinate size and location of concrete bases. Formwork, reinforcement, and concrete requirements are specified in Section 03 30 00 "Cast-in-Place Concrete."
PART 2 - PRODUCTS

2.1 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness, unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

D. Solder Filler Metals: ASTM B32, lead-free alloys. Include water-flushable flux according to ASTM B813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

G. Solvent Cements for Joining Plastic Piping:
 1. ABS Piping: ASTM D 2235.
 2. CPVC Piping: ASTM F 493.
 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 4. PVC to ABS Piping Transition: ASTM D 3138.

2.2 TRANSITION FITTINGS

A. Transition Fittings, General: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.

B. Transition Couplings NPS 1-1/2 (DN 40) and Smaller:
1. Underground Piping: Manufactured piping coupling or specified piping system fitting.

C. AWWA Transition Couplings NPS 2 (DN 50) and Larger:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Dresser, Inc.; DMD Div.
 c. Ford Meter Box Company, Inc. (The); Pipe Products Div.
 d. JCM Industries.
 e. Smith-Blair, Inc.
 f. Viking Johnson.

3. Description: AWWA C219, metal sleeve-type coupling for underground pressure piping.

D. Plastic-to-Metal Transition Fittings:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Spears Manufacturing Co.

3. Description: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint or threaded end.

E. Plastic-to-Metal Transition Unions:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Colonial Engineering, Inc.
 b. NIBCO INC.
 c. Spears Manufacturing Co.

3. Description: MSS SP-107, CPVC and PVC four-part union. Include brass or stainless-steel threaded end, solvent-cement-joint or threaded plastic end, rubber O-ring, and union nut.
F. Flexible Transition Couplings for Underground Nonpressure Drainage Piping:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Fernco, Inc.
 d. Plastic Oddities.

3. Description: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

2.3 DIELECTRIC FITTINGS

A. Dielectric Fittings, General: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.

B. Dielectric Unions:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.
 e. Watts Water Technologies, Inc.
 f. Zurn Plumbing Products Group; Wilkins Div.

3. Description: Factory fabricated, union, NPS 2 (DN 50) and smaller.

 a. Pressure Rating: 150 psig minimum at 180 deg F.
 b. End Connections: Solder-joint copper alloy and threaded ferrous; threaded ferrous.

C. Dielectric Flanges:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.
 d. Watts Water Technologies, Inc.

3. Description: Factory-fabricated, bolted, companion-flange assembly, NPS 2-1/2 to NPS 4 (DN 65 to DN 100) and larger.

 a. Pressure Rating: 150 psig minimum.
 b. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

3. Description: Nonconducting materials for field assembly of companion flanges, NPS 2-1/2 (DN 65) and larger.

 a. Pressure Rating: 150 psig minimum
 b. Gasket: Neoprene or phenolic.
 c. Bolt Sleeves: Phenolic or polyethylene.
 d. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Calpico, Inc.
 b. Lochinvar Corporation.
3. Description: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining, NPS 3 (DN 80) and smaller.
 a. Pressure Rating: 300 psig at 225 deg F.
 b. End Connections: Threaded.

F. Dielectric Nipples:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Perfection Corporation.
 b. Precision Plumbing Products, Inc.
 c. Victaulic Company.

3. Description: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining.
 a. Pressure Rating: 300 psig at 225 deg F.
 b. End Connections: Threaded or grooved.

2.4 SLEEVES

A. Mechanical sleeve seals for pipe penetrations: Refer to industry standards and requirements for additional information regarding "Sleeves and Sleeve Seals for Plumbing Piping."

B. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

C. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized, plain ends.

D. Cast-Iron Sleeves: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

E. Molded PVC Sleeves: Permanent, with nailing flange for attaching to wooden forms.

G. Molded PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
2.5 **GROUT**

A. **Description:** ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

 1. **Characteristics:** Post hardening, volume adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 2. **Design Mix:** 5000-psi 28-day compressive strength.
 3. **Packaging:** Premixed and factory packaged.

2.6 **FLOWABLE FILL**

A. **Description:** Low-strength-concrete, flowable-slurry mix.

 1. **Cement:** ASTM C 150, Type I, portland.
 2. **Density:** 115- to 145-lb/cu. ft.
 3. **Aggregates:** ASTM C 33, natural sand, fine and crushed gravel or stone, coarse.
 4. **Aggregates:** ASTM C 33, natural sand, fine.
 5. **Admixture:** ASTM C 618, fly-ash mineral.
 6. **Water:** Comply with ASTM C 94.
 7. **Strength:** 100 to 200 psig at 28 days.

PART 3 - EXECUTION

3.1 **PIPED UTILITY DEMOLITION**

A. Refer to Section 02 41 19 "Selective Demolition" for general demolition requirements and procedures.

B. Disconnect, demolish, and remove piped utility systems, equipment, and components indicated to be removed.

 1. **Piping to Be Removed:** Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 2. **Piping to Be Abandoned in Place:** Drain piping. Fill abandoned piping with flowable fill, and cap or plug piping with same or compatible piping material.
 3. **Equipment to Be Removed:** Disconnect and cap services and remove equipment.
 4. **Equipment to Be Removed and Reinstalled:** Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make operational.
 5. **Equipment to Be Removed and Salvaged:** Disconnect and cap services and remove equipment and deliver to Owner.

C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.
3.2 DIELECTRIC FITTING APPLICATIONS

A. Dry Piping Systems: Connect piping of dissimilar metals with the following:
 1. NPS 2 (DN 50) and Smaller: Dielectric unions.
 2. NPS 2-1/2 to NPS 12 (DN 65 to DN 300): Dielectric flanges or dielectric flange kits.

B. Wet Piping Systems: Connect piping of dissimilar metals with the following:
 1. NPS 2 (DN 50) and Smaller: Dielectric couplings or dielectric nipples.
 2. NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Dielectric nipples.
 3. NPS 2-1/2 to NPS 8 (DN 65 to DN 200): Dielectric nipples or dielectric flange kits.
 4. NPS 10 and NPS 12 (DN 250 and DN 300): Dielectric flange kits.

3.3 PIPING INSTALLATION

A. Install piping according to the following requirements and utilities Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on the Coordination Drawings.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping to permit valve servicing.

E. Install piping at indicated slopes.

F. Install piping free of sags and bends.

G. Install fittings for changes in direction and branch connections.

H. Select system components with pressure rating equal to or greater than system operating pressure.

I. Sleeves are not required for core-drilled holes.

J. Permanent sleeves are not required for holes formed by removable PE sleeves.

K. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of equipment areas or other wet areas 2 inches above finished floor level.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 a. PVC Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 b. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsum-board partitions.

L. Verify final equipment locations for roughing-in.

M. Refer to equipment specifications in other Sections for roughing-in requirements.

3.4 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and utilities Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Grooved Joints: Assemble joints with grooved-end pipe coupling with coupling housing, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions.

H. Soldered Joints: Apply ASTM B 813 water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy (0.20 percent maximum lead content) complying with ASTM B 32.

J. Pressure-Sealed Joints: Assemble joints for plain-end copper tube and mechanical pressure seal fitting with proprietary crimping tool to according to fitting manufacturer's written instructions.

K. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 appendixes.
 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.

L. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

M. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

N. Plastic Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End PE Pipe and Fittings: Use butt fusion.
 2. Plain-End PE Pipe and Socket Fittings: Use socket fusion.

O. Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.5 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Install dielectric fittings at connections of dissimilar metal pipes.

3.6 EQUIPMENT INSTALLATION

A. Install equipment level and plumb, unless otherwise indicated.
B. Install equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference with other installations. Extend grease fittings to an accessible location.

C. Install equipment to allow right of way to piping systems installed at required slope.

3.7 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Section 033000 "Cast-in-Place Concrete." Refer to industry standards and requirements for additional information regarding "Miscellaneous Cast-in-Place Concrete."

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to industry standards and requirements for additional information regarding “Metal Fabrication” for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor piped utility materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.9 GROUTING

A. Mix and install grout for equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.
D. Avoid air entrapment during placement of grout.
E. Place grout, completely filling equipment bases.
F. Place grout on concrete bases and provide smooth bearing surface for equipment.
G. Place grout around anchors.
H. Cure placed grout.

END OF SECTION 33 05 00
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipe and fittings.
2. Nonpressure transition couplings.
3. Expansion joints and deflection fittings.
5. Drains.
7. Manholes.
8. Channel drainage systems.
10. Stormwater inlets.
11. Pipe outlets.
12. Stormwater disposal systems.

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:

1. Manholes: Include plans, elevations, sections, details, frames, and covers.
2. Catch basins, stormwater inlets, and dry wells. Include plans, elevations, sections, details, frames, covers, and grates.
3. Stormwater Detention Structures: Include plans, elevations, sections, details, frames, covers, design calculations, and concrete design-mix reports.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.

B. Profile Drawings: Show system piping in elevation. Draw profiles at horizontal scale of not less than 1 inch equals 50 feet (1:500) and vertical scale of not less than 1 inch equals 5 feet (1:50). Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.

C. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.

D. Field quality-control reports.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes according to manufacturer's written rigging instructions.

D. Handle catch basins and stormwater inlets according to manufacturer's written rigging instructions.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Engineer, Construction Manager, Owner no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of service without Engineer's, Construction Manager's, Owner's written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. PVC Cellular-Core Piping:

1. PVC Cellular-Core Pipe and Fittings: ASTM F 891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solvent-cemented joints.
2. Fittings: ASTM D 3034, SDR 35 PVC socket-type fittings.

B. PVC Corrugated Sewer Piping:
 2. Fittings: ASTM F 949, PVC molded or fabricated, socket type.

C. PVC Profile Sewer Piping:
 2. Fittings: ASTM D 3034, PVC with bell ends.

D. PVC Type PSM Sewer Piping:
 1. Pipe: ASTM D 3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
 2. Fittings: ASTM D 3034, PVC with bell ends.

E. PVC Gravity Sewer Piping:

F. PVC Water-Service Piping:
 1. Pipe: ASTM D 1785, Schedule 40 and Schedule 80 PVC, with plain ends for solvent-cemented joints.

2.2 NONPRESSURE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:
 1. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 2. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 b. Fernco Inc.
 c. Logan Clay Pipe.
 d. Mission Rubber Company; a division of MCP Industries, Inc.
 e. NDS Inc.
 f. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.

3. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Shielded, Flexible Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. Cascade Waterworks Mfg.
 c. Mission Rubber Company; a division of MCP Industries, Inc.

3. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

E. Ring-Type, Flexible Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. Fernco Inc.
 b. Logan Clay Pipe.
 c. Mission Rubber Company; a division of MCP Industries, Inc.

3. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.
2.3 CLEANOUTS

A. Plastic Cleanouts:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. Canplas LLC
 b. IPS Corporation
 c. NDS Inc
 d. Plastic Oddities; a division of Diverse Corporate Technologies, Inc
 e. Sioux Chief Manufacturing Company, Inc
 f. Zurn Light Commercial Products Operation; Zurn Plumbing Products Group

3. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.4 MANHOLES

A. Standard Precast Concrete Manholes:

1. Description: ASTM C 478 precast, reinforced concrete, of depth indicated, with provision for sealant joints.
2. Diameter: 48 inches minimum unless otherwise indicated.
3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
4. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
5. Riser Sections: 4-inch minimum thickness, and lengths to provide depth indicated.
6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
8. Resilient Pipe Connectors: ASTM C 923 cast or fitted into manhole walls, for each pipe connection.
9. Steps: Individual FRP steps wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
10. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:

1. Description: ASTM C 913; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
4. Resilient Pipe Connectors: ASTM C 923 cast or fitted into manhole walls, for each pipe connection.
5. Steps: Individual FRP steps wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
6. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
7. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch- minimum width flange and 26-inch-diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
2. Material: ASTM A 48, Class 35 gray iron unless otherwise indicated.

2.5 CONCRETE

A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:

1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.

2. Reinfrocing Bars: ASTM A 615, Grade 60 deformed steel.
C. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
 2. Reinforcing Bars: ASTM A 615, Grade 60 deformed steel.

2.6 POLYMER-CONCRETE, CHANNEL DRAINAGE SYSTEMS

A. General Requirements for Polymer-Concrete, Channel Drainage Systems: Modular system of precast, polymer-concrete channel sections, grates, and appurtenances; designed so grates fit into channel recesses without rocking or rattling. Include quantity of units required to form total lengths indicated.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

C. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. ABT, Inc.
 2. ACO USA.
 5. Poly-Cast.

D. Wide-Width, Level-Invert, Polymer-Concrete Systems:
 1. Channel Sections:
 a. Interlocking-joint, precast, modular units with end caps.
 b. 8-inch inside width and 13-3/4-inch deep, rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.
 2. Grates:
 a. Slots or other openings that fit recesses in channels.
 b. Material: Gray iron.
 3. Covers: Solid gray iron if indicated.
 4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

E. Drainage Specialties: Precast, polymer-concrete units.
 1. Small Catch Basins:
 a. 19- to 24-inch by approximately 6-inch polymer-concrete body, with outlets in quantities and sizes indicated.
b. Gray-iron slotted grate.
c. Frame: Include gray-iron or steel frame for grate.

F. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.

G. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

2.7 PLASTIC, CHANNEL DRAINAGE SYSTEMS

A. General Requirements for Plastic, Channel Drainage Systems:

1. Modular system of plastic channel sections, grates, and appurtenances.
2. Designed so grates fit into frames without rocking or rattling.
3. Number of units required to form total lengths indicated.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

C. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. ACO USA.
3. NDS Inc.
4. Tuf-Tite Corporation.
5. Zurn Light Commercial Products Operation; Zurn Plumbing Products Group.

D. Fiberglass Systems:

1. Channel Sections:
 a. Interlocking-joint, fiberglass modular units, with built-in invert slope of approximately 1 percent and with end caps.
 b. Rounded or inclined inside bottom surface, with outlets in quantities, sizes, and locations indicated.
 c. Width: 8 inches.

2. Factory- or field-attached frames that fit channel sections and grates.
 a. Material: Galvanized steel or ductile iron.

3. Grates with slots or perforations that fit frames.
 a. Material: Galvanized steel or ductile iron.

4. Covers: Solid gray iron if indicated.
5. Drainage Specialties:
 a. Large Catch Basins: 24-inch-square plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.
 b. Small Catch Basins: 12-by-24-inch plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.

E. PE Systems:
 1. Channel Sections: Interlocking-joint, PE modular units, 8 inches wide, with end caps. Include rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.
 2. Grates: PE, ladder shaped; with stainless-steel screws.
 3. Color: Gray unless otherwise indicated.
 4. Drainage Specialties: Include the following PE components:
 a. Drains: 6-inch- diameter, round, slotted top; with NPS 3 (DN 100) bottom outlet.
 b. Drains: 8-inch- diameter, round, slotted top; with NPS 6 (DN 150) bottom outlet.
 c. Drains: 6-inch- square, slotted top; with NPS 3 (DN 80) bottom outlet.
 d. Drains: 8-inch- square, slotted top; with NPS 6 (DN 150) bottom outlet.
 e. Catch Basins: 12-inch- square plastic body, with outlets in quantities and sizes indicated. Include PE slotted grate 11-3/4 inches square by 1-1/8 inches thick.

F. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.

G. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

2.8 CATCH BASINS

A. Standard Precast Concrete Catch Basins:
 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 2. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 3. Riser Sections: 4-inch minimum thickness, 48-inch diameter, and lengths to provide depth indicated.
 4. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.
 5. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
 6. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
7. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch-diameter frame and grate.

8. Steps: Individual FRP steps or wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 60 inches.

9. Pipe Connectors: ASTM C 923, resilient, of size required, for each pipe connecting to base section.

B. Designed Precast Concrete Catch Basins: ASTM C 913, precast, reinforced concrete; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for joint sealants.

1. Joint Sealants: ASTM C 990, bitumen or butyl rubber.
2. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
3. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch- diameter frame and grate.
4. Steps: Individual FRP steps or wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 60 inches.
5. Pipe Connectors: ASTM C 923, resilient, of size required, for each pipe connecting to base section.

C. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include flat grate with small square or short-slotted drainage openings.

1. Size: 24 by 24 inches minimum unless otherwise indicated.
2. Grate Free Area: Approximately 50 percent unless otherwise indicated.

D. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include 24-inch ID by 7- to 9-inch riser with 4-inch minimum width flange, and 26-inch- diameter flat grate with small square or short-slotted drainage openings.

1. Grate Free Area: Approximately 50 percent unless otherwise indicated.

2.9 STORMWATER INLETS

A. Curb Inlets: Made with vertical curb opening of materials and dimensions according to utility standards.

B. Gutter Inlets: Made with horizontal gutter opening of materials and dimensions according to utility standards. Include heavy-duty frames and grates.
C. Combination Inlets: Made with vertical curb and horizontal gutter openings of materials and dimensions according to utility standards. Include heavy-duty frames and grates.

D. Frames and Grates: Heavy duty according to utility standards.

E. Manhole Frames and Covers: ASTM A 536, Grade 60-40-18, ductile-iron castings designed for heavy-duty service. Include 24-inch ID by 7- to 9-inch riser with 4-inch minimum width flange, and 26-inch- diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."

2.10 PIPE OUTLET S

A. Head Walls: Cast-in-place reinforced concrete, with apron and tapered sides.

B. Riprap Basins: Broken, irregularly sized and shaped, graded stone according to NSSGA's "Quarried Stone for Erosion and Sediment Control."

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure drainage piping according to the following:
 1. Install piping pitched down in direction of flow.
 2. Install piping NPS 6 (DN 150) and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
 3. Install piping with 24-inch minimum cover.
 4. Install PVC cellular-core piping according to ASTM D 2321 and ASTM F 1668.
 5. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.
 6. Install PVC profile gravity sewer piping according to ASTM D 2321 and ASTM F 1668.
 7. Install PVC water-service piping according to ASTM D 2321 and ASTM F 1668.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure drainage piping according to the following:
 1. Join PVC cellular-core piping according to ASTM D 2321 and ASTM F 891 for solvent-cemented joints.
 2. Join PVC corrugated sewer piping according to ASTM D 2321 for elastomeric-seal joints.
 3. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasketed joints.
 4. Join PVC profile gravity sewer piping according to ASTM D 2321 for elastomeric-seal joints or ASTM F 794 for gasketed joints.

3.4 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.

B. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding earth grade.

C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.5 DRAIN INSTALLATION

A. Install type of drains in locations indicated.

1. Use Light-Duty, top-loading classification drains in earth or unpaved foot-traffic areas.
2. Use Medium-Duty, top-loading classification drains in paved foot-traffic areas.
3. Use Heavy-Duty, top-loading classification drains in vehicle-traffic service areas.
4. Use Extra-Heavy-Duty, top-loading classification drains in roads.

B. Embed drains in 4-inch minimum concrete around bottom and sides.

C. Fasten grates to drains if indicated.

D. Set drain frames and covers with tops flush with pavement surface.

E. Assemble trench sections with flanged joints.

F. Embed trench sections in 4-inch minimum concrete around bottom and sides.

3.6 MANHOLE INSTALLATION

A. General: Install manholes, complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C 891.

C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.

D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

3.7 CATCH BASIN INSTALLATION

A. Construct catch basins to sizes and shapes indicated.

B. Set frames and grates to elevations indicated.
3.8 STORMWATER INLET INSTALLATION
 A. Construct inlet head walls, aprons, and sides of reinforced concrete, as indicated.
 B. Construct riprap of broken stone, as indicated.
 C. Install outlets that spill onto grade, anchored with concrete, where indicated.
 D. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.
 E. Construct energy dissipaters at outlets, as indicated.

3.9 CONCRETE PLACEMENT
 A. Place cast-in-place concrete according to ACI 318.

3.10 CHANNEL DRAINAGE SYSTEM INSTALLATION
 A. Install with top surfaces of components, except piping, flush with finished surface.
 B. Assemble channel sections to form slope down toward drain outlets. Use sealants, adhesives, fasteners, and other materials recommended by system manufacturer.
 C. Embed channel sections and drainage specialties in 4-inch minimum concrete around bottom and sides.
 D. Fasten grates to channel sections if indicated.
 E. Assemble channel sections with flanged or interlocking joints.
 F. Embed channel sections in 4-inch minimum concrete around bottom and sides.

3.11 CONNECTIONS
 A. Connect nonpressure, gravity-flow drainage piping in building's storm building drains specified in Section 22 14 13 "Facility Storm Drainage Piping."
 B. Make connections to existing piping and underground manholes.
 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch overlap, with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 2. Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into
existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

3. Make branch connections from side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.

4. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

C. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

 1. Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.

 a. Unshielded or Shielded flexible couplings for same or minor difference OD pipes.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

3.12 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

 1. Submit separate reports for each system inspection.
 2. Defects requiring correction include the following:

 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Exception: Piping with soil-tight joints unless required by authorities having jurisdiction.
 b. Option: Test plastic piping according to ASTM F 1417.
 c. Option: Test concrete piping according to ASTM C 924 (ASTM C 924M).

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.13 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with water.

END OF SECTION 33 41 00
SECTION 33 46 00 - SUBDRAINAGE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Perforated-wall pipe and fittings.
2. Drainage conduits.
3. Drainage panels.

1.3 ACTION SUBMITTALS

A. Product Data:

1. Drainage conduits, including rated capacities.
2. Drainage panels, including rated capacities.

PART 2 - PRODUCTS

2.1 PERFORATED-WALL PIPES AND FITTINGS

2.2 DRAINAGE CONDUITS

A. Molded-Sheet Drainage Conduits: Prefabricated geocomposite with cuspated, molded-plastic drainage core wrapped in geotextile filter fabric.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. **Basis-of-Design Product**: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. American Wick Drain.
 b. JDR Enterprises, Inc.
 c. TenCate Geosynthetics.

3. Nominal Size: 12 inches high by approximately 1 inch thick.

 a. Minimum In-Plane Flow: 30 gpm at hydraulic gradient of 1.0 when tested according to ASTM D 4716.

4. Nominal Size: 18 inches high by approximately 1 inch thick.

 a. Minimum In-Plane Flow: 45 gpm at hydraulic gradient of 1.0 when tested according to ASTM D 4716.

5. **Filter Fabric**: PP geotextile.

6. **Fittings**: HDPE with combination NPS 4 and NPS 6 (DN 100 and DN 150) outlet connection.

B. **Multi-pipe Drainage Conduits**: Prefabricated geocomposite with interconnected, corrugated, perforated-pipe core molded from HDPE complying with ASTM D 1248 and wrapped in geotextile filter fabric.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. **Basis-of-Design Product**: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. Varicore Technologies, Inc.

3. Nominal Size: 6 inches high by approximately 1-1/4 inches thick.

 a. Minimum In-Plane Flow: 15 gpm at hydraulic gradient of 1.0 when tested according to ASTM D 4716.

4. Nominal Size: 12 inches high by approximately 1-1/4 inches thick.

 a. Minimum In-Plane Flow: 30 gpm at hydraulic gradient of 1.0 when tested according to ASTM D 4716.

5. Nominal Size: 18 inches high by approximately 1-1/4 inches thick.

 a. Minimum In-Plane Flow: 45 gpm at hydraulic gradient of 1.0 when tested according to ASTM D 4716.

6. **Filter Fabric**: Nonwoven, needle-punched geotextile.
7. Fittings: HDPE with combination NPS 4 and NPS 6 (DN 100 and DN 150) outlet connection.
8. Couplings: HDPE.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Advanced Drainage Systems, Inc.
3. Nominal Size: 12 inches high by approximately 1 inch thick.
 a. Minimum In-Plane Flow: 30 gpm at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
4. Nominal Size: 18 inches high by approximately 1 inch thick.
 a. Minimum In-Plane Flow: 45 gpm at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
6. Fittings: HDPE with combination NPS 4 and NPS 6 (DN 100 and DN 150) outlet connection.
7. Couplings: Corrugated HDPE band.

2.3 SOIL MATERIALS

A. Soil materials are specified in Section 31 20 00 "Earth Moving."

2.4 WATERPROOFING FELTS

A. Material: Comply with ASTM D 226, Type I, asphalt or ASTM D 227, coal-tar-saturated organic felt.

2.5 GEOTEXTILE FILTER FABRICS

A. Description: Fabric of PP or polyester fibers or combination of both, with flow rate range from 110 to 330 gpm/sq. ft. when tested according to ASTM D 4491.
B. Structure Type: Nonwoven, needle-punched continuous filament.
2. Styles: Flat and sock.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine surfaces and areas for suitable conditions where subdrainage systems are to be installed.

B. If subdrainage is required for landscaping, locate and mark existing utilities, underground structures, and aboveground obstructions before beginning installation and avoid disruption and damage of services.

C. Verify that drainage panels installed as part of foundation wall waterproofing is properly positioned to drain into subdrainage system.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.3 FOUNDATION DRAINAGE INSTALLATION

A. Place impervious fill material on subgrade adjacent to bottom of footing after concrete footing forms have been removed. Place and compact impervious fill to dimensions indicated, but not less than 6 inches deep and 12 inches wide.

B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.

C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches.

D. Encase pipe with sock-style geotextile filter fabric before installing pipe. Connect sock sections with adhesive or tape.

E. Install drainage piping as indicated in Part 3 "Piping Installation" Article for foundation subdrainage.

F. Add drainage course to width of at least 6 inches on side away from wall and to top of pipe to perform tests.

G. After satisfactory testing, cover drainage piping to width of at least 6 inches on side away from footing and above top of pipe to within 12 inches of finish grade.
H. Install drainage course and wrap top of drainage course with flat-style geotextile filter fabric.

I. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches.

J. Install drainage panels on foundation walls as follows:
 1. Coordinate placement with other drainage materials.
 2. Lay perforated drainage pipe at base of footing. Install as indicated in Part 3 "Piping Installation" Article.
 4. Attach panels to wall beginning at subdrainage pipe. Place and secure molded-sheet drainage panels, with geotextile facing away from wall.

K. Place backfill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches. Thoroughly compact each layer. Final backfill to finish elevations and slope away from building.

3.4 UNDERSLAB DRAINAGE INSTALLATION

A. Excavate for underslab drainage system after subgrade material has been compacted but before drainage course has been placed. Include horizontal distance of at least 6 inches between drainage pipe and trench walls. Grade bottom of trench excavations to required slope, and compact to firm, solid bed for drainage system.

B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.

C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches.

D. Encase pipe with sock-style geotextile filter fabric before installing pipe. Connect sock sections with adhesive or tape.

E. Install drainage piping as indicated in Part 3 "Piping Installation" Article for underslab subdrainage.

F. Add drainage course to width of at least 6 inches on side away from wall and to top of pipe to perform tests.

G. After satisfactory testing, cover drainage piping with drainage course to elevation of bottom of slab, and compact and wrap top of drainage course with flat-style geotextile filter fabric.

H. Install horizontal drainage panels as follows:
 1. Coordinate placement with other drainage materials.
 2. Lay perforated drainage pipe at inside edge of footing.
3. Place drainage panel over drainage pipe with core side up. Peel back fabric and wrap fabric around pipe. Locate top of core at bottom elevation of floor slab.
4. Butt additional panels against other installed panels. If panels have plastic flanges, overlap installed panel with flange.

3.5 RETAINING-WALL DRAINAGE INSTALLATION

A. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
B. Place supporting layer of drainage course over compacted subgrade to compacted depth of not less than 4 inches.
C. Encase pipe with sock-style geotextile filter fabric before installing pipe. Connect sock sections with adhesive or tape.
D. Install drainage piping as indicated in Part 3 "Piping Installation" Article for retaining-wall subdrainage.
E. Add drainage course to width of at least 6 inches on side away from wall and to top of pipe to perform tests.
F. After satisfactory testing, cover drainage piping to width of at least 6 inches on side away from footing and above top of pipe to within 12 inches of finish grade.
G. Place drainage course in layers not exceeding 3 inches in loose depth; compact each layer placed and wrap top of drainage course with flat-style geotextile filter fabric.
H. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches.
I. Install drainage panels on wall as follows:
 1. Coordinate placement with other drainage materials.
 2. Lay perforated drainage pipe at base of footing as described elsewhere in this Specification. Do not install aggregate.
 3. If weep holes are used instead of drainage pipe, cut 1/2-inch-diameter holes on core side at weep-hole locations. Do not cut fabric.
 4. Mark horizontal calk line on wall at a point 6 inches less than panel width above footing bottom. Before marking wall, subtract footing width.
 6. Attach panel to wall at horizontal mark and at beginning of wall corner. Place core side of panel against wall. Use concrete nails with washers through product. Place nails from 2 to 6 inches below top of panel, approximately 48 inches apart. Construction adhesives, metal stick pins, or double-sided tape may be used instead of nails. Do not penetrate waterproofing. Before using adhesives, discuss with waterproofing manufacturer.
 7. If another panel is required on same row, cut away 4 inches of installed panel core and wrap fabric over new panel.
8. If additional rows of panel are required, overlap lower panel with 4 inches of fabric.
9. Cut panel as necessary to keep top 12 inches below finish grade.
10. For inside corners, bend panel. For outside corners, cut core to provide 3 inches for overlap.

J. Fill to Grade: Place satisfactory soil fill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches. Thoroughly compact each layer. Fill to finish grade.

3.6 LANDSCAPING DRAINAGE INSTALLATION

A. Provide trench width to allow installation of drainage conduit. Grade bottom of trench excavations to required slope, and compact to firm, solid bed for drainage system.
B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches.
E. Add drainage course to top of drainage conduits.
F. After satisfactory testing, cover drainage conduit to within 12 inches of finish grade.
G. Install drainage course and wrap top of drainage course with flat-style geotextile filter fabric.
H. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches.
I. Fill to Grade: Place satisfactory soil fill material over drainage course. Place material in loose-depth layers not exceeding 6 inches. Thoroughly compact each layer. Fill to finish grade.

3.7 PIPING INSTALLATION

A. Install piping beginning at low points of system, true to grades and alignment indicated, with unbroken continuity of invert. Bed piping with full bearing in filtering material. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions and other requirements indicated.
1. Foundation Subdrainage: Install piping level and with a minimum cover of 36 inches unless otherwise indicated.
2. Underslab Subdrainage: Install piping level.
3. Plaza Deck Subdrainage: Install piping level.
4. Retaining-Wall Subdrainage: When water discharges at end of wall into stormwater piping system, install piping level and with a minimum cover of 36 inches unless otherwise indicated.
5. Landscaping Subdrainage: Install piping pitched down in direction of flow, at a minimum slope of 0.5 percent and with a minimum cover of 36 inches unless otherwise indicated.
7. Excavate recesses in trench bottom for bell ends of pipe. Lay pipe with bells facing upslope and with spigot end entered fully into adjacent bell.

B. Use increasers, reducers, and couplings made for different sizes or materials of pipes and fittings being connected. Reduction of pipe size in direction of flow is prohibited.

C. Install thermoplastic piping according to ASTM D 2321.

3.8 PIPE JOINT CONSTRUCTION

A. Join perforated PE pipe and fittings with couplings according to ASTM D 3212 with loose banded, coupled, or push-on joints.

B. Join perforated PVC sewer pipe and fittings according to ASTM D 3212 with loose bell-and-spigot, push-on joints.

C. Special Pipe Couplings: Join piping made of different materials and dimensions with special couplings made for this application. Use couplings that are compatible with and fit materials and dimensions of both pipes.

3.9 CONNECTIONS

A. Comply with requirements for piping specified in Section 33 41 00 "Storm Utility Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect low elevations of subdrainage system to building's solid-wall-piping storm drainage system.

C. Where required, connect low elevations of foundation subdrainage to stormwater sump pumps.

3.10 FIELD QUALITY CONTROL

A. Tests and Inspections:
1. After installing drainage course to top of piping, test drain piping with water to ensure free flow before backfilling.
2. Remove obstructions, replace damaged components, and repeat test until results are satisfactory.

B. Drain piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.11 CLEANING

A. Clear interior of installed piping and structures of dirt and other superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint as it is completed. Place plugs in ends of uncompleted pipe at end of each day or when work stops.

END OF SECTION 33 46 00